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RELAXED PROXIMAL POINT ALGORITHMS BASED ON

A−MAXIMAL RELAXED MONOTONICITY

FRAMEWORKS WITH APPLICATIONS

Ravi P. Agarwal and Ram U. Verma

Abstract. Based on the A−maximal (m)−relaxed monotonicity frame-
works, the approximation solvability of a general class of variational in-

clusion problems using the relaxed proximal point algorithm is explored,

while generalizing most of the investigations, especially of Xu (2002) on
strong convergence of modified version of the relaxed proximal point al-

gorithm, Eckstein and Bertsekas (1992) on weak convergence using the

relaxed proximal point algorithm to the context of the Douglas-Rachford
splitting method, and Rockafellar (1976) on weak as well as strong con-

vergence results on proximal point algorithms in real Hilbert space set-

tings. Furthermore, the main result has been applied to the context of the
H−maximal monotonicity frameworks for solving a general class of vari-

ational inclusion problems. It seems the obtained results can be used to
generalize the Yosida approximation that, in turn, can be applied to first-

order evolution inclusions, and can also be applied to Douglas-Rachford

splitting methods for finding the zero of the sum of two A−maximal (m)-
relaxed monotone mappings.

1. Introduction

Let X be a real Hilbert space with the inner product 〈·, ·〉 and with the norm
‖ · ‖ on X. We consider the inclusion problem: find a solution to

0 ∈M(x), (1)

where M : X → 2X is a set-valued mapping on X.
Recently, Xu [12 ] considered the following algorithm to the context of solving

the variational inclusion problem (1):

xk+1 = αkx
0 + (1− αk)Pk(xk) + εk ∀k ≥ 0, (2)

where Pk = (I+ρkM)−1 is the classical resolvent, {αk} and {ρk} are sequences
of real numbers, and {εk} is the sequence of errors chosen appropriately. Unlike
the findings of Rockafellar [7 ] on weak as well as strong convergence (limited
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to restricted sense), and the work of Eckstein and Bertsekas [4 ] on weak con-
vergence of the relaxed proximal point algorithm, Xu [12 ] achieved the strong
convergence of the algorithm.

Rockafellar ([7], Theorem 1) investigated the general weak convergence of
the proximal point algorithm to the context of solving (1), by showing for M
maximal monotone, that the sequence {xk} generated for an initial point x0

by the proximal point algorithm

xk+1 ≈ Pk(xk) (3)

converges weakly to a solution of (1), provided the approximation is made
sufficiently accurate as the iteration proceeds, where Pk = (I + ρkM)−1 is the
resolvent operator of M for a sequence {ρk} of positive real numbers, that is
bounded away from zero. We observe from (3) that xk+1 is an approximate
solution to inclusion problem

0 ∈M(x) + ρ−1k (x− xk). (4)

This work was further studied by several researchers, including Eckstein and
Bertsekas [4] who relaxed the proximal point algorithm used in [7], widely cited
in literature, and applied to the approximation solvability of (1). They also
applied their obtained results to the Douglas-Rachford splitting method for
finding a zero of the sum of two monotone mappings, while this turned out to
be a specialized case of the proximal point algorithm. We observe that most the
of variational problems, including minimization or maximization of functions,
variational inequality problems, quasivariational inequality problems, decision
and management sciences, and engineering sciences can be unified into form
(1). The notion of the general maximal monotonicity has played a crucially
significant role by providing a powerful tool to develop new proximal point
algorithms in exploring and studying convex programming as well as variational
inequalities. For more details, we refer the reader to [1-15].

