RICCI CURVATURE OF INTEGRAL SUBMANIFOLDS OF AN \mathcal{S} -SPACE FORM

JEONG-SIK KIM, MOHIT KUMAR DWIVEDI, AND MUKUT MANI TRIPATHI

ABSTRACT. Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for an integral submanifold of an \mathcal{S} -space form. By polarization, we get a basic inequality for Ricci tensor also. Equality cases are also discussed. By giving a very simple proof we show that if an integral submanifold of maximum dimension of an \mathcal{S} -space form satisfies the equality case, then it must be minimal. These results are applied to get corresponding results for C-totally real submanifolds of a Sasakian space form and for totally real submanifolds of a complex space form.

1. Introduction

One of the most fundamental problems in submanifold theory is the following: Establish simple relationships between the main extrinsic invariants and the main intrinsic invariants of a submanifold. In [7], B.-Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. In [8], he gave the corresponding version of this inequality for totally real submanifolds in a complex space form. We find corresponding results for C-totally real submanifolds of a Sasakian space form in [10], [11] and [12].

The concept of framed metric structure unifies the concepts of almost Hermitian and almost contact metric structures. In particular, an \mathcal{S} -structure generalizes Kaehler and Sasakian structure. In [1], D. Blair discusses principal toroidal bundles and generalizes the Hopf fibration to give a canonical example of an \mathcal{S} -manifold playing the role of complex projective space in Kaehler geometry and the odd-dimensional sphere in Sasakian geometry. An \mathcal{S} -manifold

Received July 30, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C40, 53C15, 53C25.

Key words and phrases. S-space form, integral submanifold, C-totally real submanifold, totally real submanifold, Lagrangian submanifold, Ricci curvature, k-Ricci curvature, scalar curvature.

Jeong-Sik Kim would like to acknowledge financial support from Korea Science and Engineering Foundation Grant(R05-2004-000-11588). Mohit Kumar Dwivedi is grateful to University Grants Commission, New Delhi for financial support in the form of Junior Research Fellowship.

of constant f-sectional curvature c is called an S-space form $\widetilde{M}(c)$ [5], which generalizes the complex space form and Sasakian space form.

Motivated by the result of Chen in [7], recently in [9], a general basic inequality involving the Ricci curvature and the squared mean curvature of a submanifold in any Riemannian manifold is established and its several applications are presented. Using this inequality, in the present paper, we find a basic inequality for integral submanifolds of an S-space form M(c) and apply this to recover the already known inequalities for totally real submanifolds in complex space forms and C-totally real submanifolds in Sasakian space forms. The paper is organized as follows. In section 2, we recall a brief account of Ricci curvature, k-Ricci curvature, scalar curvature in a Riemannian manifold and basic formulas and definitions for a submanifold. Then, we recall the result of [9] giving a general basic inequality involving the Ricci curvature and the squared mean curvature of a submanifold in any Riemannian manifold. Section 3 presents a brief account of framed metric manifold leading to S-space forms. In section 4, we give a very simple way to present a basic inequality for integral submanifolds of an S-space form M(c). Then, the already known inequalities for totally real submanifolds in complex space forms and C-totally real submanifolds in Sasakian space forms become direct consequences. In section 5, we mainly prove that an integral submanifold of maximum dimension of an S-space form M(c) satisfying the equality case becomes minimal. Then, we derive the same conclusion for Lagrangian submanifold of a complex space form and C-totally real submanifold of maximum dimension of a Sasakian space form.

