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CR-WARPED PRODUCT SUBMANIFOLDS OF
NEARLY KAEHLER MANIFOLDS

Nadia S. Al-Luhaibi, Falleh R. Al-Solamy, and Viqar Azam Khan

Abstract. As warped product manifolds provide an excellent setting to
model space time near black holes or bodies with large gravitational field,
the study of these manifolds assumes significance in general. B. Y. Chen
[4] initiated the study of CR-warped product submanifolds in a Kaehler
manifold. He obtained a characterization for a CR-submanifold to be
locally a CR-warped product and an estimate for the squared norm of
the second fundamental form of CR-warped products in a complex space
form (cf [6]). In the present paper, we have obtained a necessary and
sufficient conditions in terms of the canonical structures P and F on a
CR-submanifold of a nearly Kaehler manifold under which the submani-
fold reduces to a locally CR-warped product submanifold. Moreover, an
estimate for the second fundamental form of the submanifold in a gener-
alized complex space is obtained and thus extend the results of Chen to
a more general setting.

1. Introduction

R. L. Bishop and B. O’Neill [1] introduced the notion of warped product
manifolds by homothetically warping the product metric of a product mani-
fold B × F onto the fibers p × F for each p ∈ B. This generalized product
metric appears in differential geometric studies in a natural way. For instance
a surface of revolution is a warped product manifold. Moreover, many impor-
tant submanifolds in real and complex space forms are expressed as warped
product submanifolds. In view of its physical applications many research ar-
ticles have recently appeared exploring existence (or non existence) of warped
product submanifolds in known spaces (cf [8], [13], etc). B. Y. Chen [4] initi-
ated the investigations by showing that there does not exist a warped product
CR-submanifold N⊥ ×f NT in a Kaehler manifold. B. Sahin [11], extending
the result of Chen proved that there exists no semi-slant warped product sub-
manifolds in a Kaehler manifold other than CR-warped product submanifolds
NT ×f N⊥, where NT and N⊥ are holomorphic and totally real submanifolds
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of the underlying Kaehler manifold. Interesting geometric properties of CR-
warped product submanifolds are obtained as well as many examples of these
warped product submanifolds are provided in [4]. In view of the interesting
geometric features of a nearly Kaehler manifolds and the non existence of CR-
products in S6 (cf [14]), it is worthwhile to study CR-warped products in a
nearly Kaehler manifold. In the present paper, we have worked out condi-
tions under which a CR-submanifold reduces to locally a CR-warped product
submanifold. Moreover, an inequality for the squared norm of the second fun-
damental form of CR-warped product submanifolds in a generalized complex
space form is obtained.

2. Preliminaries

Let M be an almost Hermitian manifold with an almost complex structure
J and a Hermitian metric g, i.e.,

(2.1) J2 = −I, and g(JU, JV ) = g(U, V )

for all vector fields U , V on M . If J is parallel with respect to the Levi-Civita
connection ∇ on M , i.e.,∇J = 0, then (M, J, g,∇) is called a Kaehler manifold.
A more general structure on M , namely nearly Kaehler structure is defined by
a weaker condition namely

(2.2) (∇UJ)V + (∇V J)U = 0.

A necessary and sufficient condition for a nearly Kaehler manifold to be
a Kaehler manifold is the vanishing of the Nijenhuis tensor of J . Any four
dimensional nearly Kaehler manifold is a Kaehler manifold. A typical example
of a nearly Kaehler non Kaehler manifold is the six dimensional sphere S6. It
has an almost complex structure J defined by vector cross product in the space
of purely imaginary Cayley numbers which satisfy the condition (2.2).

There is a more general class of almost Hermitian manifolds than nearly
Kaehler manifolds, known as RK-manifolds. These are defined as follows.

A RK-manifold (M,J, g,∇) is an almost Hermitian manifold for which the
curvature tensor R is invariant under J , i.e.,

R(JU, JV, JW, JZ) = R(U, V, W,Z)

for any U, V, W,Z ∈ TM .
An almost Hermitian manifold M is of pointwise constant type if for any

x ∈ M and U ∈ TxM

λ(U, V ) = λ(U,W ),

where λ(U, V ) = R(U, V, JU, JV )−R(U, V, U, V ) with V and W being tangent
vectors at x, orthogonal to U and JU . The manifold M is said to be of constant
type if for any unit vectors U, V ∈ TM with g(U, V ) = g(JU, V ) = 0, λ(U, V )
is a constant function. Then we have:
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Theorem 2.1 ([15]). Let M be an RK-manifold. Then M is of pointwise
constant type if and only if there exists a function α on M such that

λ(U, V ) = α[g(U,U)g(V, V )− (g(U, V ))2 − (g(U, JV ))2]

for any U, V ∈ TM . Moreover, M is of constant type if and only if the above
equality holds for a constant α. In this case, α is the constant type of M .

