CLASSIFICATION OF TWISTED PRODUCT LIGHTLIKE SUBMANIFOLDS

Sangeet Kumar and Megha Pruthi

Abstract

In this paper, we introduce the idea of twisted product lightlike submanifolds of semi-Riemannian manifolds and provide non-trivial examples of such lightlike submanifolds. Then, we prove the non-existence of proper isotropic or totally lightlike twisted product submanifolds of a semi-Riemannian manifold. We also show that for a twisted product lightlike submanifold of a semi-Riemannian manifold, the induced connection ∇ is not a metric connection. Further, we prove that a totally umbilical $S C R$-lightlike submanifold of an indefinite Kaehler manifold \tilde{M} does not admit any twisted product $S C R$-lightlike submanifold of the type $M_{\perp} \times_{\phi} M_{T}$, where M_{\perp} is a totally real submanifold and M_{T} is a holomorphic submanifold of \tilde{M}. Consequently, we obtain a geometric inequality for the second fundamental form of twisted product $S C R$-lightlike submanifolds of the type $M_{T} \times{ }_{\phi} M_{\perp}$ of an indefinite Kaehler manifold \tilde{M}, in terms of the gradient of $\ln \phi$, where ϕ stands for the twisting function. Subsequently, the equality case of this inequality is discussed. Finally, we construct a non-trivial example of a twisted product $S C R$-lightlike submanifold in an indefinite Kaehler manifold.

1. Introduction

For a general investigation of totally umbilical submanifolds and extrinsic spheres in Riemannian geometry, Chen [4] introduced the idea of twisted product manifolds as:

Let $\left(M_{1}, g_{M_{1}}\right)$ and $\left(M_{2}, g_{M_{2}}\right)$ be two Riemannian manifolds and $\phi>0$ be a differentiable function on $M_{1} \times M_{2}$. Then, the twisted product $M_{1} \times{ }_{\phi} M_{2}$ is the product manifold $M_{1} \times M_{2}$ equipped with the Riemannian metric given by

$$
\begin{equation*}
g=g_{M_{1}}+\phi^{2} g_{M_{2}} \tag{1}
\end{equation*}
$$

If Y is tangent to $M=M_{1} \times{ }_{\phi} M_{2}$ at (x, y), then

$$
\|Y\|^{2}=\left\|d \pi_{1}(Y)\right\|^{2}+\phi^{2}(x, y)\left\|d \pi_{2}(Y)\right\|^{2}
$$

Received June 30, 2022; Revised January 5, 2023; Accepted February 10, 2023.
2020 Mathematics Subject Classification. 53B30, 53B25, 53B35.
Key words and phrases. Twisted product lightlike submanifold, indefinite Kaehler manifold, $S C R$-lightlike submanifold.

This work was financially supported by SERB, GoI vide File No. ECR/2017/000786.
where $\pi_{i}(i=1,2)$, respectively, denote the canonical projections of $M_{1} \times M_{2}$ onto M_{1} and M_{2} with $d \pi_{i}$'s and ϕ being the differential maps and the twisting function, respectively. In case, the twisting function ϕ depends on M_{1} only, then the twisted product manifold reduces to a warped product manifold (c.f., [3]).

The concept of twisted product manifolds has been employed to study several geometric properties of hypersurfaces in different ambient space settings, namely, in hypersurfaces of complex space forms, Lagrangian submanifolds and curvature netted hypersurfaces (c.f., $[6,13,16]$). Moreover, the curvature properties of twisted product manifolds have been extensively explored in semiRiemannian geometry (c.f., $[2,12,17]$). The relationship among twisted product and warped product manifolds in semi-Riemannian geometry has been investigated by Fernández-López et al. in [11] and by Ponge and Reckziegel in [18].

In [5], Chen considered $C R$-submanifolds as twisted products of the type $M_{\perp} \times_{\phi} M_{T}$ and $M_{T} \times_{\phi} M_{\perp}$ in Kaehler manifolds such that M_{\perp} represents a totally real submanifold and M_{T} represents a holomorphic submanifold of a Kaehler manifold \tilde{M}. Precisely, he proved the non-existence of twisted product $C R$-submanifolds of the type $M_{\perp} \times_{\phi} M_{T}$ in Kaehler manifolds and established a geometric inequality for twisted product $C R$-submanifolds of the type $M_{T} \times{ }_{\phi}$ M_{\perp} in Kaehler manifolds in terms of the second fundamental form. In [20], Sahin discussed the non-existence of doubly warped product $C R$-submanifolds and doubly twisted product $C R$-submanifolds in Kaehler manifolds.

One may note that the majority of the available work on twisted products and warped products emphasizes on manifolds with positive definite metric. Thus, the available results may not be suitable to study those topics of mathematical physics and relativity, where indefinite metrics are employed, thereby limiting the application area of available work. The relativity theory led to development and investigation of semi-Riemannian manifolds, which in turn provides a broad set up for the examination of twisted products and warped products and may prompt some striking applications. In this context, Duggal [7] introduced warped product lightlike manifolds, where he discussed two classes of warped product lightlike manifolds. Further, Sahin [19] initiated the idea of warped product lightlike submanifolds in a semi-Riemannian manifold and proved various characterization results on this class of warped products. In this continuation, the warped product lightlike submanifolds are studied by Kumar in indefinite Kaehler and nearly Kaehler manifolds (c.f., [14, 15]). But, till date, no endeavours have been made to study twisted product lightlike submanifolds of semi-Riemannian manifolds. Therefore in this paper, we study twisted product lightlike submanifolds of semi-Riemannian manifolds. After defining a twisted product lightlike submanifold of a semi-Riemannian manifold, we present two non-trivial examples of such lightlike submanifolds. Then, we show that there does not exist any proper isotropic or totally lightlike twisted product submanifolds of a semi-Riemannian manifold. Further, we investigate twisted product $S C R$-lightlike submanifolds in indefinite Kaehler
manifolds and prove that a totally umbilical $S C R$-lightlike submanifold of an indefinite Kaehler manifold \tilde{M} does not admit any twisted product $S C R$ lightlike submanifold of the type $M_{\perp} \times_{\phi} M_{T}$, where M_{\perp} represents a totally real submanifold and M_{T} represents a holomorphic submanifold of an indefinite Kaehler manifold \tilde{M}. Moreover, we obtain a geometric inequality for the second fundamental form of twisted product $S C R$-lightlike submanifolds of the type $M_{T} \times_{\phi} M_{\perp}$ in \tilde{M}, in terms of the gradient of $\ln \phi$, where ϕ stands for the twisting function. Consequently, we discuss the equality case of this inequality. Finally, we present a non-trivial example of a twisted product $S C R$-lightlike submanifold of an indefinite Kaehler manifold.