2. Ricci curvature of submanifolds

Let M be an n-dimensional Riemannian manifold. Let $\{e_1, \ldots, e_k\}$, $2 \le k \le n$, be an orthonormal basis of a k-plane section Π_k of T_pM . If k = n then $\Pi_n = T_pM$; and if k = 2 then Π_2 is a plane section of T_pM . For a fixed $i \in \{1, \ldots, k\}$, a k-Ricci curvature of Π_k at e_i , denoted $\mathrm{Ric}_{\Pi_k}(e_i)$, is defined by [7]

(1)
$$\operatorname{Ric}_{\Pi_k}(e_i) = \sum_{j \neq i}^k K_{ij},$$

where K_{ij} is the sectional curvature of the plane section spanned by e_i and e_j . An n-Ricci curvature $\mathrm{Ric}_{T_pM}(e_i)$ is the usual Ricci curvature of e_i , denoted $\mathrm{Ric}(e_i)$. Thus for any orthonormal basis $\{e_1, \ldots, e_n\}$ for T_pM and for a fixed $i \in \{1, \ldots, n\}$, we have

$$\operatorname{Ric}_{T_pM}(e_i) \equiv \operatorname{Ric}(e_i) = \sum_{i \neq i}^n K_{ij}.$$

The scalar curvature $\tau(\Pi_k)$ of the k-plane section Π_k is given by

(2)
$$\tau(\Pi_k) = \sum_{1 \le i < j \le k} K_{ij}.$$

Geometrically, $\tau(\Pi_k)$ is the scalar curvature of the image $\exp_p(\Pi_k)$ of Π_k at p under the exponential map at p. The scalar curvature $\tau(p)$ of M at p is identical with the scalar curvature of the tangent space T_pM of M at p, that is, $\tau(p) = \tau(T_pM)$.

Let M be an n-dimensional submanifold of an m-dimensional Riemannian manifold \widetilde{M} equipped with a Riemannian metric \widetilde{g} . We use the inner product notation $\langle \ , \ \rangle$ for both the metrics \widetilde{g} of \widetilde{M} and the induced metric g on the submanifold M. The Gauss and Weingarten formulas are given respectively by

$$\widetilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y)$$
 and $\widetilde{\nabla}_X N = -A_N X + \nabla_X^{\perp} N$

for all $X,Y \in TM$ and $N \in T^{\perp}M$, where $\widetilde{\nabla}$, ∇ and ∇^{\perp} are respectively the Riemannian, induced Riemannian and induced normal connections in \widetilde{M} , M and the normal bundle $T^{\perp}M$ of M respectively, and σ is the second fundamental form related to the shape operator A by $\langle \sigma(X,Y), N \rangle = \langle A_N X, Y \rangle$. The equation of Gauss is given by

(3)
$$R(X, Y, Z, W) = \widetilde{R}(X, Y, Z, W) + \langle \sigma(X, W), \sigma(Y, Z) \rangle - \langle \sigma(X, Z), \sigma(Y, W) \rangle$$

for all $X,Y,Z,W\in TM$, where \widetilde{R} and R are the Riemann curvature tensors of \widetilde{M} and M respectively. The curvature tensor R^{\perp} of the normal bundle of M is defined by

$$R^{\perp}(X,Y)N = \nabla_X^{\perp}\nabla_Y^{\perp}N - \nabla_Y^{\perp}\nabla_X^{\perp}N - \nabla_{[X,Y]}^{\perp}N$$

for all $X, Y \in TM$ and $N \in T^{\perp}M$. If $R^{\perp} = 0$, then the normal connection ∇^{\perp} of M is said to be *flat*.

The mean curvature vector H is given by $H = \frac{1}{n} \operatorname{trace}(\sigma)$. The submanifold M is totally geodesic in \widetilde{M} if $\sigma = 0$, and minimal if H = 0. If $\sigma(X, Y) = g(X, Y)H$ for all $X, Y \in TM$, then M is totally umbilical.

The relative null space of M at p is defined by [7]

$$\mathcal{N}_p = \left\{ X \in T_p M \, | \, \sigma(X,Y) = 0 \text{ for all } Y \in T_p M \right\},$$

which is also known as the kernel of the second fundamental form at p [8].

