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SOME WARPED PRODUCT SUBMANIFOLDS OF A
KENMOTSU MANIFOLD

VIQAR AZAM KHAN AND MOHAMMAD SHUAIB

ABSTRACT. Many differential geometric properties of a submanifold of a
Kaehler manifold are conceived via canonical structure tensors 7" and F'
on the submanifold. For instance, a C' R-submanifold of a Kaehler mani-
fold is a C'R-product if and only if T is parallel on the submanifold (c.f.
[2]). Warped product submanifolds are generalized version of C R-product
submanifolds. Therefore, it is natural to see how the non-triviality of the
covariant derivatives of T' and F' gives rise to warped product subman-
ifolds. In the present article, we have worked out characterizations in
terms of 7" and F' under which a contact C' R- submanifold of a Kenmotsu
manifold reduces to a warped product submanifold.

1. Introduction

On a submanifold M of an almost Hermitian manifold (M, J,g), for any
vector field U on M, JU decomposes into tangential and normal parts respec-
tively as JU = TU + FU. This defines a one-one tensor field 7' and a normal
valued one-form F' on M. B. Y. Chen while investigating C'R-submanifolds
of a Kaehler manifold, described many extrinsic geometric properties of the
submanifold in terms of the tensor fields T' and F'. For instance, “a C'R- sub-
manifold M of a Kaehler manifold is a C R-product if and only if T is parallel
on M” (cf. [2]). More generally, “T is parallel on a submanifold M of a Kaehler
manifold if and only if M is a Riemannian product Ny X Ny X - -+ X Ni, where
each IV; is either a Kaehler submanifold, a totally real submanifold or a Kaehle-
rian slant submanifold” (cf. [3]). Similar conditions are available in terms of
the one-form F' as well. Warped product manifolds are not only a generalized
version of Riemannian product of two manifolds but also provide an excellent
setting to model space-time near black holes and bodies with high gravita-
tional fields (cf. [7]). Thus, as a step forward, V. A. Khan et al. [9] worked
out characterizations involving VT and VF under which a C'R-submanifold of
a Kaehler manifold reduces to a warped product submanifold. On the other
hand, I. Hesigawa and I. Mihai [5] as well as by M. I. Munteanu [11] worked
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out necessary and sufficient conditions involving the shape operator of the im-
mersion of a contact C'R-submanifold into a Sasakian manifold under which
the submanifold is a warped product submanifold.

We have sought in the present article, characterizations that could turn a
contact C'R-submanifold of a Kenmotsu manifold to a warped product subman-
ifold. This is interesting because Kenmotsu manifolds are themselves warped
product manifolds. To this end we realized that if the structure vector field £ is
tangential to a proper contact C'R-submanifold, the structure tensor T' can not
be parallel on M. This paves way to investigate how the non-triviality of the
covariant derivatives of T"and F' on M yield a warped product submanifold. In
fact we have worked out formulas involving VT and VF which turn a contact
C R-submanifold of a Kenmotsu manifold, a warped product submanifold. To
achieve the object, we have obtained some initial results on the contact C'R-
submanifold of a Kenmotsu manifold in Section 3. These results are used in
obtaining the said characterizations in Sections 4 and 5.

2. Preliminaries

Let M be a (2n+1) dimensional almost contact manifold with almost contact
structures (¢, &,n), where ¢ is a (1,1) tensor field, £ a vector field and 7, a 1-
form satisfying
On an almost contact manifold there exists a Riemannian metric g which is
compatible with the contact structures (¢, £, n) in the sense that

(1) 9(0U, V) = g(U,V) = n(U)n(V)
for any U € TM. One can deduce from the above that

(2) n(U) = g(U, ).
In this case the Riemannian manifold (M, g) is called an almost contact metric
manifold. B
If V is the Levi-Civita connection on M, then we have
(3) (Vup)V = VyoV — ¢V V.

Almost contact metric structures (¢,€,7,g) are said to define a Kenmotsu
structure on M if the following characterizing tensorial equation is satisfied

(cf. 8])

(4) (Vuo)V = g(¢U,V)E —n(V)pU.
One can deduce from the above relations that
(5) Vué=U—nU).

It is also known that Kenmotsu manifolds are warped product manifolds of the
type L x ¢ F, where L is a line and F' is a Kaehler manifold.

