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THE RIGIDITY OF MINIMAL SUBMANIFOLDS IN A

LOCALLY SYMMETRIC SPACE

Shunjuan Cao

Abstract. In the present paper, we discuss the rigidity phenomenon of
closed minimal submanifolds in a locally symmetric Riemannian manifold
with pinched sectional curvature. We show that if the sectional curvature
of the submanifold is no less than an explicitly given constant, then either
the submanifold is totally geodesic, or the ambient space is a sphere and
the submanifold is isometric to a product of two spheres or the Veronese
surface in S4.

1. Introduction

Let Mn be an n-dimensional closed minimal submanifold in an (n + p)-
dimensional Riemannian manifold Nn+p. We denote by S the squared norm
of the second fundamental form of M . If Nn+p is the (n + p)-dimensional
unit sphere Sn+p, a famous rigidity theorem due to Simons [11], Lawson [8]
and Chern-do Carmo-Kobayashi [1] says that if S ≤ n

2−1/p , then either M is

totally geodesic, or M is one of the Clifford minimal hypersurfaces Sk

(

√

k
n

)

×

Sn−k
(
√

n−k
n

)

, k = 1, . . . , n − 1, or n = 2, p = 2, and M is the Veronese

surface in S4. Further discussions have been carried out by many other authors
[2, 9, 12, 13, 14, 15], etc.

Denote by KM the sectional curvature of M . In 1975, Yau [16] proved the
following rigidity theorem.

Theorem 1.1 ([16]). Let Mn be an n-dimensional oriented closed minimal

submanifold in Sn+p. If KM ≥ p−1
2p−1 , then either M is the totally geodesic

sphere, the standard immersion of the product of two spheres, or M is the

Veronese surface in S4.
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Later, Itoh [7] proved that if KM ≥ n
2(n+1) , then M is the totally geodesic

sphere, or the Veronese surface in S4. Recently, Gu-Xu [5] made an improve-
ment of Yau’s rigidity theorem. They obtained the following theorem.

Theorem 1.2 ([5]). Let Mn be an n-dimensional oriented closed minimal

submanifold in Sn+p. If KM ≥ sgn(p−1)p
2(p+1) , then either M is the totally geodesic

sphere, the standard immersion of the product of two spheres, or M is the

Veronese surface in S4. Here sgn(·) is the standard sign function.

In this paper, we discuss the rigidity of minimal submanifolds in a Rie-
mannian manifold. We assume that the ambient space is locally symmetric
and δ-pinched. We obtain the following theorem.

Theorem 1.3. Let Mn be an n-dimensional oriented closed minimal sub-

manifold in an n-dimensional simply connected and locally symmetric Rie-

mannian manifold Nn+p. Suppose the sectional curvature KN of N satisfies

δ ≤ KN ≤ 1. If

KM ≥
4

3n(p+ 1)
(n− 1)

1

2 (p− 1)(p+2)(1− δ)+

(

p+ 2

2(p+ 1)
−

δ

p+ 1

)

sgn(p− 1),

then either M is totally geodesic, or Nn+p = Sn+p and M is isometric to the

standard immersion of the product of two spheres or the Veronese surface in

S4.

2. Preliminaries

Let Mn be an n-dimensional closed minimal submanifold in an (n + p)-
dimensional Riemannian manifold Nn+p. We shall make use of the following
convention on the range of indices:

1 ≤ A,B,C, . . . ≤ n+ p; 1 ≤ i, j, k, . . . ≤ n; n+ 1 ≤ α, β, γ, . . . ≤ n+ p.

Choose a local field of orthonormal frames {eA} in N such that, restricted
to M , the ei’s are tangent to M. Let {ωA} and {ωAB} be the dual frame field
and the connection 1-forms of N , respectively. Restricting these forms to M,
we have

ωαi =
∑

j

hα
ijωj , hα

ij = hα
ji,

h =
∑

α,i,j

hα
ijωi ⊗ ωj ⊗ eα, ξ =

1

n

∑

α,i

hα
iieα,

Rijkl = R̄ijkl +
∑

α

(hα
ikh

α
jl − hα

ilh
α
jk),(1)

Rαβkl = R̄αβkl +
∑

i

(hα
ikh

β
il − hα

ilh
β
ik),(2)
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where h, ξ, Rijkl, Rαβkl, and R̄ABCD are the second fundamental form, the
mean curvature vector, the curvature tensor, the normal curvature tensor of
M , and the curvature tensor of N , respectively. We set

S = |h|2, H = |ξ|, Hα = (hα
ij)n×n.