Now, let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of the tangent space T_pM and e_r belongs to an orthonormal basis $\{e_{n+1}, \ldots, e_m\}$ of the normal space $T_p^{\perp}M$. We put

$$\sigma_{ij}^{r} = \left\langle \sigma\left(e_{i}, e_{j}\right), e_{r} \right\rangle \quad \text{and} \quad \left\|\sigma\right\|^{2} = \sum_{i,j=1}^{n} \left\langle \sigma\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right) \right\rangle.$$

398

Let K_{ij} and \widetilde{K}_{ij} denote the sectional curvature of the plane section spanned by e_i and e_j at p in the submanifold M and in the ambient manifold \widetilde{M} respectively. Thus, we can say that K_{ij} and \widetilde{K}_{ij} are the "intrinsic" and "extrinsic" sectional curvature of the Span $\{e_i, e_j\}$ at p. In view of (3), we get

(4)
$$K_{ij} = \widetilde{K}_{ij} + \sum_{r=n+1}^{m} \left(\sigma_{ii}^r \sigma_{jj}^r - (\sigma_{ij}^r)^2 \right).$$

From (4) it follows that

(5)
$$2\tau(p) = 2\tilde{\tau} (T_p M) + n^2 ||H||^2 - ||\sigma||^2,$$

where $\widetilde{\tau}(T_pM)$ denotes the scalar curvature of the *n*-plane section T_pM in the ambient manifold \widetilde{M} . Thus, we can say that $\tau(p)$ and $\widetilde{\tau}(T_pM)$ are the "intrinsic" and "extrinsic" scalar curvature of the submanifold at p respectively.

We denote the set of unit vectors in T_pM by T_p^1M ; thus

$$T_p^1 M = \{ X \in T_p M \mid \langle X, X \rangle = 1 \}.$$

Now, we recall the following result from [9].

Theorem 2.1. Let M be an n-dimensional submanifold of a Riemannian manifold \widetilde{M} . Then the following statements are true.

(a) For $X \in T_n^1 M$ we have

(6)
$$\operatorname{Ric}(X) \le \frac{n^2}{4} \|H\|^2 + \widetilde{\operatorname{Ric}}_{(T_p M)}(X),$$

where $\widetilde{\mathrm{Ric}}_{(T_pM)}(X)$ is the n-Ricci curvature of T_pM at $X \in T_p^1M$ with respect to the ambient manifold \widetilde{M} .

(b) The equality case of (6) is satisfied by $X \in T_p^1M$ if and only if

(7)
$$\sigma(X,X) = \frac{n}{2} H(p) \text{ and } \sigma(X,Y) = 0$$

for all $Y \in T_pM$ such that $\langle X, Y \rangle = 0$.

(c) The equality case of (6) holds for all $X \in T_p^1M$ if and only if either (1) p is a totally geodesic point or (2) n = 2 and p is a totally umbilical point.

From Theorem 2.1, we immediately have the following

Corollary 2.2. Let M be an n-dimensional submanifold of a Riemannian manifold. For $X \in T_p^1 M$ any two of the following three statements imply the remaining one.

- (a) The mean curvature vector H(p) vanishes.
- (b) The unit vector X belongs to the relative null space \mathcal{N}_p .
- (c) The unit vector X satisfies the equality case of (6), namely

(8)
$$\operatorname{Ric}(X) = \frac{1}{4} n^2 ||H||^2 + \widetilde{\operatorname{Ric}}_{(T_p M)}(X).$$

3. S-space forms

Let \widetilde{M} be a (2m+s)-dimensional framed metric manifold [17] (also known as framed f-manifold [13] or almost r-contact metric manifold [15]) with a framed metric structure $(f, \xi_{\alpha}, \eta^{\alpha}, \widetilde{g}), \alpha \in \{1, \ldots, s\}$, that is, f is a (1, 1) tensor field defining an f-structure of rank 2m; ξ_{1}, \ldots, ξ_{s} are vector fields; $\eta^{1}, \ldots, \eta^{s}$ are 1-forms and \widetilde{g} is a Riemannian metric on \widetilde{M} such that for all $X, Y \in T\widetilde{M}$ and $\alpha, \beta \in \{1, \ldots, s\}$

