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RICCI CURVATURE OF INTEGRAL SUBMANIFOLDS OF
AN S-SPACE FORM

JEONG-SIK KiM, MoHIT KUMAR DWIVEDI, AND MUKUT MANI TRIPATHI

ABSTRACT. Involving the Ricci curvature and the squared mean curva-
ture, we obtain a basic inequality for an integral submanifold of an S-
space form. By polarization, we get a basic inequality for Ricci tensor
also. Equality cases are also discussed. By giving a very simple proof we
show that if an integral submanifold of maximum dimension of an S-space
form satisfies the equality case, then it must be minimal. These results
are applied to get corresponding results for C-totally real submanifolds
of a Sasakian space form and for totally real submanifolds of a complex
space form.

1. Introduction

One of the most fundamental problems in submanifold theory is the follow-
ing: Establish simple relationships between the main extrinsic invariants and
the main intrinsic invariants of a submanifold. In [7], B.-Y. Chen established a
sharp relationship between the Ricci curvature and the squared mean curvature
for a submanifold in a Riemannian space form with arbitrary codimension. In
[8], he gave the corresponding version of this inequality for totally real sub-
manifolds in a complex space form. We find corresponding results for C-totally
real submanifolds of a Sasakian space form in [10], [11] and [12].

The concept of framed metric structure unifies the concepts of almost Her-
mitian and almost contact metric structures. In particular, an S-structure
generalizes Kaehler and Sasakian structure. In [1], D. Blair discusses principal
toroidal bundles and generalizes the Hopf fibration to give a canonical example
of an S-manifold playing the role of complex projective space in Kaehler ge-
ometry and the odd-dimensional sphere in Sasakian geometry. An S-manifold
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of constant f-sectional curvature c is called an S-space form M(c) [5], which
generalizes the complex space form and Sasakian space form.

Motivated by the result of Chen in [7], recently in [9], a general basic in-
equality involving the Riccl curvature and the squared mean curvature of a
submanifold in any Riemannian manifold is established and its several appli-
cations are presented. Using this inequality, in the present paper, we find a
basic inequality for integral submanifolds of an S-space form M (c) and apply
this to recover the already known inequalities for totally real submanifolds in
complex space forms and C-totally real submanifolds in Sasakian space forms.
The paper is organized as follows. In section 2, we recall a brief account of
Ricci curvature, k-Ricci curvature, scalar curvature in a Riemannian manifold
and basic formulas and definitions for a submanifold. Then, we recall the result
of [9] giving a general basic inequality involving the Ricci curvature and the
squared mean curvature of a submanifold in any Riemannian manifold. Sec-
tion 3 presents a brief account of framed metric manifold leading to S-space
forms. In section 4, we give a very simple way to present a basic inequality
for integral submanifolds of an S-space form M({c). Then, the already known
inequalities for totally real submanifolds in complex space forms and C-totally
real submanifolds in Sasakian space forms become direct consequences. In sec-
tion 5, we mainly prove that an integral submanifold of maximum dimension
of an S-space form M (c) satisfying the equality case becomes minimal. Then,
we derive the same conclusion for Lagrangian submanifold of a complex space
form and C-totally real submanifold of maximum dimension of a Sasakian space
form.

2. Ricci curvature of submanifolds

Let M be an n-dimensional Riemannian manifold. Let {e1,...,ex}, 2 <
k < n, be an orthonormal basis of a k-plane section Il of T,M. If k = n
then I, = T, M; and if k = 2 then II; is a plane section of T,M. For a fixed
i €{1,...,k}, a k-Ricci curvature of Iy, at e;, denoted Ricn, (e;), is defined by
(7l

k
(1) Ricnk (ez) = Z Kij,
G
where K;; is the sectional curvature of the plane section spanned by e; and
ej. An n-Ricci curvature Ricr, as(e;) is the usual Ricci curvature of e;, denoted
Ric(e;). Thus for any orthonormal basis {ey,...,e,} for T,M and for a fixed
1€ {1,...,n}, we have

n
Ricr, n(e:) = Ric(e;) = Y Kij.
J#i
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The scalar curvature 7(II)) of the k-plane section Il is given by

(2) )= Y, K.