A generalized complex space form is an RK-manifold of constant holomorphic
sectional curvature and of constant type. A generalized complex space form of
constant holomorphic sectional curvature c and of constant type α is denoted
by M(c, α). Each complex space form is a generalized complex space form.
The converse is not true. The sphere S6 endowed with the standard nearly
Kaehler structure is an example of a generalized complex space form which is
not a complex space form.

Let M(c, α) be a generalized complex space form of constant holomorphic
sectional curvature c and of constant type α. Then the curvature tensor R of
M(c, α) has the following expression

(2.3)

R(U, V )W =
c + 3α

4
[g(V, W )U − g(U,W )V ]

+
c− α

4
[g(U, JW )JV − g(V, JW )JU

+ 2g(U, JV )JW ].

Let M be a submanifold of an almost Hermitian manifold M . Then we denote
the induced metric on M by the same symbol g whereas the induced Rie-
mannian connection on M by ∇. With these notations, Gauss and Weingarten
formulae are written as

(2.4) ∇UV = ∇UV + h(U, V ),

(2.5) ∇UN = −ANU +∇⊥UN

for each U, V ∈ TM and N ∈ T⊥M , where ∇⊥ denotes the induced connection
on the normal bundle T⊥M . h and AN are the second fundamental form and
the shape operator of the immersion of M into M . They are related by

(2.6) g(h(U, V ), N) = g(ANU, V ).

For any U ∈ T (M) and N ∈ T⊥M , we write

(2.7) JU = PU + FU,

(2.8) JN = tN + fN,

where PU and tN are the tangential components of JU and JN , respectively
whereas FU and fN are the normal components of JU and JN , respectively.

The covariant differentiation of the tensors P, F, t, and f are defined as

(2.9) (∇UP )V = ∇UPV − P∇UV,
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(2.10) (∇UF )V = ∇⊥UFV − F∇UV,

(2.11) (∇U t)N = ∇U tN − t∇⊥UN,

(2.12) (∇Uf)N = ∇⊥UfN − f∇⊥UN.

On the other hand the covariant derivative of the second fundamental form h
is defined as

(2.13) (∇Uh)(V, W ) = ∇⊥Uh(V, W )− h(∇UV,W )− h(V,∇UW )

for any U, V, W ∈ TM . Let R and R be the curvature tensors of the connections
∇ and ∇ on M and M , respectively. Then the equations of Gauss and Codazzi
are given by

(2.14)
R(U, V, W,Z) = R(U, V, W,Z)− g(h(U,W ), h(V, Z))

+ g(h(U,Z), h(V, W )),

(2.15) [R(U, V )W ]⊥ = (∇Uh)(V,W )− (∇V h)(U,W ).

A submanifold M of M is said to be a CR-submanifold if there exists on M , a
differentiable holomorphic distribution D such that its orthogonal complemen-
tary distribution D⊥ is totally real, i.e., JDx ⊂ Tx(M) and JD⊥

x ⊂ T⊥x (M)
for each x ∈ M .

For a CR-submanifold of an almost Hermitian manifold M , we have

(2.16) TM = D ⊕D⊥,

(2.17) T⊥M = JD⊥ ⊕ µ,

where µ denotes the orthogonal complementary distribution of JD⊥ and is an
invariant normal subbundle of T⊥M under J .

The orthogonal projections on TM are denoted by B and C, i.e., for any
U ∈ TM

(2.18) U = BU + CU,

where BU ∈ D and CU ∈ D⊥. It is straight forward to observe that

(2.19)
(a) PC = 0, (b) FB = 0,
(c) t(T⊥M) = D⊥, (d) f(T⊥M) ⊂ µ.

Furthermore, for U, V ∈ TM if we denote by PUV and QUV , the tangential
and normal parts of (∇UJ)V , then by making use of (2.4)-(2.10), we obtain

(2.20) PUV = (∇UP )V −AFV U − th(U, V ),

(2.21) QUV = (∇UF )V + h(U,PV )− fh(U, V ).