(9)
$$f^{2} = -I + \eta^{\alpha} \otimes \xi_{\alpha}, \quad \eta^{\alpha}(\xi_{\beta}) = \delta^{\alpha}_{\beta}, \quad f(\xi_{\alpha}) = 0, \quad \eta^{\alpha} \circ f = 0,$$

(10)
$$\langle fX, fY \rangle = \langle X, Y \rangle - \sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y),$$

(11)
$$\Omega(X,Y) \equiv \langle X, fY \rangle = -\Omega(Y,X), \quad \langle X, \xi_{\alpha} \rangle = \eta^{\alpha}(X),$$

where \langle , \rangle denotes the inner product of the metric \widetilde{g} . A framed metric structure is an S-structure [1] if the Nijenhuis tensor of f equals $-2d\eta^{\alpha} \otimes \xi_{\alpha}$ and $\Omega = d\eta^{\alpha}$ for all $\alpha \in \{1, \ldots, s\}$.

When s=1, a framed metric structure is an almost contact metric structure, while an S-structure is a Sasakian structure. When s=0, a framed metric structure is an almost Hermitian structure, while an S-structure is a Kaehler structure. If a framed metric structure on \widetilde{M} is an S-structure then it is known [1] that

(12)
$$(\widetilde{\nabla}_X f) Y = \sum_{\alpha} \left(\langle fX, fY \rangle \, \xi_{\alpha} + \eta^{\alpha}(Y) f^2 X \right),$$

(13)
$$\widetilde{\nabla}\xi_{\alpha} = -f, \qquad \alpha \in \{1, \dots, s\}.$$

The converse may also be proved. In case of Sasakian structure (that is, s=1), (12) implies (13). In Kaehler case (that is, s=0), we get $\widetilde{\nabla} f=0$. For s>1, examples of \mathcal{S} -structures are given in [1], [2] and [4]. Thus, the bundle space of a principal toroidal bundles over a Kaehler manifold with certain conditions is an \mathcal{S} -manifold. Thus, a generalization of the Hopf fibration $\pi': S^{2m+1} \to PC^m$ is a canonical example of an \mathcal{S} -manifold playing the role of complex projective space in Kaehler geometry and the odd-dimensional sphere in Sasakian geometry.

A plane section in T_pM is a f-section if there exists a vector $X \in T_pM$ orthogonal to ξ_1, \ldots, ξ_s such that $\{X, fX\}$ span the section. The sectional curvature of a f-section is called a f-sectional curvature. It is known that [5]

in an S-manifold of constant f-sectional curvature c

$$(14) \qquad \widetilde{R}(X,Y)Z \\ = \sum_{\alpha,\beta} \{\eta^{\alpha}(X)\eta^{\beta}(Z)f^{2}Y - \eta^{\alpha}(Y)\eta^{\beta}(Z)f^{2}X \\ - \langle fX, fZ \rangle \eta^{\alpha}(Y)\xi_{\beta} + \langle fY, fZ \rangle \eta^{\alpha}(X)\xi_{\beta} \} \\ + \frac{c+3s}{4} \{ -\langle fY, fZ \rangle f^{2}X + \langle fX, fZ \rangle f^{2}Y \} \\ + \frac{c-s}{4} \{ \langle X, fZ \rangle fY - \langle Y, fZ \rangle fX + 2 \langle X, fY \rangle fZ \}$$

for all $X, Y, Z \in T\widetilde{M}$, where \widetilde{R} is the curvature tensor of \widetilde{M} . An S-manifold of constant f-sectional curvature c is called an S-space form $\widetilde{M}(c)$.

