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SLANT SUBMANIFOLDS OF AN ALMOST
PRODUCT RIEMANNIAN MANIFOLD

BAYRAM SAHIN

ABSTRACT. In this paper, we study both slant and semi-slant sub-
manifolds of an almost product Riemannian manifold. We give
characterization theorems for slant and semi-slant submanifolds and
investigate special class of slant submanifolds which are product
version of Kaehlerian slant submanifold. We also obtain integrabil-
ity conditions for the distributions which are involved in the defi-
nition of a semi-slant submanifold. Finally, we prove a theorem on
the geometry of leaves of distributions under a condition.

1. Introduction

The geometry of slant submanifolds was initiated by B. Y. Chen,
as a generalization of both holomorphic and totally real submanifolds
in complex geometry [3], [4]. Since then, many mathematicians have
studied these submanifolds. In particular, N. Papaghiuc [7] introduced
semi-slant submanifolds. A. Lotta [5], [6], defined and studied slant
submanifolds in contact geometry. J. L. Cabrerizo, A. Carriazo, L. M.
Fernandez and M. Fernandez studied slant, semi-slant and bi-slant sub-
manifolds in contact geometry [1], [2].

In this paper, we introduce slant and semi-slant submanifolds of an al-
most product Riemannian manifold. In section 2, we review some formu-
las and definitions for an almost product Riemannian manifold and their
submanifolds. In section 3, we define slant submanifolds for an almost
product Riemannian manifold and give characterization theorems for a
slant submanifold. We observe that slant surfaces of an almost prod-
uct manifold quite different from slant surfaces of complex and contact
manifolds. In section 4, we define and study semi-slant submanifolds in
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an almost product Riemannian manifold. We give characterization theo-
rems for a semi-slant submanifold. After we find integrability conditions
of the distributions, we investigate a special class of a slant submani-
folds satisfying VI = 0 which are product version of Kaehlerian slant
submanifolds for an almost Hermitian manifold and obtain a necessary
and suflicient condition for VT = 0 in terms of the shape operator on
a semi-slant submanifold. In the last part of section 4, we obtain that
the distributions are integrable and their leaves are totally geodesic in
semi-slant submanifold under the condition VT = 0. Finally, the paper
contains several examples.

2. Preliminaries

Let M be an m-dimensional manifold with a tensor of type (1, 1) such
that

(2.1) F?=1,

where I denotes the identity transformation. Then we say that M is an
almost product manifold with almost product structure F. If we put

(2.2) P= (I+F),Q=3(I~F)

then we have

(2.3) P+Q=IP°=P,Q*=Q,PQ=QP=0
and

(2.4) F=P-qQ.

If an almost product manifold M admits a Riemannian metric ¢ such
that

(2.5) 9(FX,FY) = g(X,Y)

for any vector fields X and Y on M, then M is called an almost product
Riemannian manifold [9]. Let V denotes the Levi Civita connection on
M with respect to g. In particular, if VxF = 0, X € TM, where
TM denotes the set of all vector fields of M, then M is called a locally
product Riemannian manifold.

Let M be a Riemannian manifold isometrically immersed in M and
denote by the same symbol g the Riemannian metric induced on M. Let
TM be the Lie algebra of vector fields in M and TM+ the set of all
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vector fields normal to M. Denote by V the Levi-Civita connection of
M. Then the Gauss and Weingarten formulas are given by

(2.6) VxY =VxY + h(X,Y)
and
(2.7) VxN = —AnX + VxN

for any X,Y € TM and any N € TM~, where V< is the connection in
the normal bundle TM<, h is the second fundamental form of M and
Ap is the Weingarten endomorphism associated with N. The second
fundamental form and the shape operator A are related by g(Ay X,Y) =

g(h(X,Y),N).
For any X € TM we write
(2.8) FX=TX+wX,

where T X is the tangential component of F X and wX is the normal
component of F'X. Similarly, for any vector field normal to M, We put

(2.9) FN = BN +CN,

where BN and CN are the tangential and the normal components of
F'N, respectively. From (2.5) and (2.8) we have

(2.10) 9(TX,Y)=¢g(X,TY)

for any X, Y € TM.