2. Preliminaries

2.1. Geometry of lightlike submanifolds

Assume that $\left(M_{m}, g\right)$ is an immersed submanifold of a semi-Riemannian manifold $\left(\tilde{M}_{m+n}, \tilde{g}\right)$ with constant index q, (provided, $m, n \geq 1$ and $1 \leq q \leq$ $m+n-1)$ and g is the induced metric of \tilde{g} on M. Then M is known as a lightlike submanifold of \tilde{M} if \tilde{g} becomes degenerate on the tangent bundle $T M$ of M. For a degenerate metric g on M, both $T_{x} M$ and $T_{x} M^{\perp}$ are degenerate orthogonal subspaces, but no longer complementary. Thus, there exists a radical (null) subspace $\operatorname{Rad}\left(T_{x} M\right)$ such that $\operatorname{Rad}\left(T_{x} M\right)=T_{x} M \cap T_{x} M^{\perp}$. The submanifold M of \tilde{M} is said to be an r-lightlike submanifold [8] if the mapping $\operatorname{Rad}(T M)$: $x \in M \longrightarrow \operatorname{Rad}\left(T_{x} M\right)$ defines a smooth distribution on M with rank $r>0$, $1 \leq r \leq m$. While the radical distribution $\operatorname{Rad}(T M)$ of $T M$ is defined as

$$
\operatorname{Rad}(T M)=\cup_{x \in M}\left\{\xi \in T_{x} M \mid g(u, \xi)=0, \forall u \in T_{x} M, \xi \neq 0\right\}
$$

Moreover, $S(T M)$ is the screen distribution in $T M$ such that

$$
T M=\operatorname{Rad}(T M) \perp S(T M)
$$

On the other hand, $S\left(T M^{\perp}\right)$ denotes a complementary vector subbundle to $\operatorname{Rad}(T M)$ in $T M^{\perp}$ such that $T M^{\perp}=\operatorname{Rad}(T M) \perp S\left(T M^{\perp}\right)$. Moreover, there exists a local null frame $\left\{N_{i}\right\}$ of null sections with values in orthogonal complementary subspace of $S\left(T M^{\perp}\right)$ in $S\left(T M^{\perp}\right)^{\perp}$ satisfying

$$
\tilde{g}\left(N_{i}, N_{j}\right)=0, \quad \tilde{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j} \text { for } i, j \in\{1,2, \ldots, r\}
$$

where $\left\{\xi_{1}, \ldots, \xi_{r}\right\}$ is a local basis of $\Gamma(\operatorname{Rad}(T M))$. This implies that $\operatorname{tr}(T M)$ and $\operatorname{ltr}(T M)$, respectively, are the vector bundles in $\left.T \tilde{M}\right|_{M}$ and $S\left(T M^{\perp}\right)^{\perp}$ with the property

$$
\begin{equation*}
\operatorname{tr}(T M)=\operatorname{ltr}(T M) \perp S\left(T M^{\perp}\right) \tag{2}
\end{equation*}
$$

and
(3) $\left.T \tilde{M}\right|_{M}=T M \oplus \operatorname{tr}(T M)=(\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)) \perp S(T M) \perp S\left(T M^{\perp}\right)$.

In view of decomposition (3), the Gauss and Weingarten formulae are

$$
\tilde{\nabla}_{Y_{1}} Y_{2}=\nabla_{Y_{1}} Y_{2}+h\left(Y_{1}, Y_{2}\right), \quad \tilde{\nabla}_{Y_{1}} V=-A_{V} Y_{1}+\nabla_{Y_{1}}^{t} V
$$

for $V \in \Gamma(\operatorname{tr}(T M))$ and $Y_{1}, Y_{2} \in \Gamma(T M)$, where $\tilde{\nabla}$ denotes the Levi-Civita connection on \tilde{M}. According to Eq. (2), the Gauss and Weingarten formulae become

$$
\begin{gather*}
\tilde{\nabla}_{Y_{1}} Y_{2}=\nabla_{Y_{1}} Y_{2}+h^{l}\left(Y_{1}, Y_{2}\right)+h^{s}\left(Y_{1}, Y_{2}\right) \tag{4}\\
\tilde{\nabla}_{Y_{1}} W=-A_{W} Y_{1}+\nabla_{Y_{1}}^{s} W+D^{l}\left(Y_{1}, W\right) \tag{5}\\
\tilde{\nabla}_{Y_{1}} N=-A_{N} Y_{1}+\nabla_{Y_{1}}^{l} N+D^{s}\left(Y_{1}, N\right)
\end{gather*}
$$

where $N \in \Gamma(l \operatorname{tr}(T M))$, $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ and $Y_{1}, Y_{2} \in \Gamma(T M)$. Further, using Eqs. (4) and (5), one has

$$
\begin{equation*}
g\left(A_{W} Y_{1}, Y_{2}\right)=\tilde{g}\left(h^{s}\left(Y_{1}, Y_{2}\right), W\right)+\tilde{g}\left(D^{l}\left(Y_{1}, W\right), Y_{2}\right) \tag{6}
\end{equation*}
$$

for $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ and $Y_{1}, Y_{2} \in \Gamma(T M)$.
It may be noted that the induced connection ∇ on M is not a metric connection. As $\tilde{\nabla}$ is a metric connection on \tilde{M}, thus employing Eq. (4), one has

$$
\begin{equation*}
\left(\nabla_{Y_{1}} g\right)\left(Y_{2}, Y_{3}\right)=\tilde{g}\left(h^{l}\left(Y_{1}, Y_{3}\right), Y_{2}\right)+\tilde{g}\left(h^{l}\left(Y_{1}, Y_{2}\right), Y_{3}\right) \tag{7}
\end{equation*}
$$

for $Y_{1}, Y_{2}, Y_{3} \in \Gamma(T M)$.
Definition $1([9])$. Let (\tilde{M}, \tilde{g}) be a semi-Riemannian manifold. Then, a lightlike submanifold (M, g) of (\tilde{M}, \tilde{g}) is said to be totally umbilical if there exist a smooth transversal curvature vector field $H \in \Gamma(\operatorname{tr}(T M))$ on M such that for $Y_{1}, Y_{2} \in \Gamma(T M)$,

$$
h\left(Y_{1}, Y_{2}\right)=H \tilde{g}\left(Y_{1}, Y_{2}\right)
$$

According to Eqs. (4) and (5), M is called a totally umbilical lightlike submanifold if and only if there exist smooth vector fields $H^{s} \in \Gamma\left(S\left(T M^{\perp}\right)\right)$ and $H^{l} \in \Gamma(l \operatorname{tr}(T M))$ satisfying

$$
D^{l}\left(Y_{1}, W\right)=0, \quad h^{s}\left(Y_{1}, Y_{2}\right)=H^{s} \tilde{g}\left(Y_{1}, Y_{2}\right), \quad h^{l}\left(Y_{1}, Y_{2}\right)=H^{l} \tilde{g}\left(Y_{1}, Y_{2}\right)
$$

for $Y_{1}, Y_{2} \in \Gamma(T M)$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$.
Moreover, a lightlike submanifold M of a semi-Riemannian manifold \tilde{M} is said to be mixed geodesic if and only if $h(X, Y)=0$ for $X \in \Gamma\left(D_{1}\right)$ and $Y \in \Gamma\left(D_{2}\right)$.