In this communication, we examine the approximation solvability of inclu-
sion problem (1) based on the notion of A−maximal (m)−relaxed monotone
mappings, and derive some auxiliary results involvingA−maximal (m)−relaxed
monotone mappings to that setting. The notion of the A−maximal monotonic-
ity introduced and studied in [7, 8] is more general than the usual maximal
monotonicity, especially it could not be reduced to that context but it seems
to be more application-oriented. We present a generalization to a well-cited
work (in literature) of Eckstein and Bertsekas ([4], Theorem 3) to the case of
A−maximal (m)−relaxed monotone mappings with some specialized versions.
In a way it sounds interesting that we observe that our findings do not reduce
to existing results in a trivial manner. We note that our main result on the ap-
proximation solvability of (1) differs significantly from that of ([4], Theorem 3)
in the sense that M is without the monotonicity assumptions, and A−maximal
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relaxed monotonicity is applied instead of just maximal monotonicity. More-
over, we achieve a strong convergence of the generalized proximal point al-
gorithm, unlike some investigations limited to weak convergence. We present
a significant application of the main result on the A−maximal (m)−relaxed
monotonicity to the case of the H−maximal monotonicity [5]. While our re-
sult on A−maximal (m)−relaxed monotonicity, Theorem 3.2, we observe does
not reduce to the case of [4], there exists a tremendous amount of research work
on new developments and applications of proximal point algorithms in litera-
ture to the context of approximate solutions of variational inclusion problems
of the form (1) in different space settings.

2. Preliminaries

In this section, first we introduce the notion of the A−maximal (m)−relaxed
monotonicity, and then we derive some basic properties along with some aux-
iliary results for the problem on hand.

Let X be a real Hilbert space with the norm ‖ ·‖ and with the inner product
〈·, ·〉. Let M : X → 2X be a set-valued mapping on X and we will denote the
graph of M, the set {(x, y)|y ∈ M(x)}, by M as well. This is equivalent to
stating that an operator is any subset M of X×X and M(x) = {y|(x, y) ∈M}.

The domain of a mapping M, denoted D(M), is its projection onto the first
coordinate, is equivalent to

D(M) = {x ∈ X|∃y ∈ X : (x, y) ∈M} = {x ∈ X : M(x) 6= ∅}.

M has a full domain if D(M) = X and the range of M can be defined as its
projection onto the second coordinate, that is.

R(M) = {y ∈ X|∃x ∈ X : (x, y) ∈M}.

The inverse M−1 of M is {(y, x)|(x, y) ∈ M}. For any real number c and
mapping M, we define cM by {(x, cy)|(x, y) ∈ M}. For any two mappings M
and S, we set

M + S = {(x, y + z)|(x, y) ∈M, (x, z) ∈ S}.

Definition 2.1. Let X be a real Hilbert space, and let M : X → 2X be a
multivalued mapping and A : X → X be a single-valued mapping on X. The
map M is said to be:

(i) Monotone if

〈u∗ − v∗, u− v〉 ≥ 0 ∀ (u, u∗), (v, v∗) ∈M.

(ii) Strongly monotone if there exists a positive constant r such that

〈u∗ − v∗, u− v〉 ≥ r‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈M.

(iii) Relaxed monotone if there exists a positive constant m such that

〈u∗ − v∗, u− v〉 ≥ −m‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈M.
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(iv) Expansive if there exists a positive constant r such that

‖u∗ − v∗‖ ≥ r‖u− v‖ ∀ (u, u∗), (v, v∗) ∈M.

(v) Cocoercive if there exists a positive constant c such that

〈u∗ − v∗, u− v〉 ≥ c‖u∗ − v∗‖2 ∀ (u, u∗), (v, v∗) ∈M.

(vi) Monotone with respect to A if

〈u∗ − v∗, A(u)−A(v)〉 ≥ 0∀ (u, u∗), (v, v∗) ∈M.

(vii) Strongly monotone with respect to A if there exists a positive constant
r such that

〈u∗ − v∗, A(u)−A(v)〉 ≥ r‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈M.

(viii) Relaxed monotone with respect to A if there exists a positive constant
m such that

〈u∗ − v∗, A(u)−A(v)〉 ≥ −m‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈M.

(ix) Cocoercive with respect to A if there exists a positive constant γ such
that

〈u∗ − v∗, A(u)−A(v)〉 ≥ γ‖u∗ − v∗‖2 ∀ (u, u∗), (v, v∗) ∈M.

Definition 2.2. Let X be a real Hilbert space, and let M : X → 2X be a
mapping on X. The map M is said to be:

(i) Nonexpansive if

‖u∗ − v∗‖ ≤ ‖u− v‖ ∀ (u, u∗), (v, v∗) ∈ graph(M).