When s=1, an S-space form $\widetilde{M}(c)$ reduces to a Sasakian space form $\widetilde{M}(c)$ [3] and (14) reduces to

$$\begin{split} \widetilde{R}(X,Y)Z &= \frac{c+3}{4} \left\{ \langle Y,Z \rangle \, X - \langle X,Z \rangle \, Y \right\} \\ &+ \frac{c-1}{4} \left\{ \langle X,fZ \rangle \, fY - \langle Y,fZ \rangle \, fX + 2 \, \langle X,fY \rangle \, fZ \right. \\ &+ \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X \\ &+ \left. \langle X,Z \rangle \, \eta(Y)\xi - \langle Y,Z \rangle \, \eta(X)\xi \right\}, \end{split}$$

where $\xi_1 \equiv \xi$ and $\eta^1 \equiv \eta$. When s = 0, an S-space form $\widetilde{M}(c)$ becomes a complex space form and (14) moves to

$$4\widetilde{R}(X,Y)Z = c\{\langle Y,Z \rangle X - \langle X,Z \rangle Y + \langle X,fZ \rangle fY - \langle Y,fZ \rangle fX + 2\langle X,fY \rangle fZ\}.$$

4. Ricci curvature of integral submanifolds

Let \widetilde{M} be an \mathcal{S} -manifold equipped with an \mathcal{S} -structure $(f,\xi_{\alpha},\eta^{\alpha},\widetilde{g})$. A submanifold M of \widetilde{M} is an integral submanifold if $\eta_{\alpha}(X)=0, \alpha=1,\ldots,s$, for every tangent vector X. A submanifold M of \widetilde{M} is an anti-invariant submanifold if $f(TM)\subseteq T^{\perp}M$. An integral submanifold is identical with an anti-invariant submanifold normal to the structure vector fields ξ_1,\ldots,ξ_s . In particular case of s=1, an integral submanifold M of a Sasakian manifold is a C-totally real submanifold [16]. It is known that [6] an n-dimensional integral submanifold M, of an \mathcal{S} -manifold \widetilde{M} of dimension (2n+s), is of constant curvature s if and only if the normal connection is flat.

First, we give the following Lemma.

Lemma 4.1. Let M be an n-dimensional integral submanifold of an S-space form $\widetilde{M}(c)$. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of the tangent space T_pM .

Then

(15)
$$\widetilde{K}_{ij} = \frac{1}{4} (c+3s),$$

(16)
$$\widetilde{\text{Ric}}_{(T_p M)}(e_i) = \frac{1}{4} (n-1)(c+3s),$$

(17)
$$\widetilde{\tau}(T_pM) = \frac{1}{8}n(n-1)(c+3s).$$

Proof. Equation (15) follows from (14). Using $\widetilde{\text{Ric}}_{(T_pM)}(e_i) = \sum_{j\neq i}^n \widetilde{K}_{ij}$ in (15), we get (16). Next, using $2\widetilde{\tau}(T_pM) = \sum_{i=1}^n \widetilde{\text{Ric}}_{(T_pM)}(e_i)$, from (16) we get (17).

Now, we have the following Theorem.

Theorem 4.2. If M is an n-dimensional integral submanifold of an S-space form $\widetilde{M}(c)$, then the following statements are true.

(a) For $X \in T_p^1 M$, it follows that

(18)
$$\operatorname{Ric}(X) \le \frac{1}{4} \left\{ n^2 \|H\|^2 + (n-1)(c+3s) \right\}.$$

- (b) The equality case of (18) is satisfied by $X \in T_p^1 M$ if and only if (7) is true. If H(p) = 0, $X \in T_p^1 M$ satisfies equality in (18) if and only if $X \in \mathcal{N}_p$.
- (c) The equality case of (18) holds for all $X \in T_p^1 M$ if and only if either p is a totally geodesic point or n = 2 and p is a totally umbilical point.

Proof. Using (16) in (6), we find the inequality (18). Rest of the proof is straightforward. \Box

By polarization, from Theorem 4.2, we derive

Theorem 4.3. Let M be an n-dimensional integral submanifold of an S-space form $\widetilde{M}(c)$. Then the Ricci tensor S satisfies

(19)
$$S \le \frac{1}{4} \left\{ n^2 \|H\|^2 + (n-1)(c+3s) \right\} g,$$

where g is the induced Riemannian metric on M. The equality case of (19) is true if and only if either M is a totally geodesic submanifold or M is a totally umbilical surface.

When s = 0, we have the following two results.