Definition 2. An indefinite almost Hermitian manifold \tilde{M} with an indefinite Hermitian metric \tilde{g} and an almost complex structure \tilde{J} is said to be an indefinite Kaehler manifold (c.f., [1]) if

$$
\tilde{J}^{2}=-I, \quad \tilde{g}\left(\tilde{J} Y_{1}, \tilde{J} Y_{2}\right)=\tilde{g}\left(Y_{1}, Y_{2}\right), \quad\left(\tilde{\nabla}_{Y_{1}} \tilde{J}\right) Y_{2}=0, \forall Y_{1}, Y_{2} \in \Gamma(T M)
$$

Definition 3 ([10]). A real lightlike submanifold ($M, g, S(T M)$) of an indefinite Kaehler manifold $(\tilde{M}, \tilde{g}, \tilde{J})$ is known as a Screen Cauchy-Riemann $(S C R)$ lightlike submanifold if
(A) There exists a real non-null distribution $D \subset S(T M)$ satisfying

$$
S(T M)=D \oplus D^{\perp}, \quad \tilde{J} D=D, \quad \tilde{J} D^{\perp} \subset S\left(T M^{\perp}\right)
$$

where D^{\perp} is orthogonal complementary to D in $S(T M)$.
(B) $\operatorname{Rad}(T M)$ is invariant with respect to \tilde{J}

In view of Definition 3, we consider $D^{\prime}=D \perp \operatorname{Rad}(T M)$.

3. Twisted product lightlike submanifolds of semi-Riemannian manifolds

In the present segment, firstly, we define a twisted product lightlike submanifolds of a semi-Riemannian manifold following the approach of Sahin [19] as follows:

Definition 4. Let $\left(M_{1}^{r}, g_{1}\right)$ and $\left(M_{2}^{m}, g_{2}\right)$ be a totally lightlike submanifold and a semi-Riemannian submanifold, respectively, of a semi-Riemannian manifold (\tilde{M}, \tilde{g}). Then, the twisted product lightlike submanifold is defined as the product manifold $M=M_{1} \times_{\phi} M_{2}$ of \tilde{M} with the degenerate metric g defined by

$$
g\left(Y_{1}, Y_{2}\right)=g_{1}\left(\pi_{*} Y_{1}, \pi_{*} Y_{2}\right)+\phi^{2} g_{2}\left(\eta_{*} Y_{1}, \eta_{*} Y_{2}\right)
$$

for every $Y_{1}, Y_{2} \in \Gamma(T M)$ and $*$ denotes the tangent map. Here, $\pi: M_{1} \times M_{2} \rightarrow$ M_{1} and $\eta: M_{1} \times M_{2} \rightarrow M_{2}$ represent projection maps satisfying $\pi(x, y)=x$ and $\eta(x, y)=y$ for $(x, y) \in M_{1} \times M_{2}$.
Remark 3.1. In view of above definition, we conclude
(i) If $M_{1} \neq\{0\}, M_{2} \neq\{0\}$ and ϕ is non-constant on M, then M becomes a proper twisted product lightlike submanifold.
(ii) If ϕ depends only on M_{1}, then M becomes a warped product lightlike submanifold.
(iii) M becomes an r-lightlike submanifold of \tilde{M} if $\operatorname{Rad}(T M)$ and $S(T M)$ have rank r and m, respectively.

Next, we give two examples of twisted product lightlike submanifolds of a semi-Riemannian manifold.

Example 3.2. Let M be a submanifold of a semi-Riemannian manifold $\tilde{M}=$ $\left(R_{1}^{8}, \tilde{g}\right)$ with

$$
\begin{array}{ll}
x^{1}=\sqrt{2} u^{1}, \quad x^{2}=u^{1} \sin u^{2}, & x^{3}=u^{1} \cos u^{2}, \quad x^{4}=u^{1} \sin u^{3}, \\
x^{5}=u^{1} \cos u^{3}, \quad x^{6}=\frac{\left(u^{2}\right)^{2}}{2}, & x^{7}=u^{2} u^{3}, \quad x^{8}=\frac{\left(u^{3}\right)^{2}}{2},
\end{array}
$$

where $u^{2}, u^{3} \in R-\left\{\frac{n \pi}{2}, n \in Z\right\}$. Then $T M$ is spanned by Z_{1}, Z_{2}, Z_{3} such that
$Z_{1}=\sqrt{2} \partial x_{1}+\sin u^{2} \partial x_{2}+\cos u^{2} \partial x_{3}+\sin u^{3} \partial x_{4}+\cos u^{3} \partial x_{5}$,
$Z_{2}=u^{1} \cos u^{2} \partial x_{2}-u^{1} \sin u^{2} \partial x_{3}+u^{2} \partial x_{6}+u^{3} \partial x_{7}$,
$Z_{3}=u^{1} \cos u^{3} \partial x_{4}-u^{1} \sin u^{3} \partial x_{5}+u^{2} \partial x_{7}+u^{3} \partial x_{8}$.

It is clear that M is a 1-lightlike submanifold with $\operatorname{Rad}(T M)=\operatorname{Span}\left\{Z_{1}\right\}$ and $S(T M)=\operatorname{Span}\left\{Z_{2}, Z_{3}\right\}$. Further, $S\left(T M^{\perp}\right)=\operatorname{Span}\left\{W=\sin u^{2} \partial x_{2}+\right.$ $\left.\cos u^{2} \partial x_{3}-\sin u^{3} \partial x_{4}-\cos u^{3} \partial x_{5}\right\}$ and $l \operatorname{tr}(T M)$ is spanned by

$$
N_{1}=\frac{1}{4}\left(-\sqrt{2} \partial x_{1}+\sin u^{2} \partial x_{2}+\cos u^{2} \partial x_{3}+\sin u^{3} \partial x_{4}+\cos u^{3} \partial x_{5}\right) .
$$

Here, clearly $S(T M)$ and $\operatorname{Rad}(T M)$ are integrable. If M_{1} and M_{2} represent the leaves of $\operatorname{Rad}(T M)$ and $S(T M)$, respectively, then the induced metric tensor on M is given by

$$
\begin{aligned}
d s^{2} & =0\left(d u_{1}^{2}\right)+\left(\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}+\left(u^{3}\right)^{2}\right)\left(d u_{2}^{2}+d u_{3}^{2}\right) \\
& =\left(\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}+\left(u^{3}\right)^{2}\right)\left(d u_{2}^{2}+d u_{3}^{2}\right) .
\end{aligned}
$$

Hence, M is a proper twisted product lightlike submanifold $M_{1} \times_{\phi} M_{2}$ of R_{1}^{8}, with the twisting function $\phi=\sqrt{\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}+\left(u^{3}\right)^{2}}$.