1<i<j<k
Geometrically, 7(II;) is the scalar curvature of the image exp,(Ilx) of Il at
p under the exponential map at p. The scalar curvature 7(p) of M at p is
identical with the scalar curvature of the tangent space T,M of M at p, that
is, 7(p) = T (T, M).

Let M be an n-dimensional submanifold of an m-dimensional Riemannian
manifold M equipped with a Riemannian metric g. We use the inner product
notation {, ) for both the metrics g of M and the induced metric g on the
submanifold M. The Gauss and Weingarten formulas are given respectively by

VxY =VxY +0(X,Y) and VxN=-AyX+VEN

for all X,Y € TM and N € TL M, where 6, V and V4 are respectively the
Riemannian, induced Riemannian and induced normal connections in M, M
and the normal bundle T+ M of M respectively, and o is the second fundamen-
tal form related to the shape operator 4 by (o(X,Y),N) = (AnX,Y). The
equation of Gauss is given by

(3) R(X,Y,Z,W) = R(X,Y,Z,W)+ (a(X,W),o(Y,Z))
- <U(Xa Z)a U(Ya W))

@ all X, Y, Z, W € TM, where R and R are the Riemann curvature tensors of

M and M respectively. The curvature tensor Rt of the normal bundle of M
is defined by

RY(X,Y)N = VxVyN = VgV N - Vi N

for all X,Y € TM and N € T+ M. If R* = 0, then the normal connection V+
of M is said to be flat.
The mean curvature vector H is given by H = Ltrace(o). The submanifold

M is totally geodesic in M if ¢ = 0, and minimal if H = 0. If o(X,Y) =
g(X,Y)H for all X,Y € TM, then M is totally umbilical.
The relative null space of M at p is defined by [7]

N, ={X e T,M|o(X,Y)=0for all Y € T,M},

which is also known as the kernel of the second fundamental form at p [8].

Now, let {e1,...,en} be an orthonormal basis of the tangent space T, M and
e, belongs to an orthonormal basis {€,+1,...,en} of the normal space TZ}M .
We put

oi; = (o (ei,€;),ex) and ”‘7”2 = Z (o (ei,e5),0 (€5, €5)) .

1,9=1
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Let K;; and I?ij denote the sectional curvature of the plane section spanned
by e; and e; at p in the submanifold M and in the ambient manifold M respec-
tively. Thus, we can say that K;; and Eij are the “intrinsic” and “extrinsic”
sectional curvature of the Span{e;, e;} at p. In view of (3), we get

(4) Kij = Kij + > (ohol; = (05)?).
r=n+1
From (4) it follows that

(5) 27(p) = 27 (T,M) +n® | H|* - ||o])?,
where 7(T,M) denotes the scalar curvature of the n-plane section T,M in

the ambient manifold M. Thus, we can say that 7(p) and 7 (T,M) are the
“intrinsic” and “extrinsic” scalar curvature of the submanifold at p respectively.
We denote the set of unit vectors in T,M by T, M; thus

ToM={XeT,M| (X ,X)=1}.
Now, we recall the following result from [9].

Theorem 2.1. Let M be an n-dimensional submanifold of a Riemannian
manifold M. Then the following statements are true.
(a) For X € T)M we have

) n? —
(6) Ric(X) < T IH||? + Ricer, ary (X),

where ﬁE(TpM) (X) s the n-Ricci curvature of T,M at X € Tle with
respect to the ambient manifold M.

(b) The equality case of (6) is satisfied by X € Ty M if and only if

(7) o(X, X) = gH(p) and o(X,Y) =0

for allY € T,M such that (X,Y) =0.

(c) The equality case of (6) holds for all X € T} M if and only if either (1)
p is a totally geodesic point or (2) n = 2 and p is a totally umbilical
point.

From Theorem 2.1, we immediately have the following

Corollary 2.2. Let M be an n-dimensional submanifold of a Riemannian
manifold. For X € Tle any two of the following three statements imply the
remaining one.

(a) The mean curvature vector H(p) vanishes.

(b) The unit vector X belongs to the relative null space N,.