Theorem 4.4. If M is an n-dimensional totally real submanifold (or isotropic submanifold) of a complex space form $\widetilde{M}(c)$, then the following statements are true.

(a) It follows that

(20)
$$\operatorname{Ric}(X) \le \frac{1}{4} \left\{ n^2 \|H\|^2 + (n-1)c \right\}, \qquad X \in T_p^1 M.$$

- (b) The equality case of (20) is satisfied by $X \in T_p^1 M$ if and only if (7) is true. If H(p) = 0, $X \in T_p^1 M$ satisfies equality in (20) if and only if $X \in \mathcal{N}_p$.
- (c) The equality case of (20) holds for all $X \in T_p^1 M$ if and only if either p is a totally geodesic point or n = 2 and p is a totally umbilical point.

Theorem 4.5. If M is an n-dimensional totally real submanifold (or isotropic submanifold) of a complex space form $\widetilde{M}(c)$, then the following statements are true.

(a) It follows that

(21)
$$S \le \frac{1}{4} \left\{ n^2 \|H\|^2 + (n-1)c \right\} g.$$

(b) The equality case of (21) holds identically if and only if either M is totally geodesic submanifold or M is a totally umbilical surface.

For s = 1, we again have the following two results.

Theorem 4.6. If M is an n-dimensional C-totally real submanifold of a Sasakian space form $\widetilde{M}(c)$, then the following statements are true.

(a) It follows that

(22)
$$\operatorname{Ric}(X) \le \frac{1}{4} \left\{ n^2 \|H\|^2 + (n-1)(c+3) \right\}, \qquad X \in T_p^1 M.$$

- (b) The equality case of (22) is satisfied by $X \in T_p^1M$ if and only if (7) is true. If H(p) = 0, $X \in T_p^1M$ satisfies equality in (22) if and only if $X \in \mathcal{N}_p$.
- (c) The equality case of (22) holds for all $X \in T_p^1 M$ if and only if either p is a totally geodesic point or n = 2 and p is a totally umbilical point.
- (d) The equality case of (23) holds identically if and only if either M is totally geodesic submanifold or M is a totally umbilical surface.

Theorem 4.7. If M is an n-dimensional C-totally real submanifold of a Sasakian space form $\widetilde{M}(c)$, then the following statements are true.

(a) It follows that

(23)
$$S \le \frac{1}{4} \left\{ n^2 \|H\|^2 + (n-1)(c+3) \right\} g.$$

(b) The equality case of (23) holds identically if and only if either M is totally geodesic submanifold or M is a totally umbilical surface.

It is known that (Theorem 4, [14]) if M is an n-dimensional compact minimal C-totally real submanifold of a Sasakian space form $M^{2n+1}(c)$, c > -3, such that M has positive sectional curvature, then M is totally geodesic. Therefore, in view of Theorem 4.7, we have the following

Theorem 4.8. An n-dimensional compact minimal C-totally real submanifold of a Sasakian space form $M^{2n+1}(c)$, c > -3 with positive sectional curvature is an Einstein manifold and satisfies 4S = (n-1)(c+3)g.

The inequality (22) is the inequality (2.1) in Theorem 2.1 of [12]. The inequality (23) is the inequality (9) in Theorem 3.1 of [10]. The inequality (21) is the inequality (2.1) in Theorem 1 of [8]. Here, we find the proofs very much simplified.

5. Minimality of integral submanifolds of maximum dimension

We already know the following result [6]. If M is an n-dimensional integral submanifold of any (2m+s)-dimensional S-space form $\widetilde{M}(c)$, then the following four statements are equivalent: (i) M is totally geodesic. (ii) M is of constant curvature $\frac{1}{4}(c+3s)$. (iii) The Ricci tensor is $\frac{1}{4}(n-1)(c+3s)g$. (iv) The scalar curvature is $\frac{1}{4}n(n-1)(c+3s)$. In Theorem 5.2, we find a condition for minimality.