Example 3.3. Let M be a submanifold of a semi-Riemannian manifold $\tilde{M}=$ (R_{2}^{10}, \tilde{g}) with

$$
\begin{aligned}
& x^{1}=\sqrt{2} u^{1}, \quad x^{2}=u^{2}, \quad x^{3}=u^{1} \sin u^{3}, \quad x^{4}=u^{1} \sin u^{3}, \\
& x^{5}=u^{1} \sin u^{4}, \quad x^{6}=u^{1} \cos u^{4}, \quad x^{7}=u^{2}, \quad x^{8}=\frac{\left(u^{3}\right)^{2}}{2}, \\
& x^{9}=u^{3} u^{4}, \quad x^{10}=\frac{\left(u^{4}\right)^{2}}{2}, \quad \text { where } u^{3}, u^{4} \in R-\left\{\frac{n \pi}{2}, n \in Z\right\} .
\end{aligned}
$$

Then $T M$ is spanned by $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ such that

$$
\begin{aligned}
& Z_{1}=\sqrt{2} \partial x_{1}+\sin u^{3} \partial x_{3}+\cos u^{3} \partial x_{4}+\sin u^{4} \partial x_{5}+\cos u^{4} \partial x_{6}, \\
& Z_{2}=\partial x_{2}+\partial x_{7}, \\
& Z_{3}=u^{1} \cos u^{3} \partial x_{3}-u^{1} \sin u^{3} \partial x_{4}+u^{3} \partial x_{8}+u^{4} \partial x_{9}, \\
& Z_{4}=u^{1} \cos u^{4} \partial x_{5}-u^{1} \sin u^{4} \partial x_{6}+u^{3} \partial x_{9}+u^{4} \partial x_{10} .
\end{aligned}
$$

It is clear that M is a 2-lightlike submanifold with $\operatorname{Rad}(T M)=\operatorname{Span}\left\{Z_{1}, Z_{2}\right\}$ and $S(T M)=\operatorname{Span}\left\{Z_{3}, Z_{4}\right\}$. Further, $S\left(T M^{\perp}\right)=\operatorname{Span}\left\{W=\sin u^{3} \partial x_{3}+\right.$ $\left.\cos u^{3} \partial x_{4}-\sin u^{4} \partial x_{5}-\cos u^{4} \partial x_{6}\right\}$ and $\operatorname{ltr}(T M)$ is spanned by

$$
\begin{aligned}
& N_{1}=\frac{1}{2}\left(-\sqrt{2} \partial x_{1}+\sin u^{3} \partial x_{3}+\cos u^{3} \partial x_{4}+\sin u^{4} \partial x_{5}+\cos u^{4} \partial x_{6}\right), \\
& N_{2}=\frac{1}{2}\left(-\partial x_{2}+\partial x_{7}\right) .
\end{aligned}
$$

Here, clearly $S(T M)$ and $\operatorname{Rad}(T M)$ are integrable. If M_{1} and M_{2} represent the leaves of $\operatorname{Rad}(T M)$ and $S(T M)$, respectively, then induced metric tensor on M is given by

$$
\begin{aligned}
d s^{2} & =0\left(d u_{1}^{2}+d u_{2}^{2}\right)+\left(\left(u^{1}\right)^{2}+\left(u^{3}\right)^{2}+\left(u^{4}\right)^{2}\right)\left(d u_{3}^{2}+d u_{4}^{2}\right) \\
& =\left(\left(u^{1}\right)^{2}+\left(u^{3}\right)^{2}+\left(u^{4}\right)^{2}\right)\left(d u_{3}^{2}+d u_{4}^{2}\right) .
\end{aligned}
$$

Hence, M is a proper twisted product lightlike submanifold $M_{1} \times_{\phi} M_{2}$ of R_{2}^{10}, with the twisting function $\phi=\sqrt{\left(u^{1}\right)^{2}+\left(u^{3}\right)^{2}+\left(u^{4}\right)^{2}}$.

Now, from Proposition 1 of [11], for a twisted product manifold, we have the following result.

Lemma 3.4 ([11]). Let $M=M_{1} \times_{\phi} M_{2}$ be a twisted product manifold. Then

$$
\nabla_{Y_{1}} Y_{2} \in \Gamma\left(T M_{1}\right)
$$

$$
\begin{equation*}
\nabla_{Y_{1}} Z=\nabla_{Z} Y_{1}=\left(\frac{Y_{1} \phi}{\phi}\right) Z \tag{8}
\end{equation*}
$$

for $Y_{1}, Y_{2} \in \Gamma\left(T M_{1}\right)$ and $Z \in \Gamma\left(T M_{2}\right)$.
Proposition 3.5. There do not exist any proper isotropic or totally lightlike twisted product submanifolds of a semi-Riemannian manifold \tilde{M}.

Proof. Assume that M is an isotropic twisted product lightlike submanifold. Then $S(T M)=0$ which implies that $M_{2}=0$. Next, if we consider M to be a totally lightlike submanifold, then one has $S(T M)=0$ which further gives $M_{2}=0$ and hence the proof follows.

In general, Eq. (7) implies that the induced connection ∇ on M is not a metric connection. In this context, we have the following result.

Theorem 3.6. Consider a twisted product lightlike submanifold $M=M_{1} \times{ }_{\phi} M_{2}$ of a semi-Riemannian manifold \tilde{M}. Then, the induced connection ∇ defined on M is not a metric connection.

Proof. If possible, suppose that ∇ is a metric connection on M, then from Eq. (7), we get $h^{l}=0$. As $\tilde{\nabla}$ is a metric connection on \tilde{M}, therefore for $Z_{1}, Z_{2} \in$ $\Gamma(S(T M))$ and $Y_{1} \in \Gamma(\operatorname{Rad}(T M))$, we have $\tilde{g}\left(\tilde{\nabla}_{Z_{1}} Z_{2}, Y_{1}\right)=-\tilde{g}\left(Z_{2}, \tilde{\nabla}_{Z_{1}} Y_{1}\right)$, further using Eqs. (4) and (8), we obtain

$$
\begin{equation*}
\tilde{g}\left(h^{l}\left(Z_{1}, Z_{2}\right), Y_{1}\right)=-Y_{1}(\ln \phi) g\left(Z_{1}, Z_{2}\right) \tag{9}
\end{equation*}
$$

Since $h^{l}=0$, therefore Eq. (9) becomes $Y_{1}(\ln \phi) g\left(Z_{1}, Z_{2}\right)=0$, which implies that either $g\left(Z_{1}, Z_{2}\right)=0$ or $Y_{1}(\ln \phi)=0$, but this leads to a contradiction as $S(T M)$ is non-degenerate and M is a proper twisted product lightlike submanifold, thus the result follows.

Note. In the forthcoming part of the paper, M_{T} represents a holomorphic submanifold, M_{\perp} represents a totally real submanifold and \tilde{M} represents an indefinite Kaehler manifold, unless otherwise stated.

4. Twisted product $S C R$-lightlike submanifolds of the type $M_{\perp} \times_{\phi} M_{T}$ and $M_{T} \times_{\phi} M_{\perp}$ in indefinite Kaehler manifolds

In this part, we will investigate $S C R$-lightlike submanifolds of an indefinite Kaehler manifold \tilde{M}, which are twisted products of the type $M_{\perp} \times_{\phi} M_{T}$ and $M_{T} \times{ }_{\phi} M_{\perp}$.