The submanifold M is said to be F—invariant if w is identically zero,
ie, FX € TM, for any X € TM. On the other hand, M is said to be
F— anti -invariant submanifold if T is identically zero, i.e., FX € TM*,
for any X € TM [9].

3. Slant submanifolds

In this section, we study slant immersions of an almost product Rie-
mannian manifold M. First, we present definition of a slant submanifold
of an almost product Riemannian manifold following Chen’s ([3]) defi-
nition for a Hermitian manifold. Let M be a Riemannian manifold iso-
metrically immersed in an almost product Riemannian manifold M. For
each nonzero vector X tangent to M at x the angle 8(X), 0 < 6(X) < §
between F'X and T, M is called the wirtinger angle of X. Then M is
said to be slant if the angle 6(X) is a constant, which is independent of
the choice of z € M and X € TM. The angle 6 of a slant immersion is
called the slant angle of the immersion. Thus, the F—invariant and F—
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anti-invariant immersions are slant immersions with slant angle 8 = 0
and 6 = 7, respectively. A slant immersion which is neither F—invariant
nor F'— anti-invariant is called a proper slant immersion. Finally, we say
that a slant submanifold of M is a product slant if the endomorphism
T is parallel,

Next we give an useful characterization of slant submanifolds in an
almost product Riemannian manifold :

THEOREM 3.1. Let M be a submanifold of an almost product Rie-
mannian manifold M. Then, M is slant submanifold if and only if there
exists a constant A € [0, 1] such that
(3.1) - T? = A
Note tha.t, if § is the slant angle of M, then \ = cos? .

Proof. Let us suppose that M is a slant submanifold of M. Then
cos§(X) is independent x € M and X € T, M. Thus, using (2.5) and
(2.8), we obtain '
_9(TX,FX) g(FTX,X) _g(T*X,X)

| X|lTX| [X[TX]| [X|{TX]|

(3.2) cos 8(X)

On the other hand, we have cos (X ) = %, thus using (3.2) we derive

cos? §(X) = QQ;;()((—Q’—XQ. Hence we obtain 72X = A\ X, X € [0,1].

Conversely, we suppose that 72X = AX for any X € TM and )\ €
[0,1]. Then, in a similar way, we have cos?6(X) = A, hence 0(X) is
constant on M. O

LEMMA 3.1. Let M be a slant submanifold of an almost product
Riemannian manifold M. Then, for any X,Y € TM, we have

(3.3) g(TX,TY) = cos? 8g(X,Y)
and
(3.4) glwX,wY) =sin?hg(X,Y).

Proof. Substituting Y by TY in (2.10) we have g(TX,TY) = g(X,
T2Y) for any X,Y € TM. Then (3.1) give us (3.3). Then the proof of
(3.4) follows from (2.5) and (2.8). O

Let R™ = R™ x R™ be the Euclidean space of dimension m = ni+ns
and endowed with the Euclidean metric. Let F be a product structure
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defined on R™ = R™ x R™ by
g 0 0 0
Flo— 5= (G —5)
Ox;" Ox; Oz;" Ox;
Now, we give some examples of slant submanifolds in almost product
Riemannian manifolds.

ie{l,...,m},je{m+1,...,m}

EXAMPLE 3.1. Consider in R* = R? x R? the submanifold given by
z(u,v) = (ucosf, vecos, usinh, vsinf)
for any # > 0. Then M is a slant plane with slant angle 20.
EXAMPLE 3.2. For any u,v € (0, %) and positive constant k # 1,

z(u,v) = (u,v, —ksinu, —k sinv, k cos u, k cos v)
defines a proper slant surface in R® = R? x R* with slant angle § =
—1(1-k?
COS (l-l-_kf .