Let M be a submanifold of an almost contact metric manifold M with TM
and T+ M as the tangent and normal bundles on M, respectively. If V and V+
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are the induced Riemannian connections on 7'M and T+M, then Gauss and
Weingarten formulae are written as:

(6) VoV =VuV +h(U,V),

(7) VuN = —AxU + VEN,

for any U,V € TM and N € T+M. Ay and h, respectively, denote the shape
operator (corresponding to the normal vector field N ) and the second funda-
mental form of the immersion of M into M. The two are related as

(8) 9(ANU, V) = g(h(U,V)), N),

where g denotes the Riemannian metric on M as well as the induced metric on
M.
For any U € T M, we write

(9) TU = tan(¢U) and FU = nor(oU).
Similarly, for N € T+ M, we write
(10) tN = tan(¢N) and fN = nor(¢N),

where ‘tan’ and ‘nor’ are the natural projections associated with the direct
decomposition:
T,M=T,M&T;M, x€ M.

The tensor fields on M determined by the endomorphism 7" and the normal
valued 1-form F' are denoted by the same letters 7" and F', respectively. Simi-
larly, ¢ and f are tangential and normal valued (1,1)-tensor fields on the normal
bundle of M. The covariant differentiations of the tensor fields P, F, t and f
are defined, respectively, as:

(11) (VuT)V =VyTV —TVyV,
(12) (VuF)V =V§FV — FVyV,
(13) (Vut)N = VytN — tV§N,

(

14) (Vuf)N =V fN — fVEN.

Let M be a submanifold tangent to the structure vector field £ isometrically
immersed into an almost contact metric manifold M. Then M is called a con-
tact C' R-submanifold if it is endowed with the pair of orthogonal distributions
D and D™ satisfying

(i) TM = D @® D+ @ (¢), where (¢) is the one dimensional distribution
spanned by structure field &,

(ii) the distribution D is invariant by ¢, i.e., D, = D, for each x € M,

(iii) the distribution D+ is anti-invariant, i.e., pD;- C T;- M for each = € M.

A contact C' R-submanifold is proper, if neither D nor D+ is trivial. A sub-
manifold of an almost contact metric manifold is called a contact C R-product
if it is locally a Riemannian product of a ¢-invariant submanifold Mr and a
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¢-anti-invariant submanifold M of M (cf. [15]). Hence, every C R-product
is a C'R-submanifold but the converse is not true in general. However, if the
two distributions on a C' R-submanifold are parallel then the submanifold is a
contact C'R-product.

The notion of warped product (or more generally warped bundle) was intro-
duced by R. L. Bishop and B. O’Neill [1] in order to construct a large variety
of manifolds of negative curvature and are a generalized version of Riemannian
product of two manifolds. We recall in the following paragraphs the notion of
warped product manifolds.

Let (My,g1) and (Ma, g2) be two Riemannian manifolds with Riemannian
metrics g; and go respectively and f be a positive differentiable function on
M. Then the warped product My Xy My is the manifold M; x My endowed
with Riemannian metric g given by

(15) g=m1(g1) + (f om)?m5(g2),

where m; (i = 1,2) are the projection maps of M onto M; and Ma, respectively.
The function f in this case, is known as the warping function (cf. [1]). If
the warping function f is just a constant, the warped product is simply a
Riemannian product, known as a trivial warped product. More generally, a
trivial warped product is a Riemannian product M; x M2f where M2f is the
manifold with Riemannian metric f2go which is homothetic to the metric go of
Ms.

A warped product manifold isometrically immersed into a Riemannian man-
ifold is known as warped product submanifold.

Bishop and O’Neill obtained many interesting geometric properties of a
warped product manifold. We enlist in the following some of the observations
and formulas relevant to our study.

Theorem 2.1 ([1]). Let M = My xy My be a warped product manifold. If
X, Y e TMy and Z,W € T M>, then

(i) VxY € TMy,

(i) VxZ =VzX =(Xf/f)Z,

(i) nor(V,W) = —(9(Z,W)/ )V 1,
where nor(V zW) denotes the component of VzW in TMy and Vf is the gra-
dient of f defined as

(16) g(Vf,U)=Uf
for any U € TM.
A couple of important consequences of the above theorem can be stated as:

Corollary 2.2. On a warped product manifold M = My x5 Ma,
(i) My is totally geodesic in M.
(ii) Ma is totally umbilical in M.
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3. Contact C R-submanifolds of a Kenmotsu manifold

Throughout, we assume that M is a Kenmotsu manifold and M, a contact
C R-submanifold of M. Thus, the tangent bundle T M and the normal bundle
T+(M) of M admit the following direct decompositions

TM =D @ D+ @ (¢),

and,
T+(M) = ¢D+ @,
where v is the orthogonal complement of ¢ D+ in T (M) and is invariant under
¢. Tt is also easy to observe that for any N € T+M, tN € D+ and fN € v.
Further, for any U € TM, TU € D and FU € ¢D*.
Now, in view of the decomposition of the tangent bundle, for any U € T M,
we may write

(17) U = BU +CU + (U,

where BU € D and CU € D*. Following are some easy observations:

(18) T?U = —-U +n(U)¢,

(19) TBU = TU, FCU = FU,

(20) tFU = —CU, FBU = 0,TCU = 0.