Now, we begin with the following

Theorem 5.1. Let M be an n-dimensional integral submanifold of a (2n + s)-dimensional S-space form $\widetilde{M}(c)$. If a unit vector of T_pM satisfies the equality case of (18), then H(p) = 0.

Proof. Choose an orthonormal basis $\{e_1,\ldots,e_n\}$ of T_pM such that e_1 satisfies the equality case of (18). Then, $\{e_{n+1},\ldots,e_{2n},e_{2n+1}=\xi_1,\ldots,e_{2n+s}=\xi_s\}$ is an orthonormal basis of $T_p^\perp M$ such that $e_{n+j}=fe_j,\ j\in\{1,\ldots,n\}$. We then have $A_{\xi_\alpha}=0$ for all $\alpha\in\{1,\ldots,s\}$ and $A_{fX}Y=A_{fY}X$ for $X,Y\in TM$. Using these two facts alongwith (7), for any $Y=\sum_{j=1}^n a_je_{n+j}+\sum_{\alpha=1}^s a_\alpha\xi_\alpha\in T_p^\perp M$, we have

$$\begin{split} \left\langle \sigma(e_1,e_1)\,,Y\right\rangle &=& a_1\, \left\langle \sigma(e_1,e_1)\,,fe_1\right\rangle \\ &+& \sum_{j=2}^n a_j\, \left\langle \sigma(e_1,e_1)\,,fe_j\right\rangle + \sum_{\alpha=1}^s a_\alpha\, \left\langle \sigma(e_1,e_1)\,,\xi_\alpha\right\rangle \\ &=& a_1\, \left\langle \sum_{j=2}^n \sigma(e_j,e_j)\,,fe_1\right\rangle + \sum_{j=2}^n a_j\, \left\langle \sigma(e_1,e_1)\,,fe_j\right\rangle + 0 \\ &=& a_1\, \sum_{j=2}^n \left\langle \sigma(e_1,e_j)\,,fe_j\right\rangle + \sum_{j=2}^n a_j\, \left\langle \sigma(e_1,e_j)\,,fe_1\right\rangle \\ &=& 0+0=0. \end{split}$$

Hence in view of (7), H(p) = 0.

The maximum Ricci curvature function ([8]) on a Riemannian manifold M, denoted $\overline{\text{Ric}}$, is defined as

$$\overline{\mathrm{Ric}}(p) = \max \left\{ \mathrm{Ric}(X) \, | \, X \in T^1_p M \right\}.$$

Now, in view of Theorem 5.1, we immediately have the following

Theorem 5.2. Let M be an n-dimensional integral submanifold of a (2n+s)-dimensional S-space form $\widetilde{M}(c)$. Then

(24)
$$\overline{\text{Ric}} \le \frac{1}{4} \left\{ n^2 \|H\|^2 + (n-1)(c+3s) \right\}.$$

If M satisfies the equality case of (24) identically, then M is a minimal submanifold and

(25)
$$\overline{\text{Ric}} = \frac{1}{4} (n-1)(c+3s).$$

When s = 0, from Theorem 5.2 we have the following

Theorem 5.3. ([8], Theorem 2) Let M be a Lagrangian submanifold of a 2n-dimensional complex space form $\widetilde{M}(c)$. Then

$$\overline{\mathrm{Ric}} \le \frac{1}{4} \left\{ n^2 \|H\|^2 + (n-1)c \right\}.$$

If M satisfies the equality case of (24) identically, then M is a minimal submanifold and

$$\overline{Ric} = \frac{1}{4} (n-1)c.$$

When s = 1, from Theorem 5.2 we have the following (Theorem 4.1 of [10] or Theorem 3.1 of [11])

Theorem 5.4. ([10], Theorem 4.1 or Theorem 3.1 of [11]) Let M be an n-dimensional C-totally real submanifold of a (2n+1)-dimensional Sasakian space form $\widetilde{M}(c)$. Then

$$\overline{\text{Ric}} \le \frac{1}{4} \left\{ n^2 ||H||^2 + (n-1)(c+3) \right\}.$$

If M satisfies the equality case of (24) identically, then M is a minimal submanifold and

$$\overline{\mathrm{Ric}} = \frac{1}{4} (n-1)(c+3).$$

Following the arguments as in [8], we can prove

Theorem 5.5. Let M be an n-dimensional minimal integral submanifold of a (2n+s)-dimensional S-space form $\widetilde{M}(c)$. Then the following statements are true.