EXAMPLE 3.3. Consider a submanifold M in R* = R? x R? given by
x(ur, uz) = (w1 + ug, u1 + ug, \/§u2, \/—Ul)-
Then M is a slant submanifold with the slant angle §

EXAMPLE 3.4. Let us consider the almost product manifold R* with
coordinates (z1,Z2,y1,y2) and product structure
0 0 0 0
(zo)=73-Flz)=5—
o0x; 0yi 0y ox;
Then consider a submanifold M given by

z(u,v) = (ucos 0, usin 6,v,0).
It is easy to see that M is a slant submanifold with the slant angle 6.

ExAMPLE 3.5. Consider the almost product Riemann manifold R? =
R*x R3 with coordinates (1, 2,23, Z4, Y1, Y2, ¥3) and product structure
F given by

0 0 0
( ) =—5— F (F) =
dx; x;’ Yi Oyi
Then, consider a submanlfold M given by
z(u1, uz, uz) = (V2u1, ug, us, Uz + u3, u1 + ug + us, u1, uz + ug).
Then it is easy to see that M is a slant submanifold with slant angle
cos™(3).
REMARK 3.1. It is known that in complex geometry, proper slant
submanifolds are always even dimensional, while in contact geometry,
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proper slant submanifolds are always odd dimensional. However, in the
product Riemann manifolds,the situation is quiet different from both
geometries. For instance, in Examples 3.1-3.4, the slant submanifolds
are even dimensional, while in Example 3.5, the proper slant submanifold
is odd dimensional. Thus, one can conclude that there are even and
odd dimensional proper slant submanifolds of almost product Riemann
manifolds.

Let M be a Riemannian manifold isometrically immersed in an almost
product Riemannian manifold M. Then, from (2.10), we conclude that
the 7" and T? are symmetric operators on the tangent space TpM at
x € M. If ) is the eigenvalue of T2 at z € M, since T? is a composition
of an isometry and projection, we have A € [0,1]. On the other hand,
since T? is a self-adjoint endomorphism of TM, each tangent space T, M
of M at p € M, admits an orthogonal direct decomposition of eigenspace
of T? :

T,M =Dl@. .- DA,
If \; # 0 then the corresponding eigenspaces of D, is invariant under
the endomorphism T.
Now, we set Q = T? and define by

(VxQ)Y =VxQY - QVxY
for any X,Y € TM.

THEOREM 3.2. Let M be a submanifold of an almost product man-
ifold M. Then Q is parallel if and only if

1. Each eigenvalue of ) is constant on M.

2. Each distribution D (associated with the eigen value);) is com-
pletely integrable.

3. M is locally the Riemannian product My x Mo X --- X My of the
leaves of the distributions.

The proof is same as that of Lemma 3.1 in [4], p.21, so we omit it
here.

THEOREM 3.3. Let M be a submanifold of an almost product mani-
fold M. Then VT = 0 if and only if M is locally product My x - - - X My,
where each M; is either F-invariant submanifold with VT, = 0, F—
anti-invariant submanifold or a product slant submanifold of M, where
T; = T |7y, and V¢ is the Riemannian metric of M;.

Proof. Since T is parallel, @ is parallel. Thus, from Theorem 3.2, M
is locally the Riemannian product Mj X - - - X M}, of leaves of distributions
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defined by eigen vectors of @ and each eigenvalue A; is constant on M.
If A\; = 0, the corresponding leaf of M; is an F— anti-invariant. If \; =1
then M; is an F'— invariant submanifold. If A # 0, 1, since D; is invariant
under the endomorphism 7T, following the proof of the Theorem 3.1, we
obtain

9(FX,TX)
| X || TX |
9(X, FTX)
| X || TX |
9(X,T?X)
| X || TX |

cosf(X) =

= AN——=-.
TX |

On the other hand, we have cos6(X) = f—g—% = % Thus we get

cos9(X) = +/A;. So, Wirtinger angle §(X) is a constant and \; # 0, 1.
Thus M; is a proper slant submanifold. Let us assume that A; # 0. If
we put T; = T |rp,, then since M; is invariant under endomorphism
T, T; is an almost product structure (Theorem 3.1, p.425, [9]). Let V*
denote the Riemannian connection of M;, since M; is totally geodesic,
we have (V4 T;)Y = (VxT)Y =0 for any X,Y € TM. Moreover if M;
is proper slant, then M; is a product slant submanifold. The converse
is clear. O