As £ is assumed to be tangential to the submanifold, by (5) and (6),

(21) (a) Vu&=U —nU), (b) h(U,§) =0

for each U € TM. Further, as an immediate consequence of (21)(b), we have
(22) Appé = 0.

Since our aim is to study contact C R-submanifolds as warped product sub-
manifolds, we need to ensure the existence of ¢-invariant and ¢-anti-invariant
factors of the submanifolds. To this end, we have:

Lemma 3.1. Let M be a contact CR-submanifold of a Kenmotsu manifold M.
Then
AgwZ = Apz W

for each Z,W € D*.
Proof. For each U € TM and Z € D=, it follows from (4) that (Vy¢)Z = 0,
Therefore, by (3), Vy¢pZ = ¢VyZ, which on using Gauss and Weingarten
formulae yields

9(Aew Z,U) = g(Apz W, U)
for each U € TM and Z,W € D=+. This proves the assertion. [

Theorem 3.2. The ¢-anti-invariant distributions D+ and D+ & (€) on a con-
tact C R-submanifold of a Kenmotsu manifold are involutive.
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Proof. For Z,W € D+ and U € TM,
9(T(Z, W], U) = g(6|2,W],U) = g(¢VzW — ¢Vw Z,U).
On using (3) and (4), the above equation takes the form
9(T(2,W],U) = g(Vz¢W — Vw¢Z,U),
which on applying Weingarten formula reduces to
g(T[Z,W],U) = g(ApzW — Agw Z,U).

The right hand side of the above vanishes by virtue of Lemma (3.1) implying
that [Z,W] € D*. This proves that D is involutive. Further, as [Z,¢] €
D+ @ (¢) for any Z € D+, D+ @ (¢) is involutive.

Now, on using (4) and (6), it is easy to prove that

9(ApzW, X) = g(Vw Z, $X)
for each X € D@ (¢) and Z,W € D+. O
From the above observation we may deduce that:

Theorem 3.3. A necessary and sufficient condition for a ¢-anti-invariant
submanifold M, to be totally geodesic in M 1is that

(23) 9(h(X, Z),¢D+) =0
for each X € D@ (£) and Z € D+,
With regard to the ¢-invariant distribution, it is known that:

Theorem 3.4 ([10]). Let M be a contact CR-submanifold of a Kenmotsu
manifold. Then the ¢-invariant distributions D and D ® {£} are involutive if
and only if

(24) g(WTX,Y), FZ) = g(h(X,TY),FZ)
for XY € D and Z € D*.

B. Y. Chen [2], proved that a C' R-submanifold M of a Kaehler manifold M is
a C'R-product if and only if the structure tensor 7 is parallel on M. Extending
the result to the contact setting, M. I. Munteanu [11] obtained the following;:

Theorem 3.5 ([11]). Let M be a contact C R-submanifold of a Sasakian man-
ifold, with € € D. Then M is a contact CR-product if and only if T satisfies:

(VuT)V = —g(BU, V)¢ +n(V)BU
for allU,V € TM.

Now, for a submanifold M of a Kenmotsu manifold M, on making use of
equations (3)-(13), we obtain

(25) (VuT)V = ApyU + th(U,V) — n(V)TU — g(U, TV,
(26) (VuF)V = fh(U,V) — h(U,TV) — n(V)FU.

It is easy to deduce from the above formulas that:
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Lemma 3.6. On a contact CR-submanifold M of a Kenmotsu manifold M,
(27) (a) (VeT)U =0,  (b) (VuT)é=-TU,

(28) (c) (VeF)U =0, (d) (VuF)¢ = -FU
for eachU € TM.

Theorem 3.7. On a contact proper C' R-submanifold of a Kenmotsu manifold

M, T can not be parallel.

Proof. Suppose VT = 0 on a contact C' R-submanifold M of a Kenmotsu man-
ifold then by formula (25),

th(X,Y) = g(X,TY)¢ +n(Y)TX
for each X,Y € D @ (¢). Since th(X,Y) € D, it follows from the above
equation and the orthogonality of the distributions in 7'M, that th(X,Y) =0,
and
g(X, TY)E = —n(Y)T'X,

which means D = () and is therefore parallel. That shows, each leaf My of
D (the integral curve of &) is totally geodesic in M. Moreover, as equation
(23) is automatically satisfied in this case, each leaf M, of D+ is also totally
geodesic in M. Hence, under the parallelism of T, M is a contact C' R-product
between an integral curve of £ and a ¢-anti-invariant submanifold M, of M.
This proves the Theorem. ([

4. Contact C R-warped product submanifolds of a Kenmotsu
manifold

B.Y. Chen [4] initiated the study of warped product manifolds with extrinsic
geometric point of view by exploring C'R-submanifolds of Kaehler manifolds as
warped products. -

Let M7 and M5 be submanifolds of a Kenmotsu manifold M such that a
warped product manifold M = M; Xy My admit an isometric immersion into
M with & tangential to M. Then for any Uy, V) € TM;,Us, Vo € T Ms, by part
(ii) of Theorem 2.1,

(29) VUl U2 = (Ul In f)UQ,

whereas by part (iii) of Theorem 2.1, we have

(30) nor(Vy,V2) = —g(Uz, V2)Vin f.