(ii) Lipschitz continuous if there exists a constant s ≥ 0 such that

‖u∗ − v∗‖ ≤ s‖u− v‖ ∀ (u, u∗), (v, v∗) ∈M.

Definition 2.3. Let X be a real Hilbert space. Let A : X → X be a single-
valued mapping. The map M : X → 2X is said to be A−maximal (m)−relaxed
monotone if

(i) M is (m)−relaxed monotone, that is,

〈u∗ − v∗, u− v〉 ≥ −m‖u− v‖2 ∀ (u, u∗), (v, v∗) ∈M,

(ii) R(A+ ρM) = X for ρ > 0.

Definition 2.4. Let X be a real Hilbert space. Let M : X → 2X be a
A−maximal (m)−relaxed monotone mapping, and let A : X → X be strongly
monotone mapping with a positive constant r. Then the resolvent operator
RMρ,m,A : X → X is defined by

RMρ,m,A(u) = (A + ρM)−1(u).
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Proposition 2.1. Let X be a real Hilbert space. Let A : X → X be strongly
monotone mapping with a positive constant r, and let M : X → 2X be an
A−maximal (m)−relaxed monotone mapping. Then the resolvent operator
RMρ,m,A = (A+ ρM)−1 is single-valued for r − ρm > 0.

Proof. The proof follows from the definition of the resolvent operator. For any
z ∈ X, consider x, y ∈ (A+ ρM)−1(z). Then

−A(x) + z ∈ ρM(x) and −A(y) + z ∈ ρM(y).

Since M is maximal (m)−relaxed monotone, it implies

−ρm ≤ −〈x− y,A(x)−A(y)〉 ≤ −r‖x− y‖2

⇒ (r − ρm)‖x− y‖2 ≤ 0

⇒ x = y for r − ρm > 0.

�

Theorem 2.1. Let X be a real Hilbert space, let A : X → X be strongly mono-
tone (with a constant r > 0) and let M : X → 2X be A−maximal (m)−relaxed
monotone. Then

(i) For r − ρkm > 1, RMρk,m,A is (r − ρkm)−cocoercive, that is,

〈RMρkm,,A(u)−RMρkm,,A(v), u− v〉 ≥ (r − ρkm)‖RMρk,m,A(u)−RMρk,m,A(v)‖2.

Proof. To prove we use the definition of scaling, addition, and inversion oper-
ations. Now we have

(x, y) ∈M ⇔ (A(x) + ρy, x) ∈ (A+ ρM)−1 for ρ > 0.

Thus, we begin the proof with:

M isA−maximal (m)− relaxedmonotone

⇔ 〈x
′
− x, y

′
− y〉 ≥ −m‖x

′
− x‖2 ∀ (x, y), (x

′
, y
′
) ∈M

⇔ 〈x
′
− x, ρky

′
− ρky〉 ≥ −ρkm‖x

′
− x‖2

⇔ 〈x
′
− x,A(x

′
)−A(x)+ρky

′
− ρky〉 ≥ 〈A(x

′
)−A(x), x

′
−x〉 − ρkm‖x

′
− x‖2

⇔ 〈A(x
′
) + ρky

′
− (A(x) + ρky), x

′
− x〉 ≥ (r − ρkm)‖x

′
− x‖2

⇔ (A+ ρkM)−1 is (r − ρkm)− cocoercive

�

Definition 2.5. Let X be a real Hilbert space. A map M : X → 2X is said
to be maximal monotone if

(i) M is monotone, that is,

〈u∗ − v∗, u− v〉 ≥ 0 ∀ (u, u∗), (v, v∗) ∈M,

(ii) R(I + ρM) = X for ρ > 0.
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Furthermore, the resolvent operator JMρ : X → X is defined by

JMρ (u) = (I + ρM)−1(u).

Next we include the following examples of an A−maximal (m)−relaxed
monotone mapping on a reflexive Banach space setting.