We note that g(F X, X) # 0 for any unit vector field X € T'(TM) in a
product Riemann manifold, in general, contrary to complex (¢(J X, X) =
0) and contact (g(¢X, X) = 0) manifolds. If M is a slant submanifold
of M, then it might be g(FX,X) = cos § for any unit vector field
X € T(TM). On the other hand, from the definition of a slant sub-
manifold it obvious that the angle between FY and T,M, p € M is
constant for a unit vector field Y € I'(T'M), thus we can also consider
g(FX,Y) = cosé for any unit vector fields X,Y € I'(TM). Next theo-
rem shows us that there are restrictions for a proper slant submanifold
of an almost product Riemann manifold.

THEOREM 3.4. Let M be a proper slant surface of an almost product
Riemann manifold M such that {e1,e2} is an orthonormal basis of M.
Then the following situations can not be occurred at the same time:

g(Fe; e;) =cos 0, g(Fe;,ej) =cos 0,1 # j € {1,2},
where 0 denotes the slant angle of M.
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Proof. Let M be a proper slant surface of M such that TM =
span{e;, ez }. Moreover suppose that g(Fe;,e;) = cos 6 and g(Fe;, e;) =
cos 6. Then we can write

Tey = g(Fei,e1)ey + g(Fei,ez)es.
Then by assumption we obtain
Te; = cos Be; + cos Bes.
In similar computations, we get
Tey = cos Oe; + cos ey

Hence we have
9(Te,Ter) = 2cos? 6.

Then from (3.3) we obtain
cos? fg(er,e2) = 2cos? 6.

Since e; and es are orthogonal, we derive cos § = 0. This shows that M
is an anti-invariant surface. But this is a contradiction, which proves
the assertion. O

LEMMA 3.2. Let M be_a proper slant surface of an almost prod-
uct Riemannian manifold M with the slant angle 6 and {e1,e2} be an
orthonormal frame of M. Then we have:

(i) If g(Fe;,e;) = cos 8, then
Tey =cosfe;, Tea =cosfea and g(Fe;e;) =0.
(i) If g(Fei,e;) = cos 6, then
Te; = cos fez, Tea = cos fe; and  g(Fe;,e;) =0.
Proof. (i) By the definition of T, for any X € TM we have
TX =g(FX,e1)e; + g(FX,ez)es.

Thus, for X = e3, X = e3, we obtain

(3.5) Te; = cosfe; + g(Fey,ez)er
and
(3.6) Tes = g(Fez,e1)e; + cos fea.

Then, from (3.5) and (3.6) we obtain
g(Tey, Tea) = 2cosfg(Fer,e2).
Using (3.3) we have
cosGg(ey, e2) = 2cos Bg(Fei, ea).
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Since e; and eg are orthogonal and M is proper slant, we obtain g(Fe,
ez) = 0. Then from (3.5) and(3.6) we have (i). The second assertion
can be obtained in a similar way. O

REMARK 3.2. Note that we can easily find examples satisfying
Lemma 3.2 (i) and (ii). Indeed, Example 3.1 and Example 3.2 sat-
isfy Lemma 3.2 (i). On the other hand, Example 3.3 and Example 3.4
have the conditions of Lemma 3.2 (ii). We also note that it is easy to
see, Theorem 3.1 and Lemma 3.1 are valid for both cases.

THEOREM 3.5. Let M be a proper slant surface of an almost product
Riemann manifold M with the slant angle 6 such that {ej,es} is an
orthonormal basis of M.

(1) If g(Fe;,e;) = cos 0, then M is a product slant surface of M. B
(2) If g(Fe;,ej) = cos 8, then M is a product slant surface of M if
and only if each of the e; is parallel.

