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TWO-WEIGHTED CONDITIONS AND

CHARACTERIZATIONS FOR A CLASS OF MULTILINEAR

FRACTIONAL NEW MAXIMAL OPERATORS

Rui Li and Shuangping Tao

Abstract. In this paper, two weight conditions are introduced and the
multiple weighted strong and weak characterizations of the multilinear

fractional new maximal operator Mϕ,β are established. Meanwhile, we

introduce the S(~p,q),β(ϕ) and B(~p,q),β(ϕ) conditions and obtain the char-
acterization of two-weighted inequalities for Mϕ,β . Finally, the relation-

ships of the conditions S(~p,q),β(ϕ), A(~p,q),β(ϕ) and B(~p,q),β(ϕ) and the

characterization of the one-weight A(~p,q),β(ϕ) are given.

1. Introduction and main results

In 1974, Muckenhoupt and Wheeden first introduced the A(p,q)(Rn) weights
and studied weighted estimates of fractional type operators in [12]. In 2010,
a class of multiple fractional type weights A(~p,q)(Rn) was defined by Chen
and Xue in [4] and the strong and weak type multiple weighted estimates
of the multilinear fractional maximal operator Mα were given, here ~ω =
(ω1, ω2, . . . , ωm) ∈ A(~p,q)(Rn) if and only if

sup
Q∈Q

(
1

|Q|

∫
Q

(
m∏
i=1

ωi

)q
dx

) 1
q m∏
i=1

(
1

|Q|

∫
Q

ω
−p′i
i dx

) 1
p′
i
<∞,

where Q denotes the family of all cubes on Rn with sides parallel to the axes.
Simultaneously, the multiple fractional type weights A(~p,q)(Rn) were also in-
vestigated independently by Moen in [10]. In order to study the two-weighted
inequality for the multilinear fractional maximal operator Mα, the following
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A(~p,q) condition was also defined in [10]

[~ω, ν]A(~p,q)
= sup
Q∈Q
|Q|

α
n+ 1

q−
1
p

(
1

|Q|

∫
Q

νdx

) 1
q
m∏
i=1

(
1

|Q|

∫
Q

ω
1−p′i
i dx

) 1
p′
i
<∞.

It is proved that the A(~p,q) condition characterizes the boundedness ofMα from
Lp1(ω1)× Lp2(ω2)× · · · × Lpm(ωm) to Lq,∞(ν). Since then, the two-weighted
problem has been studied extensively, for example see [7, 14, 15]. In 2016, a
multilinear analogue of Sawyer’s two-weight test condition was given by Li and
Sun to warrant the boundedness of Mα as follows in [9]

[~ω, ν]S(~p,q)
= sup

Q∈Q

(∫
Q

Mα(σ1χQ, σ2χQ, . . . , σmχQ)qνdx

) 1
q

×

(
m∏
i=1

σi(Q)
1
pi

)−1

<∞,

where σi = ω
1−p′i
i (i = 1, 2, . . . ,m). In the same year, in order to obtain the

strong boundedness of Mα, Cao and Xue gave the following B(~p,q) condition
in [1]

[~ω, ν]B(~p,q)
= sup
Q∈Q
|Q|

α
n+ 1

q−
1
p

(
1

|Q|

∫
Q

νdx

) 1
q

(
m∏
i=1

1

|Q|

∫
Q

ωidx

)

× exp

(
1

|Q|

∫
Q

log

m∏
i=1

ω
− 1
pi

i dx

)
<∞.

In 2012, the new maximal operator Mϕ was introduced by Tang in [17] to
investigate the weighted Lp inequalities for the pseudo-differential operators
with smooth symbols and their commutators

Mϕf(x) = sup
x∈Q∈Q

1

ϕ(|Q|)|Q|

∫
Q

|f(y)|dy,

where ϕ(t) = (1 + t)γ for t ≥ 0 and γ ≥ 0, and the supremum is taken over all
the cubes Q. Now, we consider the following fractional new maximal operator
in [6]

Mϕ,βf(x) = sup
x∈Q∈Q

1

(ϕ(|Q|)|Q|)1−β

∫
Q

|f(y)|dy,

where 0 ≤ β < 1 and the supremum is taken over all the cubes Q. As β = 0,
we denote Mϕ,0 by Mϕ for simplicity, which is just the new maximal operator.
Obviously, as ϕ(|Q|) = 1, Mϕf(x) =: Mf(x) is called the Hardy-Littlewood
maximal operator.