Similarly, for N ∈ T⊥M , the tangential and normal parts of (∇UJ)N are
respectively given by

(2.22) PUN = (∇U t)N + PANU −AfNU,
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(2.23) QUN = (∇Uf)N + h(tN, U) + FANU.

Let (N1, g1) and (N2, g2) be two Riemannian manifolds and f , a positive
differentiable function on N1. The warped product of N1 and N2 is the Rie-
mannian manifold

M = N1 ×f N2 = (N1 ×N2, g),
where g = g1 + f2g2 [1]. N1 is called the base of M , and N2 the fibre.

For a warped product manifold N1 ×f N2, we denote by D1 and D2 the
distributions defined by the vectors tangent to the leaves and fibers respectively.
In other words, D1 is obtained by the tangent vectors of N1 via the horizontal
lift and D2 is obtained by the tangent vectors of N2 via the vertical lift. In
case of CR-warped product submanifolds D1 and D2 are replaced by D and
D⊥ respectively.

A warped product N1 ×f N2 is said to be a trivial warped product if its
warping function f is constant. A trivial warped product N1 ×f N2 is nothing
but a Riemannian product N1 × Nf

2 , where Nf
2 is the Riemannian manifold

with Riemannian metric f2gN2 which is homothetic to the original metric gN2

of N2.

3. Some basic results

A submanifold M of an almost Hermitian manifold M is said to be a CR-
product submanifold if M is locally a Riemannian product of a holomorphic
submanifold NT and a totally real submanifold N⊥. Thus a CR-submanifold
of an almost Hermitian manifold is a CR-product if and only if both the dis-
tributions D and D⊥ on M are integrable and their leaves are totally geodesic
in M . It is proved that a CR-product in a complex space form is a prod-
uct of a holomorphic submanifold and a totally real submanifold of complex
linear subspaces and there do not exist CR-products in complex hyperbolic
spaces. Moreover, CR-submanifolds in complex projective spaces CPh+p+hp

are obtained from Segre imbedding in a natural way (cf. [6]).
For a CR-submanifold of a Kaehler manifold, Chen [2] proved:

Theorem 3.1 ([2]). A CR-submanifold of a Kaehler manifold is a CR-product
if and only if ∇P = 0 or equivalently AJD⊥D = 0.

K. A. Khan et.al [10] worked out conditions for the two distributions on
a CR-submanifold of a nearly Kaehler manifold to be integrable and parallel,
which led to a characterization for a CR-submanifold to be a CR-product in a
nearly Kaehler manifold. We recall:

Proposition 3.1 ([10]). The holomorphic distribution D on a CR-submanifold
M of a nearly Kaehler manifold is integrable if and only if

QXY = 0 and h(X, JY ) = h(JX, Y )

for each X,Y in D.
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Proposition 3.2 ([10]). The totally real distribution D⊥ on a CR-submanifold
M of a nearly Kaehler manifold is integrable if and only if

g(PZW,X) = 0, or equivalently, g(AJZW,X) = g(AJW Z, X).

CR-submanifolds which are warped products have the forms N⊥×f NT and
NT ×f N⊥. These warped product submanifolds are known as warped product
CR-submanifold and CR-warped product submanifolds respectively. Chen [4]
proved that warped product CR-submanifolds of a Kaehler manifold are trivial,
i.e., they are simply CR-products. Recently, the result is extended to the setting
of nearly Kaehler manifolds, i.e., warped product CR-submanifolds of nearly
Kaehler manifolds are CR-products (cf. [12]). However, many examples of
CR-warped product submanifolds of a Kaehler manifold are provided in [4].

Earlier, K. Sekigawa [14] while studying submanifolds of S6 proved:

Theorem 3.2 ([14]). There does not exist a CR-product in S6.

This paved way to study CR-warped product submanifolds in S6 and in a
nearly Kaehler manifold in general. Sekigawa [14] obtained an example of a
CR-warped product submanifold in S6. For a more general case, N. Ejiri [7]
provided a categorical answer to the existence of warped product submanifolds
in S6. He proved:

Theorem 3.3 ([7]). There exist countably many immersions of S1×Sn−1 into
Sn+1 such that the induced metric on it is a warped product metric of constant
scaler curvature n(n− 1).

Moreover, every Riemannian manifold of constant scalar curvature c can be
locally expressed as a warped product whose warping function satisfies 4f =
cf . For example, Sn(1) is locally isometric to (−π/2, π/2)×cos t Sn−1(1), Rn is
isometric to (0,∞)×xSn−1(1) and Hn−1(−1) is locally isometric to R×ex Rn−1.