(c) The unit vector X satisfies the equality case of (6), namely

. 1 =
(8) Ric(X) = 2 n?*| H|[* + Riez, 1) (X).
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3. S-space forms

Let M be a (2m+ s)-dimensional framed metric manifold [17] (also known as
framed f-manifold [13] or almost r-contact metric manifold [15]) with a framed
metric structure (f,&4,7%,9), @ € {1,...,s}, that is, f is a (1,1) tensor field
defining an f-structure of rank 2m; &,...,&, are vector fields; n',...,n° are
1-forms and g is a Riemannian metric on M such that for all X Y € TM and

a,B€{1,...,s}

(9) fP=—I+1"®, 1°(Es) =03, f(&)=0, n%f=0,

(10) (fX, fY) = (X, Y) = > n*(X)n™(Y),

(11) UX,Y) = (X, fY) = -V, X), (X,&)=n"(X),

where (, ) denotes the inner product of the metric §. A framed metric structure
is an S-structure [1] if the Nijenhuis tensor of f equals —2dn*®¢, and Q = dn®
foralla € {1,...,s}.

When s = 1, a framed metric structure is an almost contact metric structure,
while an S-structure is a Sasakian structure. When s = 0, a framed metric
structure is an almost Hermitian structure, while an S-structure is a Kaehler
structure. If a framed metric structure on M is an S-structure then it is known
[1] that

(12) (VxHY =3 (fX, fY) &a + (V) F2X),

o3

(13) Véa=—f, ae{l,...,s}

The converse may also be proved. In case of Sasakian structure (that is, s = 1),
(12) implies (13). In Kaehler case (that is, s = 0), we get Vf = 0. For
s > 1, examples of S-structures are given in [1], [2] and [4]. Thus, the bundle
space of a principal toroidal bundles over a Kaehler manifold with certain
conditions is an S-manifold. Thus, a generalization of the Hopf fibration T
§?m+l _, PC™ is a canonical example of an S-manifold playing the role of
complex projective space in Kaehler geometry and the odd-dimensional sphere
in Sasakian geometry. . s

A plane section in T,M is a f-section if there exists a vector X € T,M
orthogonal to &1,...,&s such that {X, fX} span the section. The sectional
curvature of a f-section is called a f-sectional curvature. It is known that [5)
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in an S-manifold of constant f-sectional curvature ¢

(14) R(X,Y)Z
= ) " XnP2) Y - (V)P (2) X
@,

= (X F2)n* (V)& + (FY, FZ) n*(X)&p}

LUV I2) PX X 2 Y
+ S (XL F2) Y - (Y, £2) FX + 2(X, fY) £ 2}

forall X,Y,Z € TM , where R is the curvature tensor of J/\\/I:.VAn S-manifold of
constant f-sectional curvature c is called an S-space form M(c).

When s = 1, an S-space form M (c) reduces to a Sasakian space form M (c)
[3] and (14) reduces to

RX,V)Z = 023 (Y, 2) X —(X,2) Y}
X f 2 Y — (0 £2) X 2K, fY) 12

+n(X)m(2)Y —n(Y)n(2)X
+ (X, 2)n(YV)¢ = (¥, Z) n(X)¢},

where &, = € and ! = 7. When s = 0, an S-space form M (¢) becomes a
complex space form and (14) moves to

AR(X,Y)Z = c{(V,2)X —(X,2)Y
+ (X, fO) Y =Y f2) X +2(X, fY) fZ}.

4. Ricci curvature of integral submanifolds

Let M be an S-manifold equipped with an S-structure (f,£,,7%,9). A sub-
manifold M of M is an integral submanifoldif n(X) =0, =1,...,s, for every
tangent vector X. A submanifold M of M is an anti-invariant submanifold if
F(TM) C TtM. An integral submanifold is identical with an anti-invariant
submanifold normal to the structure vector fields £;,...,&s. In particular case
of s = 1, an integral submanifold M of a Sasakian manifold is a C-totally real
submanifold [16]. It is known that [6] an n-dimensional integral submanifold
M, of an S-manifold M of dimension (2n+ s), is of constant curvature s if and
only if the normal connection is flat.

First, we give the following Lemma.

Lemma 4.1. Let M be an n-dimensional integral submanifold of an S-space
form M(c). Let {e1,...,en} be an orthonormal basis of the tangent space T, M.
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Then

(15) I?ij = i (c+ 3s),

(16) Ric(r, i (e:) = 7 (n— 1)(c +3s),
(17) (T, M) = -;- n(n — 1)(c + 3s).