If ¢ and &, are the components of ¢ along M; and Ma, respectively, then
(31) Vyé =Vyé& +Vuée

for any U € TM. Now, by (21)(a), Vi, & = Uy — n(U1)€ which on making use
of (29) and (31) gives

(32) Vu, &1+ (Uiln f)éo = U — n(Ur)é1 — n(Ur)&e.
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On comparing components tangential to M; in (32) while taking account of
the fact that Vy, & € T M, we get

(33) Vo, &1 = U —n(Ur)é,
whereas on equating components tangential to My, we get
(Urln )& = —n(U1)é&.
If & # 0, then on using (2) and (16), the above equation yields
(34) Vinf=-&.

Similarly, for Uy € T Ms, applying (29), (30), (31) on the equation Vy,§ =
Us — n(Us2)¢ and comparing components tangential to My and My, we obtain

(35) n(U2)VIn f = n(Usz)&1,
and,
(36) tan(Vy,§2) = (1 — & In f)Us — n(Us2)8a,

where tan denotes the component of the underlying vector field along Ms.
If & = 0, then from (36), we have,

(En f)Us = Us.

That means, in this case if M5 is non trivial, then VIn f = £, that is f(¢) = €,
where £ = %.
On the other hand if £ # 0, then by (35), we have

(37) & =Vinf.
Hence, in case of &3 # 0, it follows from (34) and (37) that
Vinf=0.

That shows that if £ has non-zero component along M, then the warped prod-
uct M is trivial, that is, in this case M is simply a Riemannian product of M;
and M. To summarize the above observations, we state:

Theorem 4.1. Let M = My Xy My be a warped product submanifold of a
Kenmotsu manifold M such that the structure vector field € is tangential to
the submanifold M. If & has non-trivial component along the second factor
My of M, then M is a Riemannian product of My and My (i.e., a trivial
warped product). That means there does not exist a non-trivial warped product
submanifold in a Kenmotsu manifold such that & is tangential to the second
factor of M. However, non-trivial warped product submanifolds My Xy Mo do
exist in a Kenmotsu manifold if £ is tangential to the first factor of M. In this

case, the warping function f is given by f(t) = et, where £ = %.

Since T' can not be parallel on a contact C'R-submanifold M of a Kenmotsu
manifold M (cf. Theorem 3.7), one can look for characterizations in term of
VT and VF under which a contact C'R-submanifold of M is a CR-warped
product and in particular a C R-product. This is a relevant problem in view
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of the fact that along the years there has been interests to find an analogous
of classical de Rham theorem to warped products. The following theorem was
proved by Hiepko [6] that we will be using to give a characterization of warped
product submanifolds.

Theorem 4.2. Let F be a vector sub bundle in the tangent bundle of a Rie-
mannian manifold M and let F- be its normal bundle. Assume that the two
distributions are both involutive and the integral manifold of F (resp.F'*) are
extrinsic spheres (resp. totally geodesic). Then M is locally isometric to a
warped product My X ¢ Ma. Moreover, if M is simply connected and complete
there exists a global isometry of M with a warped product.

If the two factors of a warped product submanifold are ¢-invariant and ¢
anti-invariant submanifolds, then there are two possible warped product sub-
manifolds namely (i) My x5 M, and (ii) M| xy My, where My and M, are
¢-invariant and ¢-anti-invariant submanifolds respectively of a Kenmotsu man-
ifold M. The structure vector field ¢ in the two cases remains tangential to
My and M, respectively. The warped product submanifolds of type (i) are
called as C'R-warped product submanifold whereas warped product submani-
folds of type (ii) are known as warped product C R-submanifolds. These warped
product submanifolds reduce to C' R-products if the warping function f is a
constant function.

Throughout, we will be denoting the by X,Y,..., etc., the vector fields
belonging to ¢-invariant distribution and by Z, W, ..., etc., the vector fields
belonging to the ¢-anti-invariant distribution. With these convention, on a
C R-warped product submanifold of a Kenmotsu manifold, by (29), we have

(38) VxZ=VzX=(Xhf)Z

As an immediate consequence of (38), (11) and the fact that TZ = 0, we may
obtain

(39) (VxT)Z =0,
and,
(40) (VzT)X = (TX1In f)Z.