As far as the intrinsic geometry of a warped product manifold is concerned
Bishop and O’Neill obtained:

Theorem 3.4 ([1]). Let M = N1 ×f N2 be a warped product manifold. Then
(i) N1 is a totally geodesic submanifold of M and
(ii) N2 is a totally umbilical submanifold of M .

Moreover,

(3.1) ∇UV = ∇V U = (U ln f)V

and

(3.2) nor(∇V W ) =
−g(V,W )

f
∇f

for any U ∈ D1 and V, W ∈ D2, where nor(∇V W ) denotes the component of
∇V W in D1 and ∇f denotes the gradient of f and is defined as

(3.3) g(∇f, U) = Uf.
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4. CR-warped products and the canonical structures

In [2], B. Y. Chen obtained various conditions under which a CR-submanifold
reduces to a CR-product. In particular, he showed that a CR-submanifold of
a Kaehler manifold is a CR-product if and only if ∇P = 0. Later he ex-
tended the characterization while studying the impact of parallelism of the
(1, 1) tensor field P on an arbitrary submanifold of a Kaehler manifold. In
this case, he proved that ∇P = 0 if and only if the submanifold is locally a
Riemannian product of submanifolds which are either holomorphic or totally
real or Kaehlerian slant (cf. [3]). As warped product manifolds are generalized
version of product manifolds, it is natural to seek analogous conditions under
which a CR-submanifold is a CR-warped product submanifold. In this section,
we have obtained necessary and sufficient conditions involving P and F , forcing
a CR-submanifold to be locally a CR-warped product submanifold. To prove
the main theorems, we first obtain some useful relations.

Lemma 4.1. Let M be a CR-warped product submanifold NT ×f N⊥ of an
almost Hermitian manifold M . Then

(4.1) (∇ZP )X = (PX ln f)Z,

(4.2) (∇UP )Z = g(CU,Z)P (∇ ln f)

for each U ∈ TM , X ∈ D and Z ∈ D⊥, where ∇ ln f denotes the gradient of
ln f .

Proof. By formula (3.1)

∇XZ = ∇ZX = (X ln f)Z,

and therefore by making use of formulae (2.9) and (2.19), we obtain (4.1). On
the other hand as PU ∈ D for any U ∈ TM , by formulae (2.9) and (2.19), we
find that (∇UP )Z ∈ D. Now for any X ∈ D,

g((∇UP )Z, X) = g(∇UZ, PX)
= −g(Z,∇UPX)
= −g(Z,∇CUPX)
= −(PX ln f)g(CU,Z),

which on taking account of (3.3) gives

(∇UP )Z = g(CU,Z)P (∇ ln f).

This proves the lemma. ¤

Theorem 4.1. Let M be a nearly Kaehler manifold and M be a CR-submani-
fold of M with integrable distributions D and D⊥. Then M is a CR-warped
product submanifold of M if and only if

(4.3) (∇UP )U = (PUµ)CU + ||CU ||2J∇µ
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for each U ∈ TM and µ a C∞-function on M satisfying Zµ = 0 for each
Z ∈ D⊥.

Proof. The relation (4.3) is equivalent to

(4.4) (∇UP )V + (∇V P )U = (PUµ)CV + (PV µ)CU + 2g(CU,CV )J∇µ,

with U, V ∈ TM . Let M be a CR-warped product submanifold of M . For any
U ∈ TM , we may write

(4.5) (∇UP )U = (∇BUP )BU + (∇CUP )BU + (∇UP )CU.

The first term in the right hand side of (4.5) is zero as NT is totally geodesic
in M and by Lemma 4.1,

(4.6) (∇CUP )BU = (PU ln f)CU,

(4.7) (∇UP )CU = ||CU ||2P∇ ln f.

From (4.5), (4.6) and (4.7),

(∇UP )U = (PU ln f)CU + ||CU ||2P∇ ln f.

Conversely, suppose that M is a CR-submanifold of M with D and D⊥

involutive on M and such that (4.3) holds for a C∞-function µ on M with
Zµ = 0 for each Z ∈ D⊥. It follows from (4.4) that

(4.8) (∇XP )Y + (∇Y P )X = 0

for each X,Y ∈ D. Further, as M is nearly Kaehler, it follows from (2.2) that

(4.9) PUV + PV U = 0, and QUV +QV U = 0

for each U, V ∈ TM . From (4.8) and the first part of (4.9), it follows on using
(2.20) that th(X, Y ) = 0. That means

(4.10) h(X, Y ) ∈ µ

for each X,Y ∈ D. Now, for Z ∈ D⊥

g(∇XY, Z) = g(J∇XY, JZ).