Example 2.1. LetX be a reflexive Banach space. A : X → X∗ be (r)−strongly
monotone with constant r > 0, and let f : X → < be locally Lipschitz such
that the subdifferential ∂f : X → 2X

∗
is (m)−relaxed monotone. Then

〈u∗ − v∗, u− v〉 ≥ (r −m)‖u− v‖2, (5)

where u∗ ∈ A(u) + ∂f(u), v∗ ∈ A(v) + ∂f(v), and r −m > 0. Then ∂f turns
out to be A−maximal (m)−relaxed monotone.

3. Generalizations to A−maximal relaxed monotonicity

This section deals with generalizations to Rockafellar’s theorems ([7 Theo-
rems 1 and 2]) and to Eckstein and Bertsekas ([4], Theorem 3) on the clas-
sical resolvent in light of the new framework of the A−maximal (m)−relaxed
monotonicity while solving inclusion problem (1). We start this section with a
generalized auxiliary result crucial to the problem on hand.

Theorem 3.1. Let X be a real Hilbert space, let A : X → X be strongly mono-
tone mapping with a positive constant r, and let M : X → 2X be A−maximal
(m)−relaxed monotone. Then the following statements are equivalent:

(i) An element u ∈ X is a solution to (1),
(ii) For an u ∈ X, we have

u = RMρ,m,A(A(u)),

where

RMρ,m,A(u) = (A + ρM)−1(u) for r − ρm > 0.

Proof. It follows from the definition of resolvent operator corresponding to
M. �

Theorem 3.2. Let X be a real Hilbert space, let A : X → X be strongly mono-
tone (with a constant r > 0) and let M : X → 2X be A−maximal (m)−relaxed
monotone. Furthermore, we assume RMρk,m,AoA is (λ)−cocoercive with respect

to (I −RMρk,m,AoA) for λ > 0.

For an arbitrarily chosen initial point x0, suppose that the sequence {xk} is
generated by the proximal point algorithm (0 ≤ αk ≤ 1)

xk+1 = (1− αk)xk + αky
k ∀ k ≥ 0. (6)

such that

‖yk −RMρk,m,A(A(xk))‖ ≤ δk‖yk − xk‖,



RELAXED PROXIMAL POINT ALGORITHMS 551

where δk → 0 with Σ∞k=0δk <∞. Suppose that the sequence {xk} is bounded in
the sense that there exists at least one solution to (1). Then we have:

(i) For λ > 0, we have

‖RMρk,m,A(A(xk))−RMρk,m,A(A(x∗))‖ ≤ 1

λ+ 1
‖xk − x∗‖,

(ii) The sequence {xk} converges linearly to a solution of (1) for Σ∞k=0δk <
∞, α = lim supk→∞ αk, ρk ↗ ρ ≤ ∞, r − ρkm > 0, and λ > 0.

Proof. To prove (i), if we use the (λ)−cocoercivity of RMρk,m,AoA with respect

to (I −RMρk,m,AoA), then after a compact manipulation, we arrive at

〈RMρk,m,A(A(xk))−RMρk,m,A(A(x∗)), xk − x∗〉

≥ (λ+ 1)‖RMρk,m,A(A(xk))−RMρk,m,A(A(x∗))‖2.

We begin the proof of (ii) as follows: Suppose that x∗ is a zero of M. Note that
any zero of M is a fixed of RMρk,AoA by Theorem 3.1 for all k. We define for all
k ≥ 0

zk+1 = (1− αk)xk + αkR
M
ρk,m,A

(A(xk)).

Next, we estimate using the above inequality

‖zk+1 − x∗‖ = ‖(1− αk)(xk − x∗) + αk(RMρk,m,A(A(xk))−RMρk,m,A(A(x∗)))‖

≤ (1− αk)‖xk − x∗‖+ αk‖RMρk,m,A(A(xk))−RMρk,m,A(A(x∗))‖

≤ (1− αk)‖xk − x∗‖+
αk
λ+ 1

‖xk − x∗‖

= [1− αk(1− 1

λ+ 1
)]‖xk − x∗‖.