More generally, we prove:

Lemma 4.3. Let M be a contact CR-warped product submanifold of a Ken-
motsu manifold. Then

() (VuT)X = (TX In f)CU — n(X)TU + g(TU, X)§,

(i) (VuT)Z = g(CU, Z)TV In f,

(iii) (Vg F)X = —(XIn f)FCU,

(iv) (VuF)Z = fh(U,Z) for each U € TM,X € TMr and Z € TM, .

Proof. By formula (11) and the fact that Mr is totally geodesic in M, it follows
that (VyT)X lies on My, whereas th(X,Y) lies on M. Taking account of
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these observations while comparing the components tangential to M and My
respectively in formula (25), we find that A(X,Y) € v and
(VyT)X = g(X,TY )¢ — n(X)TY.
Further, on using (40) and (27)(a) we get
(VzT)X =(TXInf)Z,
and,
(VeT)X = 0.
Combining the above observations while making use of (17), we get:
(VuT)X = —n(X)TBU + (TX In f)CU + g(TBU, X)¢.

This proves statement (i).
Now, by (17), we may write

(VuT)Z = (VeuT)Z + (VNevT)Z +n(U)(VeT) Z.

The first and the last term of the above equation are zero by (39) and (27)(a)
respectively whereas by (11) and (30), (VeuT)Z = g(CU, Z)TV In f. Taking
account of these observations in the above equation, we get:

(41) (VuT)Z = g(CU, Z)TV In f.

This proves statement (ii) of the lemma.
Now, by (17), we may write

(VuF)X = (VeuF)X + (Vou F)X +n(U)(VeF)X.

The first term in the right hand side of the above equation is zero by virtue
of (12) and the fact that My is totally geodesic on M whereas the last term
vanishes by virtue of Lemma (3.6)(c). Thus by applying (12) on the middle
term, the equation takes the form:

(VuF)X = —FVeuX,
which on making use of (29) establishes part (iii) of the lemma.
Since, TZ = 0 = n(Z), equation(27) yields part(iv) of the lemma. O
Now, we may prove:

Theorem 4.4. A contact CR-submanifold M of a Kenmotsu manifold M, is
locally isometric to a C'R-warped product if and only if

(42)  (VuT)V = g(TU, V)¢ + TV (u)CU + g(CU,CV)T (V) —n(V)TU

for any U,V € TM where p is a C*-function on M such that Zu = 0 for all
Z e D*.
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Proof. Let M be a contact CR-warped product submanifold of M. Then by
(17) and (27)(b), we may write

(43) (VuT)V = (VuT)BV + (VyT)CV —n(V)TU.
On applying Lemma 4.3 the above equation takes the form

(VuT)V = g(TU, BV)¢ +TV(In f)CU + g(CU,CV)T(Vn f) — n(V)TU.
As TU € D, the first term in the right hand side of the above equation is same
as g(TU, V). This verifies (42). B

Conversely suppose that M is contact C'R-submanifold of M such that equa-
tion (42) is satisfied on M with p a C°°- function on M. Then choosing

X,Y € D@ (£), and taking account of the fact that CX = CY = 0, equation
(42) yields that

9(VxT)Y,2) = g(VxTY, Z) =0
for each Z € D*. This proves that D @ (¢) is parallel. In other words D & (£)

is integrable and each of its leaves My is totally geodesic in M. It is also
straightforward to see from equation (42) that

(VzD)X = (TXp)Z.
Taking product with W € D+ in both sides of the above equation while using
(11) and (16), we get
g(VzWTX) = —g(TX,Vu)g(Z,W).
Since, D™ is involutive by Theorem 3.2, denoting the second fundamental form

of the immersion of M, (a leaf of D+) into M by h* and using the Gauss
formula on the above equation, we get

9((h*(Z, W), TX) = —g(TX, Vin)g(Z,W).
This implies that
hH(Z, W) = —g(Z, W)V .
That means M is totally umbilical in M with Vu as the mean curvature with
respect to the immersion of M, into M. Further, Vp is parallel as Zu = o.
That is, the leaves of D' are extrinsic spheres in M. Hence, by virtue of

Theorem 4.2, M is locally isometric to a C'R-warped product submanifold
MT Xen MJ_. O

As an immediate consequence of the above theorem, we deduce the following
characterization for a contact C'R-submanifold to be a contact C' R-product.