Theorem 4.1. Suppose that M is a totally umbilical SCR-lightlike submanifold of \tilde{M}. If M is $\underset{\sim}{a}$ twisted product $S C R$-lightlike submanifold of the type $M=$ $M_{\perp} \times_{\phi} M_{T}$ in \tilde{M}, then M is an SCR-lightlike product.
Proof. For $Z \in \Gamma\left(D^{\perp}\right)$ and $Y_{1}, Y_{2} \in \Gamma\left(D^{\prime}\right)$, from Eq. (1), we obtain

$$
\begin{align*}
Z g\left(Y_{1}, Y_{2}\right) & =(2 \phi)(Z \phi) g_{M_{T}}\left(Y_{1}, Y_{2}\right) \tag{10}\\
& =2\left(\frac{Z \phi}{\phi}\right) g\left(Y_{1}, Y_{2}\right)
\end{align*}
$$

As M is totally umbilical in \tilde{M} and $\tilde{\nabla}$ is a metric connection on \tilde{M}, therefore, employing Eqs. (4) and (8), for $Y_{1}, Y_{2} \in \Gamma\left(D^{\prime}\right)$ and $Z \in \Gamma\left(D^{\perp}\right)$, we find

$$
\begin{align*}
Z g\left(Y_{1}, Y_{2}\right) & =g\left(\nabla_{Z} Y_{1}, Y_{2}\right)+g\left(Y_{1}, \nabla_{Z} Y_{2}\right) \tag{11}\\
& =\left(\frac{Z \phi}{\phi}\right) g\left(Y_{1}, Y_{2}\right)+g\left(Y_{1}, \nabla_{Y_{2}} Z\right) \\
& =\left(\frac{Z \phi}{\phi}\right) g\left(Y_{1}, Y_{2}\right)+\tilde{g}\left(Y_{1}, \tilde{\nabla}_{Y_{2}} Z\right) \\
& =\left(\frac{Z \phi}{\phi}\right) g\left(Y_{1}, Y_{2}\right)-\tilde{g}\left(\tilde{\nabla}_{Y_{2}} Y_{1}, Z\right) \\
& =\left(\frac{Z \phi}{\phi}\right) g\left(Y_{1}, Y_{2}\right)-g\left(\nabla_{Y_{2}} Y_{1}, Z\right)
\end{align*}
$$

Using Eqs. (10) and (11), we get

$$
\begin{equation*}
\left(\frac{Z \phi}{\phi}\right) g\left(Y_{1}, Y_{2}\right)=-g\left(\nabla_{Y_{2}} Y_{1}, Z\right) \tag{12}
\end{equation*}
$$

Now, let h^{T} and A^{T} denote the second fundamental form and the shape operator of M_{T} in M, respectively. Then according to Gauss formula and Eq. (12), we obtain

$$
\begin{equation*}
\left(\frac{Z \phi}{\phi}\right) g\left(Y_{1}, Y_{2}\right)=-g\left(h^{T}\left(Y_{1}, Y_{2}\right), Z\right) \tag{13}
\end{equation*}
$$

For the second fundamental form h^{\prime} of M_{T} in \tilde{M}, we acquire

$$
\begin{equation*}
h^{\prime}\left(Y_{1}, Y_{2}\right)=h^{T}\left(Y_{1}, Y_{2}\right)+h^{l}\left(Y_{1}, Y_{2}\right)+h^{s}\left(Y_{1}, Y_{2}\right) \tag{14}
\end{equation*}
$$

for any $Y_{1}, Y_{2} \in \Gamma\left(D^{\prime}\right)$. From Eqs. (13) and (14), we can write

$$
\begin{align*}
\tilde{g}\left(h^{\prime}\left(Y_{1}, Y_{1}\right), Z\right) & =g\left(h^{T}\left(Y_{1}, Y_{1}\right), Z\right) \tag{15}\\
& =-\left(\frac{Z \phi}{\phi}\right) g\left(Y_{1}, Y_{1}\right) .
\end{align*}
$$

On the other hand, since M_{T} is a holomorphic submanifold in \tilde{M}, therefore one has

$$
\begin{equation*}
h^{\prime}\left(Y_{1}, \tilde{J} Y_{2}\right)=h^{\prime}\left(\tilde{J} Y_{1}, Y_{2}\right)=\tilde{J} h^{\prime}\left(Y_{1}, Y_{2}\right) \tag{16}
\end{equation*}
$$

Here, by combining Eqs. (15) and (16), we attain

$$
\begin{aligned}
\tilde{g}\left(h^{\prime}\left(Y_{1}, Y_{1}\right), Z\right) & =\tilde{g}\left(h^{\prime}\left(\tilde{J} Y_{1}, Y_{1}\right), \tilde{J} Z\right) \\
& =\left(\frac{Z \phi}{\phi}\right) g\left(Y_{1}, Y_{1}\right) .
\end{aligned}
$$

Therefore, we obtain $Z(\ln \phi) g\left(Y_{1}, Y_{1}\right)=0$ for $Z \in \Gamma\left(D^{\perp}\right)$ and $Y_{1} \in \Gamma\left(D^{\prime}\right)$. In particular, using the non-degeneracy of D, we derive $Z(\ln \phi)=0$ for $Y_{1} \in$ $\Gamma(D)$. This gives that the twisting function ϕ depends only on M_{T}, which further reduces the twisted product $S C R$-lightlike submanifold of the type $M=M_{\perp} \times{ }_{\phi} M_{T}$ into an $S C R$-lightlike product $\underset{\sim}{M}=M_{\perp} \times M_{T}$ with the new metric $g=g_{M_{\perp}}+\tilde{g}_{M_{T}}$, where $\tilde{g}_{M_{T}}=\phi^{2} g_{M_{T}}$ in \tilde{M}.

Next, we investigate twisted product $S C R$-lightlike submanifolds of the type $M_{T} \times_{\phi} M_{\perp}$ in \tilde{M} and establish a geometric characteristic for the second fundamental form of twisted product $S C R$-lightlike submanifolds in \tilde{M}, in terms of the gradient of twisting function ϕ. At first, we establish an essential lemma for later use.
Lemma 4.2. For a twisted product $S C R$-lightlike submanifold $M=M_{T} \times_{\phi} M_{\perp}$ of \tilde{M}, we have

$$
\begin{equation*}
\tilde{g}\left(h^{s}\left(\tilde{J} Y_{1}, Z_{1}\right), \tilde{J} Z_{2}\right)=Y_{1}(\ln \phi) g\left(Z_{1}, Z_{2}\right) \tag{17}
\end{equation*}
$$

for $Z_{1}, Z_{2} \in \Gamma\left(D^{\perp}\right)$ and $Y_{1} \in \Gamma\left(D^{\prime}\right)$.
Proof. For $Z_{1}, Z_{2} \in \Gamma\left(D^{\perp}\right)$ and $Y_{1} \in \Gamma\left(D^{\prime}\right)$, from Eq. (1), we can write

$$
\begin{align*}
Y_{1} g\left(Z_{1}, Z_{2}\right) & =(2 \phi)\left(Y_{1} \phi\right) g_{M_{\perp}}\left(Z_{1}, Z_{2}\right) \tag{18}\\
& =2\left(\frac{Y_{1} \phi}{\phi}\right) g\left(Z_{1}, Z_{2}\right)
\end{align*}
$$