Thus, we have

‖zk+1 − x∗‖ ≤ θk‖xk − x∗‖,
where θk = [1− αk(1− 1

λ+1 )] < 1.
Next we turn our attention to establish linear convergence. Since

xk+1 − xk = αk(yk − xk),

we have

‖xk+1 − x∗‖ = ‖zk+1 − x∗ + xk+1 − zk+1‖

= ‖zk+1 − x∗ + αk(yk −RMρk,A(A(xk)))‖

≤ ‖zk+1 − x∗‖+ αk‖yk −RMρk,A(A(xk))‖

≤ ‖zk+1 − x∗‖+ αkδk‖yk − xk‖

= ‖zk+1 − x∗‖+ δk‖xk+1 − xk‖

≤ ‖zk+1 − x∗‖+ δk[‖xk+1 − x∗‖+ ‖xk − x∗‖]

≤ θk‖xk − x∗‖+ δk[‖xk+1 − x∗‖+ ‖xk − x∗‖].
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Hence,

‖xk+1 − x∗‖ ≤ θk + δk
1− δk

‖xk − x∗‖, (7)

where θk = [1− αk(1− 1
λ+1 )] < 1.

Finally, all we need is to show the uniqueness of the solution to (1). Assume
that x∗ is a zero of M. It follows from above arguments that there exists a limit

limk→∞ inf ‖xk − x∗‖ = a∗ <∞, (8)

which is nonnegative and finite, and as a result, ‖xk − x∗‖ → a∗. Consider x∗1
and x∗2 as two limit points of the sequence {xk}. Then we have

‖xk − x∗1‖ = a1, ‖xk − x∗2‖ = a2

and both exist and are finite. If we express

‖xk − x∗2‖2 = ‖xk − x∗1‖2 + 2〈xk − x∗1, x∗1 − x∗2〉+ ‖x∗1 − x∗2‖2,
then it follows that

limk→∞ 〈xk − x∗1, x∗1 − x∗2〉 =
1

2
[a22 − a21 − ‖x∗1 − x∗2‖2].

Since x∗1 is a limit point of {xk}, the left hand side limit must tend to zero.
Therefore,

a21 = a22 − ‖x∗1 − x∗2‖2.
Similarly, we obtain

a22 = a21 − ‖x∗1 − x∗2‖2.
This results in x∗1 = x∗2. �

Note that the proof model used here for the uniqueness of a limit point of
the sequence {xk} to the context of solving (1) is based on the method adopted
in Martinnet [6], Rockafellar [7] and Eckstein and Beretsekas [4].

Next, we have the following result on the H−maximal monotonicity - a
generalization to general maximal monotonicity by Fang and Huang [5] in lit-
erature.

4. An application to H−maximal monotonicity

In this section, we apply Theorem 3.2 to derive the approximation solvability
of variational inclusion problems of the form (1) to the case of the H−maximal
monotonicity frameworks. We observe, unlike Theorem 3.2, that the obtained
result on the approximation solvability does not hold for a classical resolvent
setting, because the construction breaks down.

Definition 4.1. Let X be a real Hilbert space. Let H : X → X be a single-
valued mapping. The map M : X → 2X is said to be H−maximal monotone
if

(i) M is monotone,
(ii) R(H + ρM) = X for ρ > 0.
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Definition 4.2. Let X be a real Hilbert space. Let M : X → 2X be an
H−maximal monotone mapping, and let A : X → X be strongly monotone
mapping with a positive constant r. Then the resolvent operator RMρ,H : X → X
is defined by

JMρ,H(u) = (H + ρM)−1(u) for r > 0.

Theorem 4.1. Let X be a real Hilbert space, let A : X → X be strongly mono-
tone mapping with a positive constant r, and let M : X → 2X be H−maximal
monotone. Then the following statements are equivalent:

(i) An element u ∈ X is a solution to (1),
(ii) For an u ∈ X, we have

u = RMρ,H(H(u)),

where

RMρ,H(u) = (H + ρM)−1(u) for r > 0.

Proof. It follows from the definition of resolvent operator corresponding to
M. �

Theorem 4.2. Let X be a real Hilbert space, let H : X → X be strongly
monotone (with a constant r > 0) and let M : X → 2X be H−maximal
monotone. Furthermore, we assume RMρk,HoH is (λ)−cocoercive with respect

to (I −RMρk,HoH) for λ > 1.