Corollary 4.5. Let M be a contact CR-submanifold of a Kenmotsu manifold
with € € D. Then M is a contact C'R-product if and only if

(VuT)V = g(TU, V)¢ —n(V)TU.
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The above result can be treated as an analogue of Theorem 3.5 in the setting
of contact C'R- submanifold of a Kenmotsu manifold.
Now, by (25), we have

(44) ApzX = (VxT)Z — th(X, Z)
for any X € D @ (£), and Z € D*. Moreover, we also observe from (25) that
(45) th(X,Z) = (VzT)X.
Substituting the value of th(X,Y) from (45) into (44), we get

ApzX = (VxT)Z — (V2T)X.
By applying (42) in the last equation, we obtain

ApzX = —(¢XIn f)Z.

Now, as the condition (42) is necessary and sufficient, we conclude:

Corollary 4.6. Let M be a contact CR-submanifold of a Kenmotsu manifold
M with non-trivial distributions D and D*. Then M is locally a contact CR-
warped product submanifold if and only if

(46) AgzX = —(6Xu)Z, X € D@ (€) and Z € D*.
In particular, we have:

Corollary 4.7. A contact CR-submanifold of a Kenmotsu manifold is a con-
tact CR-product if and only if

A¢ZX:0
for each X € D@ (£) and Z € D+,

The above result can be treated as an extension of the characterization
obtained by B. Y. Chen [2] in the setting of C'R-submanifolds of a Kaehler
manifold, whereas (46) is an extension of Chen’s characterization for a CR-
submanifold of a Kaehler manifold to be CR-warped product submanifold

(ct. [4]).

In terms of the canonical structure F', we have:

Theorem 4.8. A contact CR-submanifold of a Kenmotsu manifold M is lo-
cally isometric to a C R-warped product if and only if

(47) (VuF)V = fh(U,CV) — (BV (1) + (V) FU

for any U,V € TM where p is a C*°-function on M such that Zu = 0 for each
Z € D*.

Proof. On using (17) and (28), (Vy F)V is expressed as
(48) (VuF)V = (VuF)BV + (VyF)CV + (V) (Vy F)E.
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If M = My xy M, is a contact C'R-warped product submanifold of M, then
applying on Lemmas 4.3 and 3.6, the last equation reduces to

(VuF)V = —(BVIn f)FCU + fh(U,CV) —n(V)FU.
Now, as FCU = FU, we obtain
(VuF)V = fh(U,CV) — ((BV In f) +n(V))FU.

This verifies (47).
Conversely suppose that (47) holds on a contact C'R-submanifold of a Ken-
motsu manifold M. Then for X,Y € D & (§) formula (47) gives
(VxF)Y =0,

which, on applying (12) implies that VxY € D & (£). This shows that D & (£)
is involutive and its leaves are totally geodesic in M. Again for Z € D+ and
X e D& (€), by (47)
(VzF)X = -BX(WFZ —n(X)FZ.
Taking product with W in both side of the above equation, we get
9(VzW, X) = =(BX (n) +1(X))g(Z, W)
or,
9(VzW,X) = —[g(Vp, BX) +n(X)]g(Z, W)
= —9(X,§ = (V)& + Vu)g(Z, W)
Since p is a function on M with Zu = 0 for each Z € D+, we have C(Vpu) = 0.
Now, it follows from the above that
nor(VzW) = —g(Z,W)Vpu.
If A+ be the second fundamental form of M, in M, then it follows from the
above that
W (2, W) = —g(Z,W)Vp.
This shows that M is totally umbilical in M with Vi as the mean curvature
vector with respect to the immersion of M into M. Further Vyu is parallel
as Zu =0, V Z € D*. That is, the leaves of D' are extrinsic spheres in M.

Hence, M is locally isometric to a C' R-warped product by virtue of Theorem
4.2. O

Example 4.9. Let R*"™! = C" x R be the (2n + 1)-dimensional Euclidean
space endowed with the almost contact metric structure (¢, &, 7, g) defined by

ot x? . 2a? ) = (2" =2 =2t 2™, 0),

£= n = eldt, andg:th(,>,

0
t_
‘o
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where (z!,2%,... 22" t) are Cartesian co-ordinates and (,) is the Euclidean

metric on R2"*1. Then (¢,£,7,9) is a trans-Sasakian structure on R?"+1 (cf.
[13]).
Consider the immersion z as
z(ut,u? v ut t) = (u',0,u3,0,u? 0,0, ut, t)

of a 5-dimensional manifold M into (R?, ¢,€,m,g) and choose a frame {ey, ez,
es, €4, e5} of orthogonal vector fields on M as

_ 0 0 _0 __9 79
AT T e T 95 BT a8 T B
o 0
64:@765:§:§-

If we define the distributions D = span{e, ea, e5} and D+ = span{es, e4}, then
D and D+ are, respectively, ¢-invariant and ¢-anti-invariant distributions on
M, giving a CR-warped product submanifold My x. M, of M, where My
and M denote the leaves of D and D=, respectively.