Proof. (1) Let M be a proper slant surface of M with slant angle
6 such that g(Fe;,e;) = cos 6. Then we can choose an orthonormal
frame {e1, ea} such that it satisfies Lemma 3.2 (i). By straightforward
computations, we have Vxe; = g(Vxej,e2)es for any X € TM. Thus
by using Lemma 3.2 (i) we derive
(VxT)el = VxTel — TVXel

= cosfVxer —g(Vxey,ez)Tey

= cosfVxer — g(Vxei,ez)cosbes

= cosf(Vxe; — g(Vxer,ez)ez)

CcOs O(Vxel et VXel)

Hence we obtain (VxT)e; = 0. In a similar way we have (VxT)es = 0.

Thus if a surface of M is a proper slant, then it is a product slant surface.
(2) From Lemma 3.2 (ii), we have

(VxT)el = COSs OVXEQ - TVXel.
Hence, we get

(VxT)el = COS 0VX€2 - g(VX61,62>T62
= cos OVxez + g(Vxes, er)cos fe;.

Thus we obtain

(3.7) (VxT)er = 2cos 6 Vxes.
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In a similar way, we have
'(3.8) (VxT)eg = 2cos OV xes.

Thus (3.7) and (3.8) proves (2).
Finally in this section, we give an another useful characterization for
slant submanifolds of an almost product manifold. O

THEOREM 3.6. Let M be a submanifold of an almost Riemann man-
ifold M. Then M is a proper slant submanifold of M if and only if there
exists a constant « € [0,1] such that

(3.9) BwX =rX
for any X € T'(TM). Moreover, if 6 is the slant angle of M, then k =
sin? 6.
Proof. Applying F to (2.8) and using (2.8) and (2.9) we obtain
X=T°X+wTX+BuwX +CwX
for any X € I'(T'M). Thus, taking the tangential parts of this equation,
we get
(3.10) X =T?X + BwX.
Now, if M is a slant submanifold, then from Theorem 3.1, we have
T2X = cos? 6. Hence we obtain
BwX =sin? X =k X, s €[0,1]

Conversely, suppose that BwX = kX, k € [0.1]. Then from (3.10) we
have .
X=T°X+xX.
Hence, we obtain
T2X = (1 -K)X.
Put (1 — k) = X so that A € [0, 1]. The proof follows from Theorem 3.1.
O

4. Semi-slant submanifolds

In this section, we define and study semi-slant submanifolds of an
almost product Riemannian manifold M. In particular, we investigate
integrability of distributions which are arisen in the definition of semi-
slant submanifolds and give a necessary and sufficient condition on the
endomorphism T to be parallel. We also show that distributions are in-
tegrable and their leaves are totally geodesic in a semi-slant submanifold
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if the endomorphism T is parallel. We notice that semi-slant subman-
ifolds were studied in complex and contact geometry by N. Papaghiuc
[7] and J. L. Cabrerizo et al [2], respectively.

DEFINITION 4.1. Let M be a submanifold of an almost product
Riemannian manifold M. We say that M is a semi-slant submanifold of

M, if there exist two orthogonal distributions Dy and D, such that

1. TM =D1&® Dy

2. D, is an invariant distribution, F(D;) = D;.

3. The distribution D is slant with angle 6 # 0.
We will call Dy as a slant distribution. In particular, if § = 7 then
the semi-slant submanifold is a semi-invariant submanifold [8]. On the
other hand, if dim(D3) = 0 then M is an F'— invariant submanifold. If
dim(D;) = 0 and # = 7, then M is an F'— anti-invariant submanifold.
Finally, if dim(D;) = 0 and 6 # 5 then M is a proper slant submanifold
with angle 6.

We now denote the projection morphisms on the distributions Dy
and Dy by P; and P,, respectively. Then we can write

(4.1) X =P X+ PX

for any X € TM. Then applying F' to (4.1) we have
(4.2) FX =TP,X +TP,X + whX.
Now, we put 77 = TPy and T, = TP,. Then we obtain
(4.3) FX=T1X+THX+whPX.

