• 제목/요약/키워드: strong maximal operator

검색결과 10건 처리시간 0.027초

RELAXED PROXIMAL POINT ALGORITHMS BASED ON A-AXIMAL RELAXED MONOTONICITY FRAMEWORKS WITH APPLICATIONS

  • Agarwal, Ravi P.;Verma, Ram U.
    • East Asian mathematical journal
    • /
    • 제27권5호
    • /
    • pp.545-555
    • /
    • 2011
  • Based on the A-maximal(m)-relaxed monotonicity frameworks, the approximation solvability of a general class of variational inclusion problems using the relaxed proximal point algorithm is explored, while generalizing most of the investigations, especially of Xu (2002) on strong convergence of modified version of the relaxed proximal point algorithm, Eckstein and Bertsekas (1992) on weak convergence using the relaxed proximal point algorithm to the context of the Douglas-Rachford splitting method, and Rockafellar (1976) on weak as well as strong convergence results on proximal point algorithms in real Hilbert space settings. Furthermore, the main result has been applied to the context of the H-maximal monotonicity frameworks for solving a general class of variational inclusion problems. It seems the obtained results can be used to generalize the Yosida approximation that, in turn, can be applied to first- order evolution inclusions, and can also be applied to Douglas-Rachford splitting methods for finding the zero of the sum of two A-maximal (m)-relaxed monotone mappings.

MONOTONE CQ ALGORITHM FOR WEAK RELATIVELY NONEXPANSIVE MAPPINGS AND MAXIMAL MONOTONE OPERATORS IN BANACH SPACES

  • Kang, Jinlong;Su, Yongfu;Zhang, Xin
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.293-309
    • /
    • 2011
  • The purpose of this article is to prove strong convergence theorems for weak relatively nonexpansive mapping which is firstly presented in this article. In order to get the strong convergence theorems for weak relatively nonexpansive mapping, the monotone CQ iteration method is presented and is used to approximate the fixed point of weak relatively nonexpansive mapping, therefore this article apply above results to prove the strong convergence theorems of zero point for maximal monotone operators in Banach spaces. Noting that, the CQ iteration method can be used for relatively nonexpansive mapping but it can not be used for weak relatively nonexpansive mapping. However, the monotone CQ method can be used for weak relatively nonexpansive mapping. The results of this paper modify and improve the results of S.Matsushita and W.Takahashi, and some others.

A NOTE ON A GENERAL MAXIMAL OPERATOR

  • Kim, Kyung-Hwa
    • 대한수학회논문집
    • /
    • 제10권1호
    • /
    • pp.155-162
    • /
    • 1995
  • Let $\mu$ be a positive Borel measure on $R^n$ which is positive on cubes. For any cube $Q \subset R^n$, a Borel measurable nonnegative function $\varphi_Q$, supported and positive a.e. with respect to $\mu$ in Q, is given. We consider a maximal function $$ M_{\mu}f(x) = sup \int \varphi Q$\mid$f$\mid$d_{\mu} $$ where the supremum is taken over all $\varphi Q$ such that $x \in Q$.

  • PDF

TWO-WEIGHTED CONDITIONS AND CHARACTERIZATIONS FOR A CLASS OF MULTILINEAR FRACTIONAL NEW MAXIMAL OPERATORS

  • Rui Li;Shuangping Tao
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.195-212
    • /
    • 2023
  • In this paper, two weight conditions are introduced and the multiple weighted strong and weak characterizations of the multilinear fractional new maximal operator 𝓜ϕ,β are established. Meanwhile, we introduce the ${\mathcal{S}}_{({\vec{p}},q),{\beta}}({\varphi})$ and $B_{({\vec{p}},q),{\beta}}({\varphi})$ conditions and obtain the characterization of two-weighted inequalities for 𝓜ϕ,β. Finally, the relationships of the conditions ${\mathcal{S}}_{({\vec{p}},q),{\beta}}({\varphi}),\,{\mathcal{A}}_{({\vec{p}},q),{\beta}}({\varphi})$ and $B_{({\vec{p}},q),{\beta}}({\varphi})$ and the characterization of the one-weight $A_{({\vec{p}},q),{\beta}}({\varphi})$ are given.

GENERAL ITERATIVE ALGORITHMS FOR MONOTONE INCLUSION, VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS

  • Jung, Jong Soo
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.525-552
    • /
    • 2021
  • In this paper, we introduce two general iterative algorithms (one implicit algorithm and one explicit algorithm) for finding a common element of the solution set of the variational inequality problems for a continuous monotone mapping, the zero point set of a set-valued maximal monotone operator, and the fixed point set of a continuous pseudocontractive mapping in a Hilbert space. Then we establish strong convergence of the proposed iterative algorithms to a common point of three sets, which is a solution of a certain variational inequality. Further, we find the minimum-norm element in common set of three sets.

CONVERGENCE THEOREMS FOR TWO FAMILIES OF WEAK RELATIVELY NONEXPANSIVE MAPPINGS AND A FAMILY OF EQUILIBRIUM PROBLEMS

  • Zhang, Xin;Su, Yongfu
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.583-607
    • /
    • 2010
  • The purpose of this paper is to prove strong convergence theorems for common fixed points of two families of weak relatively nonexpansive mappings and a family of equilibrium problems by a new monotone hybrid method in Banach spaces. Because the hybrid method presented in this paper is monotone, so that the method of the proof is different from the original one. We shall give an example which is weak relatively nonexpansive mapping but not relatively nonexpansive mapping in Banach space $l^2$. Our results improve and extend the corresponding results announced in [W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), Article ID 528476, 11 pages; doi:10.1155/2008/528476] and [Y. Su, Z. Wang, and H. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616?5628] and some other papers.

OUTER APPROXIMATION METHOD FOR ZEROS OF SUM OF MONOTONE OPERATORS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Abass, Hammad Anuoluwapo;Mebawondu, Akindele Adebayo;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권3호
    • /
    • pp.451-474
    • /
    • 2021
  • In this paper, we investigate a hybrid algorithm for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators which is also a common fixed point problem for finite family of relatively quasi-nonexpansive mappings and split feasibility problem in uniformly convex real Banach spaces which are also uniformly smooth. The iterative algorithm employed in this paper is design in such a way that it does not require prior knowledge of operator norm. We prove a strong convergence result for approximating the solutions of the aforementioned problems and give applications of our main result to minimization problem and convexly constrained linear inverse problem.