As D is involutive, on using Proposition 3.1, formula (2.2) and the observa-
tion (4.10), the above equation yields

g(∇XY, Z) = 0.

This proves that the leaves of D are totally geodesic in M . On the other
hand by formulae (2.21) and (4.9)

(4.11) (∇XP )Z + (∇ZP )X = AFZX + 2th(X, Z),

whereas by (4.4),

(4.12) (∇XP )Z + (∇ZP )X = (PXµ)Z

for each X ∈ D and Z ∈ D⊥. From (4.11) and (4.12),

(4.13) g(AFZX, W )− 2g(h(X, Z), JW ) = (PXµ)g(Z, W )
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for each W ∈ D⊥. As D⊥ is involutive, in view of Proposition 3.2, (4.13) gives

g(h(X, Z), JW ) = −(PXµ)g(Z, W )

or
g(∇ZJX −PZX, W ) = (PXµ)g(Z, W ).

On taking account of Proposition 3.2, the above relation yields

(4.14) g(∇ZW,JX) = −(PXµ)g(Z, W ).

Let NT and N⊥ denote the leaves of D and D⊥ respectively. If h′ denotes
the second fundamental form of the immersion of N⊥ into M , then (4.14) can
be written as

g(h′(Z,W ), JX) = (JXµ)g(Z, W ) = g(∇µ, JX)g(Z, W ).

Thus we obtain
h′(Z, W ) = g(Z, W )∇µ.

Thus each leaf N⊥ of D⊥ is totally umbilical in M and as Zµ = 0 for
each Z ∈ D⊥, the mean curvature vector ∇µ is parallel on N⊥, i.e., N⊥ is an
extrinsic sphere in M . Hence by virtue of a theorem in [9], which states that
“If the tangent bundle of a Riemannian manifold M splits into an orthogonal
sum TM = E0 ⊕E1 of non trivial vector subbundles such that E1 is spherical
and its orthogonal complement E0 is autoparallel, then the manifold M is
locally isometric to a warped product M0 ×f M1”, we get that M is locally a
CR-warped product submanifold NT ×f N⊥, where f = eµ. ¤

In terms of the structure F , we have:

Theorem 4.2. Let M be a CR-submanifold of a nearly Kaehler manifold M
with totally real distribution being involutive. Then M is locally a CR-warped
product submanifold if and only if

(4.15) g((∇UF )V, JW ) = g(QCUCV, JW )− (BV µ)g(CU,W )

for each U, V ∈ TM and W ∈ D⊥, where µ is a C∞-function on M such that
Zµ = 0 for each Z ∈ D⊥.

Proof. Let M be a CR-warped product submanifold NT ×f N⊥. Then for any
X, Y ∈ D and W ∈ D⊥, by formula (2.10)

g((∇XF )Y, JW ) = −g(F∇XY, JW ) = −g(∇XY,W ).

Therefore, as NT is totally geodesic in M

(4.16) g((∇XF )Y, JW ) = 0.

On the other hand, for any X ∈ D and Z, W ∈ D⊥, by formula (2.21)

g(∇XF )Z, JW ) = g(QXZ + fh(X, Z), JW )
= g(QXZ, JW )
= −g(PZJX, W )
= g(JX,PZW ).
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Thus, by Proposition 3.2, we have

(4.17) g(∇XF )Z, JW ) = 0.

Further,
g((∇ZF )X, JW ) = −g(F∇ZX, JW ),

which on using (3.1) gives that

(4.18) g((∇ZF )X, JW = −(X ln f)g(Z,W ),

and for any W ′ ∈ D⊥, by formula (2.21) we have

g((∇ZF )W ′, JW ) = g(QZW ′ + fh(Z,W ′), JW )
= g(QZW ′, JW ).(4.19)

Now, for U, V ∈ TM we may write

(4.20)
g((∇UF )V, JW ) = g((∇BUF )BV, JW ) + g((∇BUF )CV, JW )

+ g((∇CUF )BV, JW ) + g((∇CUF )CV, JW ).

The first two terms in the right hand side of the above equation are zero in
view of (4.16) and (4.17) and the remaining terms in view of (4.18) and (4.19)
yield (4.15).