Since $\tilde{\nabla}$ is a metric connection on \tilde{M}, therefore from Eqs. (4) and (8), we can write

$$
\begin{align*}
Y_{1} g\left(Z_{1}, Z_{2}\right) & =g\left(\nabla_{Y_{1}} Z_{1}, Z_{2}\right)+g\left(Z_{1}, \nabla_{Y_{1}} Z_{2}\right) \tag{19}\\
& =\left(\frac{Y_{1} \phi}{\phi}\right) g\left(Z_{1}, Z_{2}\right)+g\left(Z_{1}, \nabla_{Z_{2}} Y_{1}\right) \\
& =\left(\frac{Y_{1} \phi}{\phi}\right) g\left(Z_{1}, Z_{2}\right)+\tilde{g}\left(Z_{1}, \tilde{\nabla}_{Z_{2}} Y_{1}\right) \\
& =\left(\frac{Y_{1} \phi}{\phi}\right) g\left(Z_{1}, Z_{2}\right)-\tilde{g}\left(\tilde{\nabla}_{Z_{2}} Z_{1}, Y_{1}\right) \\
& =\left(\frac{Y_{1} \phi}{\phi}\right) g\left(Z_{1}, Z_{2}\right)-g\left(\nabla_{Z_{2}} Z_{1}, Y_{1}\right)-\tilde{g}\left(h^{l}\left(Z_{2}, Z_{1}\right), Y_{1}\right)
\end{align*}
$$

Using Eqs. (18) and (19), we acquire

$$
\begin{equation*}
\left(\frac{Y_{1} \phi}{\phi}\right) g\left(Z_{1}, Z_{2}\right)=-g\left(\nabla_{Z_{2}} Z_{1}, Y_{1}\right)-\tilde{g}\left(h^{l}\left(Z_{2}, Z_{1}\right), Y_{1}\right) \tag{20}
\end{equation*}
$$

and from Eqs. (4) and (5), we derive
(21) $\tilde{g}\left(\tilde{J} A_{\tilde{J} Z_{2}} Z_{1}, Y_{1}\right)=-g\left(A_{\tilde{J} Z_{2}} Z_{1}, \tilde{J} Y_{1}\right)$

$$
\begin{aligned}
& =\tilde{g}\left(\tilde{\nabla}_{Z_{1}} \tilde{J} Z_{2}-D^{l}\left(Z_{1}, \tilde{J} Z_{2}\right)-\nabla_{Z_{1}}^{s} \tilde{J} Z_{2}, \tilde{J} Y_{1}\right) \\
& =\tilde{g}\left(\tilde{\nabla}_{Z_{1}} \tilde{J} Z_{2}, \tilde{J} Y_{1}\right)-\tilde{g}\left(D^{l}\left(Z_{1}, \tilde{J} Z_{2}\right), \tilde{J} Y_{1}\right) \\
& =g\left(\nabla_{Z_{1}} Z_{2}, Y_{1}\right)+\tilde{g}\left(h^{l}\left(Z_{1}, Z_{2}\right), Y_{1}\right)-\tilde{g}\left(D^{l}\left(Z_{1}, \tilde{J} Z_{2}\right), \tilde{J} Y_{1}\right)
\end{aligned}
$$

Then, from Eq. (6), we have

$$
\begin{equation*}
\tilde{g}\left(\tilde{J} A_{\tilde{J} Z_{2}} Z_{1}, Y_{1}\right)=-\tilde{g}\left(h^{s}\left(\tilde{J} Y_{1}, Z_{1}\right), \tilde{J} Z_{2}\right)-\tilde{g}\left(D^{l}\left(Z_{1}, \tilde{J} Z_{2}\right), \tilde{J} Y_{1}\right) \tag{22}
\end{equation*}
$$

Hence, the result follows from Eqs. (20), (21) and (22).
Theorem 4.3. Let $M=M_{T} \times{ }_{\phi} M_{\perp}$ be a twisted product SCR-lightlike submanifold of \tilde{M}. Then one has
(i) The squared norm of second fundamental form of M in \tilde{M} satisfies

$$
\begin{equation*}
\|h\|^{2} \geq 2 q\left\|\nabla^{T}(\ln \phi)\right\|^{2} \tag{23}
\end{equation*}
$$

where q denotes the dimension of M_{\perp} and $\nabla^{T}(\ln \phi)$ denotes the M^{T} component of the gradient of $\ln \phi$.
(ii) If $\|h\|^{2}=2 q\left\|\nabla^{T}(\ln \phi)\right\|^{2}$ holds identically for $Y_{1} \in \Gamma(D)$, then M_{T} is a totally geodesic submanifold and M_{\perp} is a totally umbilical submanifold of \tilde{M}.

Proof. Consider a local orthonormal frame of vector fields $\left\{X_{1}, X_{2}, X_{3}, \ldots\right.$, $X_{p}, X_{p+1}=\tilde{J} X_{1}, X_{p+2}=\tilde{J} X_{2}, \ldots, X_{2 p}=\tilde{J} X_{p}, X_{2 p+1}=\xi_{1}, X_{2 p+2}=\xi_{2}, \ldots$, $\left.X_{2 p+r}=\xi_{r}, X_{2 p+r+1}=\tilde{J} \xi_{1}, X_{2 p+r+2}=\tilde{J} \xi_{2}, \ldots, X_{2 p+2 r}=\tilde{J} \xi_{r}\right\}$ on M_{T} and local orthonormal frame of vector fields $\left\{Z_{1}, Z_{2}, Z_{3}, \ldots, Z_{q}\right\}$ on M_{\perp}. Then, we acquire

$$
\|h\|^{2}=\left\|h\left(D^{\perp}, D^{\perp}\right)\right\|^{2}+2\left\|h\left(D^{\prime}, D^{\perp}\right)\right\|^{2}+\left\|h\left(D^{\prime}, D^{\prime}\right)\right\|^{2}
$$

which further gives

$$
\|h\|^{2}=\left\|h^{s}\left(D^{\perp}, D^{\perp}\right)\right\|^{2}+2\left\|h^{s}\left(D^{\prime}, D^{\perp}\right)\right\|^{2}+\left\|h^{s}\left(D^{\prime}, D^{\prime}\right)\right\|^{2} .
$$

