• Title/Summary/Keyword: submanifold

Search Result 233, Processing Time 0.022 seconds

SOME WARPED PRODUCT SUBMANIFOLDS OF A KENMOTSU MANIFOLD

  • Khan, Viqar Azam;Shuaib, Mohammad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.863-881
    • /
    • 2014
  • Many differential geometric properties of a submanifold of a Kaehler manifold are conceived via canonical structure tensors T and F on the submanifold. For instance, a CR-submanifold of a Kaehler manifold is a CR-product if and only if T is parallel on the submanifold (c.f. [2]). Warped product submanifolds are generalized version of CR-product submanifolds. Therefore, it is natural to see how the non-triviality of the covariant derivatives of T and F gives rise to warped product submanifolds. In the present article, we have worked out characterizations in terms of T and F under which a contact CR- submanifold of a Kenmotsu manifold reduces to a warped product submanifold.

CR-WARPED PRODUCT SUBMANIFOLDS OF NEARLY KAEHLER MANIFOLDS

  • Al-Luhaibi, Nadia S.;Al-Solamy, Falleh R.;Khan, Viqar Azam
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.979-995
    • /
    • 2009
  • As warped product manifolds provide an excellent setting to model space time near black holes or bodies with large gravitational field, the study of these manifolds assumes significance in general. B. Y. Chen [4] initiated the study of CR-warped product submanifolds in a Kaehler manifold. He obtained a characterization for a CR-submanifold to be locally a CR-warped product and an estimate for the squared norm of the second fundamental form of CR-warped products in a complex space form (cf [6]). In the present paper, we have obtained a necessary and sufficient conditions in terms of the canonical structures P and F on a CR-submanifold of a nearly Kaehler manifold under which the submanifold reduces to a locally CR-warped product submanifold. Moreover, an estimate for the second fundamental form of the submanifold in a generalized complex space is obtained and thus extend the results of Chen to a more general setting.

SOME RESULTS ON INVARINAT SUBMANIFOLDS OF LORENTZIAN PARA-KENMOTSU MANIFOLDS

  • Atceken, Mehmet
    • Korean Journal of Mathematics
    • /
    • v.30 no.1
    • /
    • pp.175-185
    • /
    • 2022
  • The purpose of this paper is to study invariant submanifolds of a Lorentzian para Kenmotsu manifold. We obtain the necessary and sufficient conditions for an invariant submanifold of a Lorentzian para Kenmotsu manifold to be totally geodesic. Finally, a non-trivial example is built in order to verify our main results.

CLASSIFICATION OF TWISTED PRODUCT LIGHTLIKE SUBMANIFOLDS

  • Sangeet Kumar;Megha Pruthi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1003-1016
    • /
    • 2023
  • In this paper, we introduce the idea of twisted product lightlike submanifolds of semi-Riemannian manifolds and provide non-trivial examples of such lightlike submanifolds. Then, we prove the non-existence of proper isotropic or totally lightlike twisted product submanifolds of a semi-Riemannian manifold. We also show that for a twisted product lightlike submanifold of a semi-Riemannian manifold, the induced connection ∇ is not a metric connection. Further, we prove that a totally umbilical SCR-lightlike submanifold of an indefinite Kaehler manifold ${\tilde{M}}$ does not admit any twisted product SCR-lightlike submanifold of the type M×ϕMT, where M is a totally real submanifold and MT is a holomorphic submanifold of ${\tilde{M}}$. Consequently, we obtain a geometric inequality for the second fundamental form of twisted product SCR-lightlike submanifolds of the type MT×ϕM of an indefinite Kaehler manifold ${\tilde{M}}$, in terms of the gradient of ln ϕ, where ϕ stands for the twisting function. Subsequently, the equality case of this inequality is discussed. Finally, we construct a non-trivial example of a twisted product SCR-lightlike submanifold in an indefinite Kaehler manifold.

RICCI CURVATURE OF INTEGRAL SUBMANIFOLDS OF AN S-SPACE FORM

  • Kim, Jeong-Sik;Dwivedi, Mohit Kumar;Tripathi, Mukut Mani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.395-406
    • /
    • 2007
  • Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for an integral submanifold of an S-space form. By polarization, we get a basic inequality for Ricci tensor also. Equality cases are also discussed. By giving a very simple proof we show that if an integral submanifold of maximum dimension of an S-space form satisfies the equality case, then it must be minimal. These results are applied to get corresponding results for C-totally real submanifolds of a Sasakian space form and for totally real submanifolds of a complex space form.

RICCI CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM

  • Kim, Jeong-Sik;Dwivedi, Mohit Kumar;Tripathi, Mukut Mani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.979-998
    • /
    • 2009
  • Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for a submanifold of an S-space form tangent to structure vector fields. Equality cases are also discussed. As applications we find corresponding results for almost semi-invariant submanifolds, $\theta$-slant submanifolds, anti-invariant submanifold and invariant submanifolds. A necessary and sufficient condition for a totally umbilical invariant submanifold of an S-space form to be Einstein is obtained. The inequalities for scalar curvature and a Riemannian invariant $\Theta_k$ of different kind of submanifolds of a S-space form $\tilde{M}(c)$ are obtained.

CHARACTERIZATION OF WARPED PRODUCT SUBMANIFOLDS OF LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

  • Hui, Shyamal Kumar;Pal, Tanumoy;Piscoran, Laurian Ioan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1303-1313
    • /
    • 2019
  • Recently Hui et al. ([8,9]) studied contact CR-warped product submanifolds and also warped product pseudo-slant submanifolds of a $(LCS)_n$-manifold $\bar{M}$. The characterization for both these classes of warped product submanifolds have been studied here. It is also shown that there do not exists any proper warped product bi-slant submanifold of a $(LCS)_n$-manifold. Although the existence of a bi-slant submanifold of $(LCS)_n$-manifold is ensured by an example.

THE RIGIDITY OF MINIMAL SUBMANIFOLDS IN A LOCALLY SYMMETRIC SPACE

  • Cao, Shunjuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.135-142
    • /
    • 2013
  • In the present paper, we discuss the rigidity phenomenon of closed minimal submanifolds in a locally symmetric Riemannian manifold with pinched sectional curvature. We show that if the sectional curvature of the submanifold is no less than an explicitly given constant, then either the submanifold is totally geodesic, or the ambient space is a sphere and the submanifold is isometric to a product of two spheres or the Veronese surface in $S^4$.

SEMI-RIEMANNIAN SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Yucesan, Ahmet;Yasar, Erol
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.781-793
    • /
    • 2012
  • We study some properties of a semi-Riemannian submanifold of a semi-Riemannian manifold with a semi-symmetric non-metric connection. Then, we prove that the Ricci tensor of a semi-Riemannian submanifold of a semi-Riemannian space form admitting a semi-symmetric non-metric connection is symmetric but is not parallel. Last, we give the conditions under which a totally umbilical semi-Riemannian submanifold with a semi-symmetric non-metric connection is projectively flat.

SLANT SUBMANIFOLDS OF AN ALMOST PRODUCT RIEMANNIAN MANIFOLD

  • Sahin Bayram
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.717-732
    • /
    • 2006
  • In this paper, we study both slant 3nd semi-slant sub-manifolds of an almost product Riemannian manifold. We give characterization theorems for slant and semi-slant submanifolds and investigate special class of slant submanifolds which are product version of Kaehlerian slant submanifold. We also obtain integrability conditions for the distributions which are involved in the definition of a semi-slant submanifold. Finally, we prove a theorem on the geometry of leaves of distributions under a condition.