Then M is minimal if and only if H = 0.
Denote the first and second covariant derivatives of hα

ij by hα
ijk and hα

ijkl ,
respectively. We have

∑

k

hα
ijkωk = dhα

ij −
∑

k

hα
ikωkj −

∑

k

hα
kjωki −

∑

β

h
β
ijωβα,

∑

l

hα
ijklωl = dhα

ijk −
∑

l

hα
ijlωlk −

∑

l

hα
ilkωlj −

∑

l

hα
ljkωli −

∑

β

h
β
ijkωβα.

Then

hα
ijk − hα

ikj = −R̄αijk,(3)

hα
ijkl − hα

ijlk =
∑

m

hα
miRmjkl + hα

mjRmikl −
∑

β

h
β
ijRαβkl.(4)

Consider R̄αijk as a section of the bundle NM ⊗ T ∗M ⊗ T ∗M ⊗ T ∗M . Its
covariant derivative R̄αijkl is defined by

∑

l

R̄αijklωl

= dR̄αijk −
∑

m

R̄αmjkωmi −
∑

m

R̄αimkωmj −
∑

m

R̄αijmωmk −
∑

β

R̄βijkωβα.

Let R̄ABCD,E be the covariant derivative of R̄ABCD as a curvature tensor
of N . Restricted to M , R̄αijk,l is given by

R̄αijk,l = R̄αijkl −
∑

β

R̄αβjkh
β
il −

∑

β

R̄αiβkh
β
jl −

∑

β

R̄αijβh
β
kl +

∑

m

R̄mijkh
α
ml.

Nowwe assume that the ambient spaceN is locally symmetric, i.e., R̄ABCD,E

= 0. Then we have

(5) R̄αijkl =
∑

β

R̄αβjkh
β
il +

∑

β

R̄αiβkh
β
jl +

∑

β

R̄αijβh
β
kl −

∑

m

R̄mijkh
α
ml.

The Laplacian △hα
ij of h is defined by △hα

ij =
∑

k △hα
ijkk. Then from (1),

(4), (5) and the minimality of M , we have for any real number a,
∑

i,j,α

hα
ij△hα

ij = 4
∑

α,β

∑

i,j,k

hα
jkh

β
ilR̄αβij −

∑

α,β

∑

i,j,k

hα
ijh

β
ijR̄αkβk

+ (1 − a)
∑

α

∑

i,j,k,m

hα
ij(h

α
mkR̄mijk + hα

miR̄mkjk)
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+ a
∑

α,β

[tr(HαHβ)]
2

+ (1 + a)
∑

α

∑

i,j,k,m

hα
ij(h

α
mkRmijk + hα

miRmkjk)

−
∑

α,β

[tr(H2
αH

2
β)− tr(HαHβ)

2].(6)

The DDVV inequality proved by Lu [10], Ge and Tang [3] is stated as follows.

Lemma 2.1 (DDVV Inequality). Let B1, . . . , Bm be symmetric (n × n) real

matrices. Then
m
∑

r,s=1

‖[Br, Bs]‖
2 ≤

(

m
∑

r=1

‖Br‖
2
)2

,

where the equality holds if and only if under some rotation all Br’s are zero

except two matrices which can be written as

B̃r = P















0 µ 0 · · · 0
µ 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0















P t, B̃s = P















µ 0 0 · · · 0
0 −µ 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0















P t,

where P is an orthogonal (n×n)-matrix. Here ‖ ·‖2 denotes the sum of squares

of entries of the matrix and [A,B] = AB − BA is the commutator of the

matrices A, B.

In the proof of the theorem, we also use the following Berger’s inequalities.

Lemma 2.2 ([4]). Let N be an (n + p)-dimensional Riemannian manifold

satisfying a ≤ KN ≤ b. Let {eA} be a local orthonormal basis. Then

(1) R̄ABCD ≤ 2
3 (b− a) for all distinct A,B,C,D.

(2) R̄ACBC ≤ 1
2 (b− a) for A 6= B.

3. Proof of the main theorem

To prove Theorem 1.3, we first give some estimates.
For a fixed α, we choose {ei} such that hα

ij = λα
i δij . Then

4
∑

β

∑

i,j,k

hα
jkh

β
ilR̄αβij

= 4
∑

β 6=α

∑

i6=k

λα
kh

β
ikR̄αβik

≥ −
8

3
(1− δ)

∑

β 6=α

∑

i6=k

|λα
kh

β
ik|
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≥ −
4

3
(1− δ)

∑

β 6=α

∑

i6=k

[(n− 1)−
1

2 (λα
k )

2 + (n− 1)
1

2 (hβ
ik)

2]

= −
4

3
(1− δ)(n− 1)

1

2 (p− 1)trH2
α −

4

3
(1 − δ)(n− 1)

1

2

∑

β 6=α

trH2
β .