Conversely, suppose that M is a CR-submanifold of a nearly Kaehler mani-
fold M such that (4.15) holds. Then obviously

g((∇XF )Y, JW ) = 0

for each X,Y ∈ D and W ∈ D⊥. Therefore g(∇XY,W ) = 0, that means D is
integrable and its leaves are totally geodesic in M . Now, for any Z, W ∈ D⊥,
by (4.15) we have

g((∇ZF )X, JW ) = −(Xµ)g(Z, W )

or

(4.21) g(∇ZW,X) = −(Xµ)g(Z, W ).

Let N⊥ be a leaf of D⊥. If ∇′ denotes the induced Riemannian connection
on N⊥ and h′, the second fundamental form of the immersion of N⊥ into M ,
then the last equation in view of Gauss formula is written as

g(X,∇′ZW + h′(Z, W )) = −(Xµ)g(Z, W )

or

g(X, h′(Z, W )) = −(Xµ)g(Z, W )
= −g(X,∇µ)g(Z, W ),

or
h′(Z, W ) = −g(Z,W )∇µ.

This shows that N⊥ is totally umbilical in M and in view of the condition
that Zµ = 0 for each Z ∈ D⊥, ∇µ is defined on NT only, i.e., the mean
curvature ∇µ is parallel on N⊥. In other words, N⊥ is an extrinsic sphere.
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Hence, by a similar argument as given in Theorem 4.1, M is locally isometric
to a warped product submanifold with a warping function f = eµ. ¤

Let M = NT ×f N⊥ be a CR-warped product submanifold of a nearly
Kaehler manifold M . In view of the decomposition (2.17), we may write

(4.22) h(U, V ) = hJD⊥(U, V ) + hµ(U, V )

for each U, V ∈ TM , where hJD⊥(U, V ) ∈ JD⊥ and hµ(U, V ) ∈ µ.
If {e1, e2, . . . , en} be a local orthonormal frame of vector fields on M , then

we define

||h||2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)),

and for a differentiable function f on M , the Laplacian 4f of f is defined by

(4.23) 4f =
n∑

j=1

[(ej(ejf)−∇ej ej)f ].

Proposition 4.1. Let M be a CR-warped product submanifold of a nearly
Kaehler manifold M . Then

(i) hJD⊥(JX,Z) = (X ln f)JZ,
(ii) g(QZX,JW ) = 0,
(iii) g(h(JX, Z), Jh(X, Z)) = ||hµ(X, Z)||2 − g(QXZ, Jhµ(X, Z))

for each X ∈ D and Z,W ∈ D⊥.

Proof. By Gauss formula,

h(JX, Z) = ∇ZJX −∇ZJX

= (∇ZJ)X + J∇ZX + Jh(X,Z)−∇ZJX.

Thus, on using (3.1), we obtain

(4.24) h(JX, Z) = PZX +QZX + (X ln f)JZ + Jh(X,Z)− (JX ln f)Z.

Comparing tangential parts in (4.24), we get

PZX = (JX ln f)Z − JhJD⊥(X, Z).

Taking product with W in both sides, yields

g(PZX, W ) = (JX ln f)g(Z, W ) + g(hJD⊥(X,Z), JW ).

The left hand side of the last equation is zero in view of Proposition 3.2 and
thus the equation reduces to

g(h(X, Z), JW ) = −(JX ln f)g(Z, W ),

or equivalently,

(4.25) hJD⊥(JX, Z) = (X ln f)JZ.

This proves (i). Now, on comparing the normal parts in (4.24), we get

h(JX, Z) = QZX + (X ln f)JZ + Jhµ(X, Z)
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or

(4.26) h(JX, Z)− Jhµ(X, Z) = QZX + (X ln f)JZ.

Taking product with JW in (4.26) and using (4.25), we obtain statement
(ii) of the proposition, i.e.,

g(QZX, JW ) = 0.

Now, by (4.26)

g(h(JX,Z), Jh(X,Z)) = g(Jhµ(X, Z) +QZX, Jhµ(X, Z)).

Or,

(4.27) g(h(JX,Z), Jh(X,Z)) = ||hµ(X,Z)||2 − g(QXZ, Jhµ(X,Z)).

This proves the proposition completely. ¤

For CR-warped products in nearly Kaehler manifolds, we have the following:

Theorem 4.3. Let M = NT ×f N⊥ be a CR-warped product submanifold of a
nearly Kaehler manifold M . Then we have

(i) The squared norm of the second fundamental form satisfies

(4.28) ||h||2 ≥ 2q||∇ ln f ||2,
where ∇ ln f is the gradient of ln f and q is the dimension of N⊥.