Since F(D1) = Dy, we derive

(4.4) FPX =TPX,wPX=0,ThX € D,.
Moreover, using (4.4) we get

(4.5) TX = FPX + TP, X

for any X € TM.

Using a similar method of the proof of the Theorem 3.1, we can obtain
the following theorem

THEOREM 4.1. Let M be a submanifold of an almost product man-
ifold M. Then M is a semi-slant submanifold if and only if there exists
a constant A € [0, 1] such that

(i) D)={X €D |T?X =XX}.

(ii) For any X € T'(T' M), orthogonal to D/, wX = 0.
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Moreover in this case A = cos? §, where § denotes the slant angle of M.

Proof. Let M be a semi-slant submanifold of M. Then A = cos? 6
and D' = Ds. By the definition of semi-slant submanifold, (ii) is clear.
Conversely (i) and (ii) imply TM = D @ D'. Since T(D’) C D', from
(ii), D is an invariant distribution. Thus proof is complete. O

From Theorem 4.1 we obtain

(4.6) g(TX, TPY) = cos® fg(X, RY)
and
(4.7) gwX,wPY) =sin 0g(X, RY).

for any X,Y € TM.
We now present two examples of semi-slant submanifolds.

EXAMPLE 4.1. For any 6 € (0, 7),
z(u,v,t) = (u,v,tcosb,tsinb,o)
defines a three dimensional proper semi-slant submanifold M, Wlth slant
angle 26, in R® = R3 x R2. It easy to see Dy = Span{X; = am Xy =

01,2} and Dy = Span{X3 = cose S 1 sin 93z4}

EXAMPLE 4.2. For any non-zero constant k # 1,
T
z(u,v,s,t) = (ksint, —kcost, ksins, —kcos s,t, s,u,v), t,s # 3

defines a four dimensional proper semi-slant submanifold M, with slant
angle cos_l(%‘)ﬁ) in R® = R* x R* with its usual product structure.
Moreover, it easy to see that

X1 = kcostT + ksmtaz + a% X3 = M

X5 —Iccossr—kksmsa—m+Fm—6 Xy =

7

Q7

GCETY
form a local orthogonal frame of T M. Then we can define D; = Span{ X3,
X4} and Dy = Span{X;, X5}

Next, we are going to investigate integrability conditions of the dis-
tributions D; and Ds.

THEOREM 4.2. Let M be a semi-slant submanifold of a locally prod-
uct Riemannian manifold M. Then we have:

(i) The distribution Dy is integrable if and only if
WX, TY) = h(TX,Y),¥X,Y € Dy.
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(ii) The distribution Dy is integrable if and only if
Pl(VXTQY — VyTzX) = Pl(Awa — Awa),VX, Y € Ds.

Proof. From (2.6) and (2.8), taking the normal components we obtain
(4.8) wVxY =h(X,FY) - Ch(X,Y)

for any X,Y € D;. Thus, interchanging role X and Y in (4.8) and
subtracting we derive

w[Y, X] = h(X,FY) — h(FX,Y).

Thus if Dy is integrable, then we obtain (i). Conversely, suppose that
the condition (i) is satisfied. Then we derive w[X,Y] = 0. Thus from
(4.7) we obtain

g(w[X,Y],wZ) =sin? 6g([X,Y],Z) =0

for Z € T'(Ds). Then proper M implies sin 6 # 0. Thus we conclude that
[X,Y] € I'(D;). In a similar way, taking the tangential parts we have

(4.9) (VxT)Y = A,y X + Bh(X,Y)

for any X,Y € TM. Thus for X,Y € D; in (4.9) and using (4.3), we
derive

VxThY = Aoy X + ThVxY + ThVxY + Bh(X,Y).
Hence we get
VxTY —VyTeX = Ay X — A,xY + Th[ X, Y] + Ta[ X, Y].
Thus applying P; to this equation we obtain assertion (ii). d

In the rest of this section we are going to find a condition for semi-
slant submanifolds such that VI = 0 and we investigate the geometry
of leaves of the distributions D; and D5 under the condition VT = 0.