Then we have

4
∑

α,β

∑

i,j,k

hα
jkh

β
ilR̄αβij ≥ −

8

3
(1− δ)(n− 1)

1

2 (p− 1)S.(7)

Since (tr(HαHβ)) is a symmetric (p× p)-matrix, we can choose the normal
frame fields {eα} such that

tr(HαHβ) = trH2
α · δαβ .

Then

−
∑

α,β

∑

i,j,k

hα
ijh

β
ijR̄αkβk = −

∑

α,β

tr(HαHβ)
∑

k

R̄αkβk

= −
∑

α

tr(H2
α)

∑

k

R̄αkαk

≥ −nS.(8)

We also have
∑

i,j,k,m

hα
ij(h

α
mkR̄mijk + hα

miR̄mkjk) =
1

2

∑

i,k

(λα
i − λα

k )
2R̄ikik

≥
1

2
δ
∑

i,k

(λα
i − λα

k )
2

= nδtr(H2
α).

Hence
∑

α

∑

i,j,k,m

hα
ij(h

α
mkR̄mijk + hα

miR̄mkjk) ≥ nδS.(9)

Similarly, we have
∑

α

∑

i,j,k,m

hα
ij(h

α
mkRmijk + hα

miRmkjk) ≥ nKminS,(10)

where Kmin is the minimum of the sectional curvature at a point.
On the other hand, by a direct computation and the DDVV inequality, we

obtain
∑

α,β

tr(H2
αH

2
β)− tr(HαHβ)

2 =
1

2

∑

α,β

tr(HαHβ −HβHα)
2

≤
1

2
sgn(p− 1)

(

∑

α

trH2
α

)2
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=
1

2
sgn(p− 1)S2.(11)

We also have
∑

α,β

[tr(HαHβ)]
2 ≥

S2

p
.(12)

Proof of Theorem 1.3. For any 0 ≤ a ≤ 1, from (6)-(12) we have

∑

i,j,α

hα
ij△hα

ij ≥ −
8

3
(1− δ)(n− 1)

1

2 (p− 1)S − nS + (1− a)nδS

+(1 + a)nKminS +

(

−
(1− a)

2
sgn(p− 1) +

a

p

)

S2.(13)

Take a = p
p+2 · sgn(p− 1). From (13) we have

1

2
△S =

∑

α

∑

i,j,k

(hα
ijk)

2 +
∑

i,j,α

hα
ij△hα

ij(14)

≥
∑

α

∑

i,j,k

(hα
ijk)

2 −
8

3
(1− δ)(n− 1)

1

2 (p− 1)S − nS

+ (1 −
p

p+ 2
· sgn(p− 1))nδS

+ (1 +
p

p+ 2
· sgn(p− 1))nKminS

≥
∑

α

∑

i,j,k

(hα
ijk)

2 + nS

[(

1 +
p

p+ 2
· sgn(p− 1)

)

Kmin

−
8

3n
(1− δ)(n− 1)

1

2 (p− 1)− 1 +

(

1−
p

p+ 2
· sgn(p− 1)

)

δ

]

.(15)

It follows from our assumption and the maximum principle that S is a constant.
Hence

∑

α

∑

i,j,k(h
α
ijk)

2 = 0 and all the inequalities in (7)-(12) are equalities.
Let

A = −
∑

α

∑

i,j,k

hα
ij(R̄αkikj + R̄αijkk).

Since (7)-(12) are equalities, from (5) we have

A = −2(1− δ)(n− 1)
1

2 (p− 1)S − nS + nδS.(16)

We let

ω =
∑

k

∑

α

∑

i,j

(hα
ikR̄αjij + hα

ijR̄αijk)ωk.

Then

divω =
∑

k

∑

α

∑

i,j

(hα
ikR̄αjij + hα

ijR̄αijk)k



THE RIGIDITY OF MINIMAL SUBMANIFOLDS 141

=
∑

α

∑

i,j,k

hα
ij(R̄αkikj + R̄αijkk)

= −A.(17)

By (16) and (17) we have

0 =

∫

M

[−2(1− δ)(n− 1)
1

2 (p− 1)S − nS + nδS]dµ

=

∫

M

[−2(n− 1)
1

2 (p− 1)− n](1− δ)Sdµ.(18)

Since the integrand of (18) is non-positive, we have (1− δ)S = 0. Hence S = 0
or δ = 1. If S = 0, then M is totally geodesic. If δ = 1, then N = Sn+p,
and our assumption reduces to KM ≥ p

2p+1 sgn(p − 1). From Theorem 1.2 we

see that either M is the totally geodesic sphere, the standard immersion of the
product of two spheres, or M is the Veronese surface in S4. This completes the
proof of Theorem 1.3. �
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