5. Warped product contact C R-submanifolds of a Kenmotsu
manifold

Throughout this section, we assume that M = M, x y Mr is a warped prod-
uct contact proper C' R-submanifold isometrically immersed into a Kenmotsu
manifold M with structure vector field tangential to M, where M| and Mr
are respectively ¢-anti-invariant and ¢-invariant submanifolds of M. In this
setting, formula (29) can be written as:

(49) VxZ=VzX=(ZInf)X

for each X € TMp and Z € TM, . As an immediate consequence of (49) and
(11), we have

(50) (VzT)X =0,

(51) (VxT)Z =—(ZIn f)TX.

As M is totally geodesic in M, TV zW = 0 for each Z, W € D*. Therefore
by (11),

(52) (VzT)W = 0.
Now, for Z = &, equation (51) becomes
(VxT)§ = —(Eln f)TX.
On the other hand, by (25),
(VxT)¢=-TX.
The last two relations imply that
(53) Elnf=1.
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More generally, we prove:

Theorem 5.1. If M = M, Xy Mr is a warped product submanifold of a
Kenmotsu manifold M with structure vector field tangential to M, , then the
warping function [ satisfies

Vinf=¢.
Proof. By (25), we have
(VxT)Z = Apz X +th(X,Z) —n(Z)TX

for each X € TMyp and Z € TM,. On using (51) in the left hand side of
the above equation and taking product with Y € T'"Mr in both the sides, the
equation reduces to

(54) (ZInf —n(Z)g(X,TY) = g(h(X,Y),FZ).

The expression in the left hand side of the above equation is skew symmetric
in X and Y whereas the right hand side is symmetric X and Y. Therefore,

hX,Y) e,
and
(Zn f = n(2))g(X,TY) = 0.
Now, as the submanifold is proper, we deduce from the last relation that
Zlnf=n(Z)

for each Z € TM, . Now, as n(CU) = 0 for each U € T M, it follows from the
above that Uln f = 0, for each U € TM — (£), whereas by (53), éInf = 1.
This proves that

(55) Vin f=¢. O

Hence assuming that £ = %, we infer from the above that on a warped
product contact C R-submanifold of a Kenmotsu manifold, the warping function

f is given by f(t) = €.
Now, we may establish the following characterization.

Theorem 5.2. A contact CR-submanifold of a Kenmotsu manifold M is a
warped product contact C'R-submanifold if and only if there exists a smooth
function p on M with X =0 for each X € D satisfying the following formula

(56) (VuT)V = g(TU,V)Vu —n(V)TU
for each U,V € TM

Proof. Let M = M, Xy Mr be a warped product contact C'R-submanifold of
a Kenmotsu manifold M. Then, for X,Y € TMy and Z € TM, by virtue of
formula (11) and (49),

9(VxT)Y,Z) = (ZIn )g(TX,Y),
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which on applying (16) takes the form

(57) nor(VxT)Y = g(TX,Y)VIn f,

where ‘nor’ denotes the component of the underlying vector field tangential to
M . On the other hand taking account of the fact that tN € T M, for each
N € T+ M in formula (25), we deduce that B((VxT)Y) = 0. Equation (57) in
view of this observation yields

(58) (VxT)Y = g(TX,Y)VIn f.

For arbitrary vector fields U,V on M, by using (17) and (27), we may now,
write

(59) _ _ _ _

(VUT)V = (VBUT)BV + (VBUT)CV + (VCUT)BV + (VCUT)CV — U(V)TU
Substituting from (58), (50), (51), (52) and the fact that CVInf = 0, we
obtain

(60) (VuT)V = g(TU, BV)V1In f —n(V)TU.

This verifies the fact that on a warped product contact C' R-submanifold of a
Kenmotsu manifold equation (56) holds.

Conversely, suppose that M is a contact C'R-submanifold of a Kenmotsu
manifold M such that for each U,V € TM and for a smooth function p on M
satisfying Xu = 0 for all X € D, formula (56) holds. Then for Z, W € D+ @& ¢,
it follows from (56)that

(VzT)W = 0.
Taking product with X € D in the above equation and using (11), we get
g(VzW, TX) =0.

This proves that D+ @ (£) is involutive and its leaves are totally geodesic in
M.
Now, for X,Y € D and Z € D+ @ (£), we have

g(h(X,TY),FZ) = —g(th(X,TY), Z).
Simplifying the right hand side by using (25), the above equation reduces to
9(h(X,TY), FZ) = —g((VxT)TY, Z) + g(X,Y)n(Z).
On using (56) on the right hand side, the above equation takes the form:
(61)  g(WMX,TY), FZ)=n(Z) = Zp)g(X,Y) = g(§ — Vu, Z)9(X,Y),
which shows that
gWX,TY),FZ)=g(h(TX,Y),FZ).