THEOREM 4.3. Let M be a slant submanifold of a locally product
Riemannian manifold M. Then T is parallel if and only if

. Avr,y X = —Aup,xY
for any X,Y € TM.
Proof. From (4.9) we have
(VxT)Y = Aup,y X + BW(X,Y)
for any X,Y € TM. Using (2.5), (2.9) and (4.2) we obtain
g(VxTYY,Z) = g(Aup,y X, Z) + g(h(X,Y ), wPa Z)
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for any Z € TM. Hence we get
9(VxT)Y, Z) = g(Aury X, Z) + 9(Aup,zY, X).
Since A is self-adjoint, we obtain the assertion of theorem. O

We note that semi-slant submanifolds satisfying VT = 0 is the semi-
slant version of product slant submanifolds

THEOREM 4.4. Let M be a semi-slant submanifold of a locally prod-
uct Riemannian manifold M. If VT = 0, then the distributions D1 and
Dy are integrable and their leaves are totally geodesic in M.

Proof. If VT = 0, then from (4.9) we obtain Bh(X,Y) = 0 for any
X € TM and Y € D;. Thus, using (2.5) and (4.2) we derive

(4.10) g(M(X,Y),wP2Z) =0
and
(4.11) g(Fh(X,Y),wPZ) =0

for any X,Z € TM and Y € D;. Since M is a locally product Riemann-
ian manifold, from Gauss formula and (4.2), we have

g(wPVxY,Fh(X,Y))
gwPhVxY FVxY — FVxY)
= gWwPVxY,VxFY) - g(wPVxY,wP,VxY)
for any X € TM and Y € D;. Hence, using Gauss formula, we derive
g(wPVxY,Fh(X,Y))
= g(wPVxY, h(X,FY)) — g(wPVxY,wPaVxY).
Thus from (4.10) we get
gWwP,VxY, Fh(X,Y)) = —g(wPVxY,wP,VxY).
Then by using (4.7) we obtain
(4.12) g(wP,VxY,Fh(X,Y)) = —sin?8g(P,VxY, RVxY).
Then, from (4.11) and (4.12) we have
—sin? 0g(P,VxY, P,V xY) = 0.

Since M is a proper semi-slant submanifold and g is the Riemannian
metric we get, P,VxY = 0. Hence VxY € Dy for X €e TM and Y € D;.
Moreover, since Dy and Dy are orthogonal, we conclude that VxZ € Dy
for X € TM and Z € D,. Hence proof is complete. O
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COROLLARY 4.1. Let M be a semi-slant submanifold of a locally
product Riemannian manifold M and suppose that the distribution D
is integrable and its each leaf is totally geodesic in M. Then VT = 0 if
and only if (VxTz)Y = O,VY € Ds.

Proof. Suppose that D; is integrable and its each leaf is totally ge-
odesic in M. Then, since M is a locally product Riemannian manifold,
from Gauss formula, we have

g(h(X,Y),FZ) = g(FVxY — FVxY, Z)

for X € TM,Y € Dy and Z € D,. Since VxY € D;, we obtain
9(FVxY,Z) = 0. Hence we derive

(WX, Y),FZ)=g(VxFY,Z)=g(VxFY,Z) =0
for X € TM,Y € D; and Z € D,. Thus we conclude that Bh(X,Y) =0
for any X € TM and Y € D;. Then from (4.9) we have
(VxT)Y =0,YX € TM,Y € D;.
On the other hand, for Y € Dy, from (4.5) we get
(V)(T)Y =(VxTh)Y

for any X € TM and Y € D5, hence we obtain the assertion of Corol-
lary 4.1. O

REMARK 4.1. Note that, Theorem 4.4 implies that semi-slant sub-
manifold satisfying VI" = 0 is a locally product Riemannian manifold.
This shows us, the condition VT = 0 is an effective tool to describe the
geometry of slant submanifolds as well as semi-slant Submanifolds.
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