(ii) If the equality sign in (4.28) holds identically, then NT is totally geo-
desic submanifold of M , N⊥ a totally umbilical submanifold of M and
M is a minimal submanifold of M .

Proof. Let {X1, X2, . . . , Xp, Xp+1 = JX1, . . . , X2p = JXp} be a local orthonor-
mal frame of vector fields on NT and {Z1, Z2, . . . , Zq} a local orthonormal frame
on N⊥. Then by definition

(4.29)

||h||2 =
2p∑

i,j=1

g(h(Xi, Xj), h(Xi, Xj)) +
2p∑

i=1

q∑
r=1

g(h(Xi, Zr), h(Xi, Zr))

+
q∑

r,s=1

g(h(Zr, Zs), h(Zr, Zs)).

Thus,

||h||2 ≥
2p∑

i=1

q∑
r=1

g(h(Xi, Zr), h(Xi, Zr))

or

||h||2 ≥
2p∑

i=1

q∑
r=1

(Xi ln f)2g(Zr, Zr)

≥ 2q||∇ ln f ||2.
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This verifies the assertion (i). If the equality sign in (4.28) holds, then by
(4.29) and (4.25), we obtain

(4.30) h(D,D) = 0, h(D⊥, D⊥) = 0 and h(D, D⊥) ⊂ JD⊥,

since NT is a totally geodesic submanifold of M , the first condition in (4.30)
implies that NT is totally geodesic in M . Moreover as N⊥ is totally umbilical
in M , the second condition in (4.30) implies that N⊥ is totally umbilical in M .
It also follows from (4.30) that M is minimal in M . ¤

5. CR-warped products in a generalized complex space form

Throughout the section, we denote by M(c, α) a generalized complex space
form of constant curvature c and of constant type α. Let M = NT ×f N⊥ be
a CR-warped product submanifold of M(c, α).

Various inequalities involving the squared norm of the second fundamental
form as well as that of the mean curvature vector of a CR-warped product
submanifolds in real and complex space forms are obtained (cf. [5], [6] etc).
For example, every CR-warped product NT ×f N⊥ in a complex space form
M(4c) satisfies the general inequality

(5.1) ||h||2 ≥ 2q{||∇ ln f ||2 +4 ln f}+ 4pqc,

where p = dimCNT , q = dimRN⊥ [6].
Now, as the class of generalized complex space forms includes nearly Kaehler

manifolds of constant holomorphic sectional curvature, it is interesting to study
similar estimates in the setting of generalized complex space forms. To this end
we prove:

Theorem 5.1. Let M = NT ×f N⊥ be a CR-warped product submanifold of a
generalized complex space form M(c, α). Then we have

(5.2) ||h||2 ≥ 2q

{
||∇ ln f ||2 +

1
2
(4 ln f) +

p(c− α)
4

}
,

where h denotes the second fundamental form of the immersion of M into
M(c, α), ∇ ln f is the gradient of ln f , 4 ln f is the Laplacian of ln f , 2p and
q are the real dimensions of NT and N⊥ respectively.

Proof. For X ∈ D and Z ∈ D⊥, by formula (2.3), we have

(5.3) R(X, JX,Z, JZ) =
(

α− c

2

)
g(X, X)g(Z, Z).

On the other hand by Codazzi equation

(5.4)

R(X, JX,Z, JZ) =g(∇⊥Xh(JX, Z), JZ)− g(h(∇XJX, Z), JZ)

− g(h(JX,∇XZ), JZ)− g(∇⊥JXh(X, Z), JZ)

+ g(h(∇JXX,Z), JZ) + g(h(X,∇JXZ), JZ).
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Now,

(5.5) g(∇⊥Xh(JX, Z), JZ) = Xg(h(JX, Z), JZ)− g(h(JX, Z),∇XJZ).

The first term in the right hand side of (5.5), on using formulae (4.25) and
(3.1) takes the form

(5.6) Xg(h(JX, Z), JZ) = (X(X ln f) + 2(X ln f)2)g(Z, Z),

whereas the second term is written as

g(h(JX, Z),∇XJZ) = g(h(JX, Z),QXZ + J∇XZ + Jh(X,Z))

= g(h(JX, Z),QXZ) + (X ln f)2g(Z, Z)

+ g(h(JX, Z), Jh(X, Z)).