(1) The submanifold M satisfies the equality case of (24) if and only if $\dim(\mathcal{N}_p) \geq 1$.

- (2) If dim(N_p) is a positive constant d, then N_p is completely integral distribution and M is d-ruled, that is, for each p ∈ M, M contains a d-dimensional totally geodesic submanifold M' of M(c) passing through p.
- (3) If the submanifold M is also ruled, then it satisfies the equality case of (24) identically if and only if, for each ruling M' in M, the normal bundle T[⊥]M restricted to M' is a parallel normal subbundle of the normal bundle T[⊥]M' along M'.

References

- [1] D. E. Blair, Geometry of manifolds with structural group $U(n) \times \mathcal{O}(s)$, J. Diff. Geometry 4 (1970), 155–167.
- [2] _____, On a generalization of the Hopf fibration, An. Şti. Univ. "Al. I. Cuza" Iaşi Secţ. I a Mat. (N.S.) 17 (1971), 171-177.
- [3] _____, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, 2002.
- [4] D. E. Blair, G. D. Ludden, and K. Yano, Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973), 175-184.
- [5] J. L. Cabrerizo, L. M. Fernandez, and M. Fernandez, The curvature of submanifolds of an S-space form, Acta Math. Hungar. 62 (1993), no. 3-4, 373-383.
- [6] _____, On certain anti-invariant submanifolds of an S-manifold, Portugal. Math. 50 (1993), no. 1, 103-113.
- [7] B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J. 41 (1999), no. 1, 33-41.
- [8] ______, On Ricci curvature of isotropic and Langrangian submanifolds in complex space forms, Arch. Math. (Basel) 74 (2000), no. 2, 154-160.
- [9] S. P. Hong and M. M. Tripathi, On Ricci curvature of submanifolds, Int. J. Pure Appl. Math. Sci. 2 (2005), no. 2, 227-245.
- [10] X. Liu, On Ricci curvature of C-totally real submanifolds in Sasakian space forms, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 17 (2001), no. 3, 171–177.
- [11] K. Matsumoto, I. Mihai, Ricci tensor of C-totally real submanifolds in Sasakian space forms, Nihonkai Math. J. 13 (2002), no. 2, 191–198.
- [12] I. Mihai, Ricci curvature of submanifolds in Sasakian space forms, J. Aust. Math. Soc. 72 (2002), no. 2, 247–256.
- [13] H. Nakagawa, On framed f-manifolds, Kodai Math. Sem. Rep. 18 (1966) 293-306.
- [14] D. Van Lindt, P. Verheyen, and L. Verstraelen, Minimal submanifolds in Sasakian space forms, J. Geom. 27 (1986), no. 2, 180–187.
- [15] J. Vanžura, Almost r-contact structures, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 97–115.
- [16] S. Yamaguchi, M. Kon, and T. Ikawa, C-totally real submanifolds, J. Differential Geometry 11 (1976), no. 1, 59-64.
- [17] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.

JEONG-SIK KIM
DEPARTMENT OF APPLIED MATHEMATICS
CHONNAM NATIONAL UNIVERSITY
YOSU 550-749, KOREA
E-mail address: sunchon@yosu.ac.kr

MOHIT KUMAR DWIVEDI
DEPARTMENT OF MATHEMATICS AND ASTRONOMY
LUCKNOW UNIVERSITY
LUCKNOW 226 007, INDIA

MUKUT MANI TRIPATHI
DEPARTMENT OF MATHEMATICS AND ASTRONOMY
LUCKNOW UNIVERSITY
LUCKNOW 226 007, INDIA
E-mail address: mmtripathi66@yahoo.com