Proof. Equation (15) follows from (14). Using ITE(TP My (es) = Z;;i I?ij in

(15), we get (16). Next, using 27 (I,M) = Z?zlﬁiE(TpM) (e;), from (16) we

get (17). O
Now, we have the following Theorem.

Theorem 4.2. If M is an n-dimensional integral submanifold of an S-space
form M (c), then the following statemenis are true.

(a) For X € T!M, it follows that
(18) Ric(X) < % [R2|H|? + (n - 1)(c+35)} .

(b) The equality case of (18) is satisfied by X € Tle if and only if (7) is
true. If H(p) = 0, X € T, M satisfies equality in (18) if and only if
X eN,.

(c) The equality case of (18) holds for all X € TI}M if and only if either p
is a totally geodesic point or n = 2 and p is a totally umbilical point.

Proof. Using (16) in (6), we find the inequality (18). Rest of the proof is
straightforward. g

By polarization, from Theorem 4.2, we derive

Theorem 4.3. Let M be an n-dimensional integral submanifold of an S-space
form M(c). Then the Ricci tensor S satisfies

(19) S < 7 {rIHI + (= 1)(c+35)} g,

where g is the induced Riemannian metric on M. The equality case of (19) is
true if and only if either M is a totally geodesic submanifold or M is a totally
umbilical surface.

When s = 0, we have the following two results.

Theorem 4.4. If M is an n-dimensional totally real submanifold (or isotropic

submanifold) of a complex space form M (c), then the following statements are
true.



402 JEONG-SIK KIM, MOHIT KUMAR DWIVEDI, AND MUKUT MANI TRIPATHI
(a) It follows that
. 1
(20) Ric(X) < 1 {nQHHH2 +(n—1)c}, Xe TI}M.

(b) The equality case of (20) is satisfied by X € TI}M if and only if (7) is
true. If H(p) = 0, X € Ty M satisfies equality in (20) if and only if
XeN,.

(c) The equality case of (20) holds for all X € T, M if and only if either p
18 a totally geodesic point or n =2 and p is a totally umbilical point.

Theorem 4.5. If M is an n-dimensional totally real submanifold (or isotropic
submanifold) of a complex space form M(c), then the following statements are
true.

(a) It follows that
(21) S < i{n2||H||2+(n—1)c}g.

(b) The equality case of (21) holds identically if and only if either M 1is
totally geodesic submanifold or M is a totally umbilical surface.

For s = 1, we again have the following two results.

Theorem 4.6. If M is an n-dimensional C-totally real submanifold of a
Sasakian space form M(c), then the following statements are true.

(a) It follows that
(22) Ric(X) < i (R2|H|?+ (n—-1)(c+3)}, XeTM

(b) The equality case of (22) s satisfied by X € Ty M if and only if (7) is
true. If Hp) =0, X € Tle satisfies equality in (22) if and only if
X eN,.

(c) The equality case of (22) holds for all X € Tle if and only if either p
s a totally geodesic point or n = 2 and p is a totally umbilical point.

(d) The equality case of (23) holds identically if and only if either M is
totally geodesic submanifold or M 1is a totally umbilical surface.

Theorem 4.7. If M _is an n-dimensional C-totally real submanifold of a
Sasakian space form M(c), then the following statements are true.

(a) It follows that

(23) S < {n2||H||2+(n—1)(c+3)}g.

P

(b) The equality case of (23) holds identically if and only if either M is
totally geodesic submanifold or M is a totally umbilical surface.
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It is known that (Theorem 4, [14]) if M is an n-dimensional compact minimal
C-totally real submanifold of a Sasakian space form M?"*1(c), ¢ > —3, such
that M has positive sectional curvature, then M is totally geodesic. Therefore,
in view of Theorem 4.7, we have the following

Theorem 4.8. An n-dimensional compact minimal C-totally real submanifold
of a Sasakian space form M*"t1(c), ¢ > —3 with positive sectional curvature
is an Einstein manifold and satisfies 4S5 = (n — 1)(c + 3)g.