Making use of (4.27), the above equality takes the form

g(h(JX, Z),∇XJZ) = g(h(JX, Z)− Jh(X,Z),QXZ)

+ (X ln f)2g(Z,Z) + ||hµ(X, Z)||2.
On using (4.26), the above relation can be written as

(5.7) g(h(JX,Z),∇XJZ) = (X ln f)2g(Z,Z) + ||hµ(X, Z)||2 − ||QXZ||2.
On substituting from (5.6) and (5.7), equation (5.5) yields

(5.8)
g(∇⊥Xh(JX,Z), JZ) =(X(X ln f) + (X ln f)2)g(Z, Z)

+ ||QXZ||2 − ||hµ(X, Z)||2.
Similarly, we obtain

(5.9)
g(∇⊥JXh(X, Z), JZ) =− (JX(JX ln f) + (JX ln f)2)g(Z, Z)

− ||QJXZ||2 + ||hµ(JX, Z)||2.
By formulae (3.1) and (4.25), we have

(5.10) g(h(JX,∇XZ), JZ) = (X ln f)2g(Z, Z),

and

(5.11) g(h(X,∇JXZ), JZ) = −(JX ln f)2g(Z, Z).

Further by making use of formula (3.1) and the fact that NT is totally
geodesic in M , we get

(5.12) g(h(∇JXX, Z), JZ) = −(J∇JXX)(ln f)g(Z, Z),

and,

g(h(∇XJX, Z), JZ) = −((J∇XJX) ln f)g(Z,Z).
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The right hand side of the above equation, on making use of the fact that NT

is totally geodesic in M and the formula (3.1) reduces to −g(∇ZJ∇XJX,Z).
Thus, by using Gauss formula, we get

g(h(∇XJX, Z), JZ) = − g(∇XX,∇ZZ)− g(Jh(X, JX),∇ZZ)(5.13)

= ((∇XX) ln f)g(Z, Z) + ((∇JXJX) ln f)g(Z,Z)

− ((J∇JXX ln f)g(Z,Z).

Let {X1, X2, . . . , Xp, Xp+1 = JX1, . . . , X2p = JXp} and {Z1, Z2, . . . , Zq} be
a local frame of orthonormal vector fields on NT and N⊥ respectively. Choosing
X, Z as basic vector fields and substituting from (5.8)-(5.13) into (5.4), we
obtain

R(Xi, JXi, Zr, JZr)

= (Xi(Xi ln f) + JXi(JXi ln f))g(Zr, Zr)

− ((∇Xi
Xi) ln f + (∇JXi

JXi) ln f)g(Zr, Zr)

+ ||QXi
Zr||2 + ||QJXi

Zr||2 − ||hµ(Xi, Zr)||2 − ||hµ(JXi, Zr)||2.
Summing both sides over i = 1, 2, . . . , p and r = 1, 2, . . . , q and making use

of (5.3) and (4.23), we obtain

(5.14)
pq(α− c)

2
= ||QDD⊥||2 − ||hµ(D, D⊥)||2 + q4 ln f,

where we have used the following notations

||QDD⊥||2 =
2p∑

i=1

q∑
r=1

||QXiZr||2,

and,

||hµ(D,D⊥)||2 =
2p∑

i=1

q∑
r=1

||hµ(Xi, Zr)||2.

Further, if we denote
∑2p

i=1

∑q
r=1 ||hJD⊥(Xi, Zr)||2 by ||hJD⊥(D,D⊥)||2,

then from (4.29), we have

(5.15) ||hJD⊥(D, D⊥)||2 = 2q||∇ ln f ||2,
whereas from (5.14), we have

(5.16) ||hµ(D,D⊥)||2 = ||QDD⊥||2 +
pq(c− α)

2
+ q4 ln f.

On adding (5.15) and (5.16), we get

||h(D, D⊥)||2 = 2q||∇ ln f ||2 + q4 ln f + ||QDD⊥||2 +
pq(c− α)

2
.



994 N. S. AL-LUHAIBI, F. R. AL-SOLAMY, AND V. A. KHAN

Hence, ||h||2 for the CR-warped product submanifold of a generalized com-
plex space form M(c, α) satisfy

||h||2 ≥ 2q

{
||∇ ln f ||2 +

1
2
4 ln f +

p(c− α)
4

}
.

The above inequality generalizes the inequality (5.1).
In particular for the CR-warped product of S6, the above inequality reduces

to

||h||2 ≥ 2q

{
||∇ ln f ||2 +

4 ln f

2

}
,

which improves the inequality (4.28). ¤
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