Hence, by Theorem 3.4, D is involutive. -
It is also easy to observe that g(VxTY, Z) = g((VxT)Y, Z) for each X, Y €
D and Z € D* @ (¢), therefore on applying (56) we have,

9g(VxTY,Z) = g(TX,Y)g(Vu, Z),
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which means

nor(VxTY) = —g(X,TY)Vu,
where, ‘nor’ denotes the component of the underlying vector field tangential to
the leaves of D+ @ (£). In other words,

W(X,Y) = —g(X,Y)Vp,

where hT denotes the second fundamental form of the immersion of Mp into
M. This means, that Mr is totally umbilical in M with Vu as the mean
curvature vector with respect to the immersion of My into M. Further, as
Xu =0 for each X € D, Vyu is parallel. That is, the leaves of D are extrinsic
spheres in M. Hence, by virtue of Theorem 4.2, M is locally a warped product
CR-submanifold of M. That is M is a warped product C'R-submanifold of
M. O

A characterization in terms of the canonical structure I is obtained in the
following theorem:

Theorem 5.3. A contact CR-submanifold M of a Kenmotsu manifold M is a
warped product contact C R-submanifold if and only if there exist a C'*°-function
woon M (with Xy =0 for each X € D) such that

(62) (VuF)V = fh(U,CV) — g(BU, BV)FVu — n(V)FU
for each U, V € TM.

Proof. Let M = M, xy Mt be a warped product contact C'R-submanifold of
a Kenmotsu manifold M. Then for X,Y € TMy and N € T*M, on making
use of(12), (49) and (16),we obtain that

9(VxF)Y,N) = —g(FVxY,N) = g(X,Y)g(FVIn f, N).
That gives
(63) (VxF)Y =g(X,Y)FVIn f.

Now, for X € TMr and Z € TM,, formula (26) in view of the fact that
TZ =0=FX yields

(64) (VxF)Z = fh(X, Z).
On the other hand by (49) and (12), we have
(65) (VzF)X =0.

Now for U, V € TM, we may write
(@UF)V = (vBUF)BV‘i’ (vBUF)CV‘i’ (?CUF)BVnL (vCUF)CV*U(V)FU.

Substituting the values of the terms appearing in the right hand side of the
above equation from (63),(64),(65) and (26) we obtain

(VuF)V = —g(BU,BV)FVn f + fh(U,CV) —n(V)FU.
This verifies (62).
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Conversely suppose that M is a contact CR-submanifold of a Kenmotsu
manifold such that formula (62) holds with X u = 0 for each X € D, then

(66) (VxF)Y = —g(X,Y)FVp
and by (26), B

X, TY) = fh(X,Y) - (VxF)Y
for each X,Y € D. Since the right hand side of the above equation is symmetric
in X and Y (due to (66) and the symmetry of k), h(X,TY) = h(TX,Y).
Therefore, by Theorem 3.4, D is involutive on M. Further, it follows from
equation (66) and (12) that

C(VxY) = —g(X,Y)C(Vp).

If My is a leaf of D and AT is the second fundamental form of My into M,
then from the last equation we have

h(X,Y) = g(X,Y)Vp.
Hence, we conclude that the leaves of D are totally umbilical in M with mean
curvature vector Vu. Further as X = 0, each leaf of D is an extrinsic sphere
in M.
Now for Z,W € D+ @ (¢) and X € D
g(VZW, X) = —g(FVzX,FW) = g((VzF)X,FW).
The right hand side of the above equation is zero by virtue of (62). That proves
9(VzW,X) =0,

which means D+ @ (¢) is parallel. In other words, D+ @ () is involutive and
its leaves are totally geodesic in M. Hence, by virtue of Theorem 4.2, M is
locally a warped product C'R-submanifold of M. That is M = M, Xy My is
warped product C R-submanifold of M. (I

Example 5.4 ([12]). Consider the complex space C* with the usual Kaehler
structure and the real global coordinates (z*,y*, ..., 2% y*). Let M =R x;C*
with warping function f = e’, ¢ being the global coordinate on R. Then M is
Kenmotsu manifold.

Consider the distributions
o 0 0 o o0 0
— = 2 plt= — —, —}
oyl 9 DR spani s 55 gt
Let Ny and N, be the leaves of D and D+, respectively, and
2
gnr = Y ((da')? + (dy')?)

i=1

0
D = Span{ﬁ,

and
4

gN, = dt? + e z:(daca‘)2

a=3
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be the Riemannian metrics on N7 and N, respectively. Then M = N Xy Np
is a warped contact C'R-submanifold of M. The warping function is given by
f = e*. The above example can also be generalized on replacing C* by C" and
modifying the distributions D and D+, respectively.
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