The inequality (22) is the inequality (2.1) in Theorem 2.1 of {12]. The
inequality (23) is the inequality (9) in Theorem 3.1 of [10]. The inequality (21)
is the inequality (2.1) in Theorem 1 of [8]. Here, we find the proofs very much
simplified.

5. Minimality of integral submanifolds of maximum dimension

We already know the following result [6]. If M is an n-dimensional integral
submanifold of any (2m+ s)-dimensional S-space form M(c), then the following
four statements are equivalent: (i) M is totally geodesic. (ii) M is of constant
curvature 1 (c + 3s). (iii) The Ricci tensor is § (n — 1)(c + 3s)g. (iv) The
scalar curvature is § n(n — 1)(c + 3s). In Theorem 5.2, we find a condition for
minimality.

Now, we begin with the following
Theorem 5.1. Let M be an n-dimensional integral submanifold of a (2n+ s)-
dimensional S-space form M (c). If a unit vector of T,M satisfies the equality
case of (18), then H(p) = 0.

Proof. Choose an orthonormal basis {ey,...,e,} of T,M such that e; satisfies
the equality case of (18). Then, {ent1,.-.,€2n,€2n+1 =&1,...,€2n4+s = €} i
an orthonormal basis of TI,LM such that e,y; = fe;, 7 € {1,...,n}. We then
have A¢, =0forallw € {1,...,s} and ApxY = Apy X for X,Y € TM. Using
these two facts alongwith (7), for any Y = 37, ajeny;+ >0 1 aabe € Ty M,
we have

(U(el»el) aY> = a <0(61761) ,f€1>
+ Y aj(oler,er), fe;) + > aa{oler,e1),éa)
7j=2 a=1
= a <Z (e, e;) ,fe1> + Y a;(o(er,e1), fe;) +0
=2 =2

= a1y _(oler,e5), fes) + ) a;(oler,e)), fer)
i=2 =2

= 04+0=0.
Hence in view of (7), H(p) = 0. d
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The maximum Ricci curvature function ([8]) on a Riemannian manifold M,
denoted Ric, is defined as

Ric(p) = max {Ric(X) | X € TyM}.

Now, in view of Theorem 5.1, we immediately have the following
Theorem 5.2. Let M be an n-dimensional integral submanifold of a (2n+ s)-
dimensional S-space form M(c). Then

=— 1
(24) Ric < § {R2IHIP + (0~ 1)(c +35)}
If M satisfies the equality case of (24) identically, then M is a minimal sub-
manifold and
= 1
(25) Ric = 1 {n—1){c+ 3s).
When s =0, from Theorem 5.2 we have the following

Theorem 5.3. ([8], Theorem 2) Let M be a Lagrangian submanifold of a 2n-
dimensional complex space form M(c). Then

=— 1
Ric < 1 {n®|H|?> + (n = 1)c}.
If M satisfies the equality case of (24) identically, then M is a minimal sub-
manifold and
Ric = i (n— 1.

When s = 1, from Theorem 5.2 we have the following (Theorem 4.1 of [10]
or Theorem 3.1 of [11])

Theorem 5.4. ([10], Theorem 4.1 or Theorem 3.1 of [11]) Let M be an n-
dimensional C-totally real submanifold of a (2n+1)-dimensional Sasakian space
form M(c). Then '

— 1
Ric < 1 {2 H|?> + (n—1)(c+3)}.
If M satisfies the equality case of (24) identically, then M is a minimal sub-

manifold and

— 1
Ric = 1 {n—1)(c+3).
Following the arguments as in [8], we can prove

Theorem 5.5. Let M be an n-dimensional minimal integral submanifold of a
(2n + s)-dimensional S-space form M(c) Then the following statements are
true.
(1) The submanifold M satisfies the equality case of (24) if and only if
dim(N,) > 1.
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(2) If dim(N,) is a positive constant d, then N, is completely integral dis-
tribution and M s d-ruled, that is, for each p € M, M contains a d-
dimensional totally geodesic submanifold M’ of M(c) passing through

p.

(8) If the submanifold M is also ruled, then it satisfies the equality case
of (24) identically if and only if, for each ruling M’ in M, the normal
bundle T+M restricted to M’ is a parallel normal subbundle of the
normal bundle T+-M' along M'.
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