For an arbitrarily chosen initial point x0, suppose that the sequence {xk} is
generated by the proximal point algorithm (0 ≤ αk ≤ 1)

xk+1 = (1− αk)xk + αky
k ∀ k ≥ 0 (9)

such that

‖yk −RMρk,H(H(xk))‖ ≤ δk‖yk − xk‖,

where δk → 0 with Σ∞k=0δk <∞. Suppose that the sequence {xk} is bounded in
the sense that there exists at least one solution to (1). Then we have:

(i) For λ > 0, we have

‖RMρk,H(H(u))−RMρk,H(H(v))‖ ≤ 1

λ+ 1
‖u− v‖,

(ii) The sequence {xk} converges linearly to a solution of (1) for Σ∞k=0δk <
∞, αk ∈ [0, 1], ρ = inf ρk, and λ > 0.

Proof. The proof is analogous to Theorem 3.2, but we include a brief sketch
for the sake of the completeness. The proof of (ii) follows from (i)for λ > 0.

Suppose that x∗ is a zero of M. Note that any zero of M is a fixed of RMρk,HoH
by Theorem 4.1 all k. We define for all k

zk+1 = (1− αk)xk + αkR
M
ρk,H

(H(xk)).
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Next, we estimate using the above inequality

‖zk+1 − x∗‖ = ‖(1− αk)(xk − x∗) + αk(RMρk,A(H(xk))−RMρk,A(H(x∗)))‖

≤ (1− αk)‖xk − x∗‖+ αk‖RMρk,H(H(xk))−RMρk,A(H(x∗))‖

≤ (1− αk)‖xk − x∗‖+
αk
λ+ 1

‖k − x∗‖

= [1− αk(1− 1

λ+ 1)
)]‖xk − x∗‖.

Thus, it follows that
‖zk+1 − x∗‖ ≤ θ∗k‖xk − x∗‖,

where θ∗k = [1− αk(1− 1
λ+1 )] < 1.

Next we turn our attention to establish linear convergence. Since

xk+1 − xk = αk(yk −H(xk)),

we have

‖xk+1 − x∗‖ = ‖zk+1 − x∗ + xk+1 − zk+1‖

= ‖zk+1 − x∗ + αk(yk −RMρk,H(H(xk)))‖

≤ ‖zk+1 − x∗‖+ αk‖yk −RMρk,A(H(xk))‖

≤ ‖zk+1 − x∗‖+ αkδk‖yk − xk‖

= ‖zk+1 − x∗‖+ δk‖xk+1 − xk‖

≤ ‖zk+1 − x∗‖+ δk[‖xk+1 − x∗‖+ ‖xk − xk‖]

≤ θk∗‖xk − x∗‖+ δk[‖xk+1 − x∗‖+ ‖xk − xk‖].
Hence,

‖xk+1 − x∗‖ ≤ θ∗k + δk
1− δk

‖xk − x∗‖, (10)

where θ∗k = [1− αk(1− 1
λ+1 )] < 1. This completes the proof. �

5. Concluding remark

First of all, although the presence of constant (r−ρm) > 0 appears minimal
other than showing the resolvent is single-valued in Proposition 2.1, it is very
crucial for the convergence analysis. Because of the linear convergence concerns,
we had skip it completely during the proofs of Theorems 3.2 and 4.2 altogether
just to avoid the Lipschitz continuity of the mapping A. Moreover, proofs for
Theorems 3.2 and 4.2 seem to be more compact and application-oriented based
on the strong convergence achieved using the hybrid proximal point algorithm.

It seems the conclusions of Theorem 3.2 can further be applied to Douglas-
Rachford splitting methods for finding a zero of the sum of two A−maximal
relaxed monotone mappings since it turns out that it is a special case of the
proximal point algorithm. Among other applications of the Douglas-Rachford
splitting, such as the alternating direction method of multipliers for convex
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programming decomposition is also specializations of the proximal point algo-
rithm. It has been observed that the relaxation factor αk can be chosen greater
than 1, for example, αk = 1.5 for all k, the convergence rate may increase to a
given accuracy about 15% faster than the choice αk = 1 for all k.
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