From which, we acquire

$$
\begin{aligned}
\|h\|^{2}= & \sum_{i, j=1}^{2 p+2 r} \tilde{g}\left(h^{s}\left(X_{i}, X_{j}\right), h^{s}\left(X_{i}, X_{j}\right)\right)+\sum_{m, n=1}^{q} \tilde{g}\left(h^{s}\left(Z_{m}, Z_{n}\right), h^{s}\left(Z_{m}, Z_{n}\right)\right) \\
& +2 \sum_{i=1}^{2 p+2 r} \sum_{m=1}^{q} \tilde{g}\left(h^{s}\left(X_{i}, Z_{m}\right), h^{s}\left(X_{i}, Z_{m}\right)\right) .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\|h\|^{2} \geq 2 \sum_{i=1}^{2 p+2 r} \sum_{m=1}^{q} \tilde{g}\left(h^{s}\left(X_{i}, Z_{m}\right), h^{s}\left(X_{i}, Z_{m}\right)\right) \tag{24}
\end{equation*}
$$

Now, using Lemma 4.2, Eq. (24) yields

$$
\begin{aligned}
\|h\|^{2} & \geq 2 \sum_{i=1}^{2 p+2 r} \sum_{m=1}^{q}\left(X_{i}(\ln \phi)\right)^{2} \tilde{g}\left(Z_{m}, Z_{m}\right) \\
& \geq 2 q\left\|\nabla^{T}(\ln \phi)\right\|^{2}
\end{aligned}
$$

which proves part (i) of the assertion.
Now, for $Y_{1} \in \Gamma(D)$ and $Z_{1}, Z_{2} \in \Gamma\left(D^{\perp}\right)$, from Eqs. (21) and (22), we have

$$
\begin{equation*}
g\left(\nabla_{Z_{1}} Z_{2}, Y_{1}\right)=\tilde{g}\left(\tilde{J} A_{\tilde{J} Z_{2}} Z_{1}, Y_{1}\right)=-\tilde{g}\left(h^{s}\left(\tilde{J} Y_{1}, Z_{1}\right), \tilde{J} Z_{2}\right) \tag{25}
\end{equation*}
$$

Hence, using Eqs. (17) and (25), we obtain

$$
\begin{equation*}
g\left(\nabla_{Z_{1}} Z_{2}, Y_{1}\right)=-Y_{1}(\ln \phi) g\left(Z_{1}, Z_{2}\right) \tag{26}
\end{equation*}
$$

Moreover, let h^{\perp} denotes the second fundamental form of M_{\perp} in M. Then we attain

$$
\begin{equation*}
g\left(h^{\perp}\left(Z_{1}, Z_{2}\right), Y_{1}\right)=g\left(\nabla_{Z_{2}} Z_{1}, Y_{1}\right) \tag{27}
\end{equation*}
$$

Employing Eqs. (26) and (27) together with the non-degeneracy of D, we derive

$$
\begin{equation*}
h^{\perp}\left(Z_{1}, Z_{2}\right)=-\nabla^{T}(\ln \phi) g\left(Z_{1}, Z_{2}\right) . \tag{28}
\end{equation*}
$$

Now, let us consider the equality case of Eq. (23) holds identically. Then from Eq. (17), we have

$$
\begin{equation*}
h^{s}\left(D^{\perp}, D^{\perp}\right)=0, \quad h^{s}\left(D^{\prime}, D^{\prime}\right)=0, \quad h\left(D^{\prime}, D^{\perp}\right) \subset \tilde{J} D^{\perp} . \tag{29}
\end{equation*}
$$

By hypothesis, M_{T} is totally geodesic and further using the first condition of Eq. (29), we obtain M_{T} is a totally geodesic submanifold in \tilde{M}. On the other hand, employing Eq. (28) together with second condition of Eq. (29), we conclude that M_{\perp} is a totally umbilical submanifold in \tilde{M}, which completes the proof.

Theorem 4.4. Let $M=M_{T} \times_{\phi} M_{\perp}$ be a twisted product SCR-lightlike submanifold of \tilde{M}. If M is mixed geodesic, then one has
(1) The twisting function ϕ is a function defined on M_{\perp}.
(2) $M_{T} \times M_{\perp}^{\phi}$ is a $S C R$-lightlike product, where M_{\perp}^{ϕ} denotes the manifold M_{\perp} equipped with the metric $g_{M_{\perp}}^{\phi}=\phi^{2} g_{M_{\perp}}$.
Proof. Employing Eq. (17), we acquire

$$
\begin{equation*}
\tilde{g}\left(h^{s}\left(\tilde{J} Y_{1}, Z_{1}\right), \tilde{J} Z_{2}\right)=Y_{1}(\ln \phi) g\left(Z_{1}, Z_{2}\right) \tag{30}
\end{equation*}
$$

for $Y_{1} \in \Gamma\left(D^{\prime}\right)$ and $Z_{1}, Z_{2} \in \Gamma\left(D^{\perp}\right)$. As M is mixed geodesic, therefore Eq. (30) gives

$$
Y_{1}(\ln \phi) g\left(Z_{1}, Z_{2}\right)=0
$$

Further, using the non-degeneracy of D^{\perp}, we derive $Y_{1}(\ln \phi)=0$ for any vector $Y_{1} \in \Gamma\left(T M_{T}\right)$. Thus, the twisting function ϕ of the twisted product $S C R$ lightlike submanifold $M_{T} \times{ }_{\phi} M_{\perp}$ depends on M_{\perp} only, which in turn yields
that the twisted product $M=M_{T} \times_{\phi} M_{\perp}$ becomes isomorphic to the semiRiemannian product $M_{T} \times M_{\perp}^{\phi}$. Hence, $M_{T} \times M_{\perp}^{\phi}$ is an $S C R$-lightlike product submanifold in \tilde{M}, thus the proof follows.

5. Example of a non-trivial twisted product $S C R$-lightlike submanifold

Finally, we construct a non-trivial example of a twisted product $S C R$ lightlike submanifold of \tilde{M} as follows.

Example 5.1. Let M be an 5 -dimensional submanifold of $\left(R_{2}^{10}, \tilde{g}\right)$ given by

$$
\begin{aligned}
& x^{1}=u^{1}, \quad x^{2}=u^{2}, \quad x^{3}=u^{1} \sin u^{3}, \\
& x^{4}=u^{2} \sin u^{3}, \quad x^{5}=u^{1} \cos u^{3}, \quad x^{6}=u^{2} \cos u^{3}, \\
& x^{7}=u^{4}, \quad x^{8}=u^{5}, \quad x^{9}=x^{10}=e^{u^{3}}, \quad \text { where } u^{3} \in R-\left\{\frac{n \pi}{2}, n \in Z\right\} .
\end{aligned}
$$

Then $T M$ is spanned by $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$, where

$$
\begin{aligned}
Z_{1}= & \partial x_{1}+\sin u^{3} \partial x_{3}+\cos u^{3} \partial x_{5}, \\
Z_{2}= & \partial x_{2}+\sin u^{3} \partial x_{4}+\cos u^{3} \partial x_{6}, \\
Z_{3}= & u^{1} \cos u^{3} \partial x_{3}+u^{2} \cos u^{3} \partial x_{4}-u^{1} \sin u^{3} \partial x_{5}-u^{2} \sin u^{3} \partial x_{6} \\
& +e^{u^{3}} \partial x_{9}+e^{u^{3}} \partial x_{10}, \\
Z_{4}= & \partial x_{7}, \quad Z_{5}=\partial x_{8} .
\end{aligned}
$$

Clearly, M is a 2 -lightlike submanifold with $\operatorname{Rad}(T M)=\operatorname{Span}\left\{Z_{1}, Z_{2}\right\}$. As $\tilde{J} Z_{4}=Z_{5}$ gives that $S(T M)=\operatorname{Span}\left\{Z_{4}, Z_{5}\right\}$. Further, by direct calculations, $S\left(T M^{\perp}\right)=\operatorname{Span}\left\{W=-u^{2} \cos u^{3} \partial x_{3}+u^{1} \cos u^{3} \partial x_{4}+u^{2} \sin u^{3} \partial x_{5}-\right.$ $\left.u^{1} \sin u^{3} \partial x_{6}-e^{u^{3}} \partial x_{9}+e^{u^{3}} \partial x_{10}\right\}$ and $\tilde{J} Z_{3}=W$. Moreover, $l \operatorname{tr}(T M)$ is spanned by

$$
\begin{aligned}
& N_{1}=\frac{1}{2}\left(-\partial x_{1}+\sin u^{3} \partial x_{3}+\cos u^{3} \partial x_{5}\right), \\
& N_{2}=\frac{1}{2}\left(-\partial x_{2}+\sin u^{3} \partial x_{4}+\cos u^{3} \partial x_{6}\right),
\end{aligned}
$$

where $\operatorname{Span}\left\{N_{1}, N_{2}\right\}$ is invariant with respect to \tilde{J}. Hence,

$$
\operatorname{ltr}(T M)=\operatorname{Span}\left\{N_{1}, N_{2}\right\} \text { and } D^{\prime}=\operatorname{Span}\left\{Z_{1}, Z_{2}, Z_{4}, Z_{5}\right\}
$$

Thus M is a proper $S C R$-lightlike submanifold of R_{2}^{10}. Here it is clear that D^{\prime} is integrable. Now M_{T} and M_{\perp}, respectively, denote the leaves of D^{\prime} and D^{\perp}. Then, the induced metric tensor of $M=M_{T} \times_{\phi} M_{\perp}$ is given by

$$
d s^{2}=2\left(d u_{4}^{2}+d u_{5}^{2}\right)+\left(\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}+2\left(e^{u^{3}}\right)^{2}\right) d u_{3}^{2}
$$

Hence, M is a twisted product $S C R$-lightlike submanifold of the type $M_{T} \times{ }_{\phi}$ M_{\perp} of R_{2}^{10}, with the twisting function $\phi=\sqrt{\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}+2\left(e^{u^{3}}\right)^{2}}$.

Acknowledgment. The authors would like to express their sincere gratitude to the referees for their valuable suggestions, which definitely improved the manuscript.

References

[1] M. Barros and A. Romero, Indefinite Kähler manifolds, Math. Ann. 261 (1982), no. 1, 55-62. https://doi.org/10.1007/BF01456410
[2] J. K. Beem and P. E. Ehrlich, Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, 67, Marcel Dekker, Inc., New York, 1981.
[3] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. https://doi.org/10.2307/1995057
[4] B.-Y. Chen, Totally umbilical submanifolds, Soochow J. Math. 5 (1979), 9-37.
[5] B.-Y. Chen, Twisted product CR-submanifolds in Kaehler manifolds, Tamsui Oxf. J. Math. Sci. 16 (2000), no. 2, 105-121.
[6] B.-Y. Chen, F. Dillen, L. Verstraelen, and L. Vrancken, Lagrangian isometric immersions of a real-space-form $M^{n}(c)$ into a complex-space-form $\widetilde{M}^{n}(4 c)$, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 1, 107-125. https://doi.org/10.1017/ S030500419700217X
[7] K. L. Duggal, Warped product of lightlike manifolds, Nonlinear Anal. 47 (2001), no. 5, 3061-3072. https://doi.org/10.1016/S0362-546X (01) 00425-4
[8] K. L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and its Applications, 364, Kluwer Acad. Publ., Dordrecht, 1996. https://doi.org/10.1007/978-94-017-2089-2
[9] K. L. Duggal and D. H. Jin, Totally umbilical lightlike submanifolds, Kodai Math. J. 26 (2003), no. 1, 49-68. https://doi.org/10.2996/kmj/1050496648
[10] K. L. Duggal and B. Sahin, Screen Cauchy Riemann lightlike submanifolds, Acta Math. Hungar. 106 (2005), no. 1-2, 137-165. https://doi.org/10.1007/s10474-005-0011-7
[11] M. Fernández-López, E. García-Río, D. N. Kupeli, and B. Ünal, A curvature condition for a twisted product to be a warped product, Manuscripta Math. 106 (2001), no. 2, 213-217. https://doi.org/10.1007/s002290100204
[12] G. Ganchev and V. Mihova, Riemannian manifolds of quasi-constant sectional curvatures, J. Reine Angew. Math. 522 (2000), 119-141. https://doi.org/10.1515/crll. 2000.034
[13] N. Koike, The decomposition of curvature netted hypersurfaces, Geom. Dedicata 54 (1995), no. 1, 1-11. https://doi.org/10.1007/BF01265295
[14] S. Kumar, Geometry of warped product lightlike submanifolds of indefinite nearly Kaehler manifolds, J. Geom. 109 (2018), no. 1, Paper No. 21, 18 pp. https://doi. org/10.1007/s00022-018-0425-3
[15] S. Kumar, Geometry of semi-transversal lightlike warped product submanifolds of indefinite Kaehler manifolds, Asian-Eur. J. Math. 14 (2021), no. 1, Paper No. 2150001, 12 pp. https://doi.org/10.1142/S1793557121500017
[16] M. Lohnherr and H. Reckziegel, On ruled real hypersurfaces in complex space forms, Geom. Dedicata 74 (1999), no. 3, 267-286. https://doi.org/10.1023/A:1005000122427
[17] B. O'Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
[18] R. Ponge and H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata 48 (1993), no. 1, 15-25. https://doi.org/10.1007/BF01265674
[19] B. Sahin, Warped product lightlike submanifolds, Sarajevo J. Math. 1(14) (2005), no. 2, 251-260.
[20] B. Sahin, Notes on doubly warped and doubly twisted product CR-submanifolds of Kaehler manifolds, Mat. Vesnik 59 (2007), no. 4, 205-210.

Sangeet Kumar
Department of Mathematics
Sri Guru Teg Bahadur Khalsa College
Sri Anandpur Sahib 140118, Punjab, India
Email address: sp7maths@gmail.com
Megha Pruthi
Department of Mathematics
Sri Guru Teg Bahadur Khalsa College
Sri Anandpur Sahib 140118, Punjab, India
Email address: meghapruthi4194@gmail.com