Recently, to study the weighted norm inequalities for Mϕ,β , Hu and Cao
introduced a class of new weight function Ap,β(ϕ) in [6], which included the
classical Muckenhoupt weight Ap(Rn) in [11]. Let ω be a locally integrable
function on Rn which takes values in (0,∞) at almost everywhere. We say
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that ω ∈ Ap,β(ϕ) with 1 < p < ∞ and 0 ≤ β < 1 if there exists a constant
C > 0 such that for every cube Q,

1

(ϕ(|Q|)|Q|)1−β

(∫
Q

ω(x)dx

) 1
p
(∫

Q

ω(x)1−p′dx

) 1
p′

≤ C.

Also, ω belongs to A1,β(ϕ) (0 ≤ β < 1) means

1

(ϕ(|Q|)|Q|)1−β

∫
Q

ω(x)dx ≤ Cω(x).

To study the two-weighted inequalities of Mϕ,β in the multilinear setting,
we first give the following definition of the multilinear fractional new maximal
operator.

Definition 1.1. Let ~f = (f1, f2, . . . , fm) be a collection of locally integrable
functions and 0 ≤ β < 1. Then the multilinear fractional new maximal operator
is defined by

Mϕ,β(~f)(x) = sup
x∈Q∈Q

m∏
i=1

1

(ϕ(|Q|)|Q|)1−β

∫
Q

|fi(yi)|dyi,

where Q = Q(x, r) is denoted as a cube with sides parallel to the axes, x and r
denote its center and side length, and the supremum is taken over every cube
Q.

Remark 1.2. As β = 0, Mϕ,0 is called the multilinear new maximal operator
and will be denoted by Mϕ, which was introduced by Pan and Tang in [13].

Also, as ϕ(|Q|) = 1, Mϕ(~f)(x) =: M(~f)(x) is said the multilinear maximal
operator (see [8]). Noting that if β = α

mn (0 ≤ α < mn) and ϕ(|Q|) = 1, then

Mϕ,β(~f)(x) =: Mα(~f)(x) is just the multilinear fractional maximal operator
in [4].

Next, we introduce a class of new multiple weight functions A(~p,q),β(ϕ).

Definition 1.3. Let 0 ≤ β < 1, ~ω = (ω1, ω2, . . . , ωm) and ~p = (p1, p2, . . . , pm)
such that 1 ≤ p1, p2, . . . , pm < ∞. Suppose that 1

p = 1
p1

+ 1
p2

+ · · ·+ 1
pm

and

q > 0. Then ~ω is said to satisfy the A(~p,q),β(ϕ) condition if

sup
Q∈Q

(
1

(ϕ(|Q|)|Q|)1−β

∫
Q

(
m∏
i=1

ωi

)q
dx

) 1
q

×
m∏
i=1

(
1

(ϕ(|Q|)|Q|)1−β

∫
Q

ω
−p′i
i dx

) 1
p′
i
<∞,

where
(

1
(ϕ(|Q|)|Q|)1−β

∫
Q
ω
−p′i
i dx

) 1
p′
i in the case pi = 1 (i = 1, 2, . . . ,m) is un-

derstood as (infQ ωi)
−1.
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Remark 1.4. In one-weight case, it’s obvious that A(~p,q)(Rn) ⊂ A(~p,q),β(ϕ).
Specially, if m = 1, β = 0, and ϕ(|Q|) = 1, then the A(~p,q),β(ϕ) condition
will be degenerated to the classical A(p,q)(Rn) condition in [12]. Thus, the new
multiple weights A(~p,q),β(ϕ) are natural generalizations of the multiple weights
A(~p,q)(Rn) (see [4]) and the classical A(p,q)(Rn) weights (see [12]).

Now, we introduce the following two-weight conditions to study the charac-
terization of two-weighted inequalities for Mϕ,β .

Definition 1.5. Let 0 ≤ β < 1, 0 < q < ∞, and 1
p = 1

p1
+ 1

p2
+ · · ·+ 1

pm

with 1 ≤ p1, p2, . . . , pm < ∞. Suppose that σi = ω
1−p′i
i (i = 1, 2, . . . ,m),

~ω = (ω1, ω2, . . . , ωm) and each ωi and ν are nonnegative locally integrable
functions on Rn. Then

(i) we say that (~ω, ν) ∈ A(~p,q),β(ϕ) if

[~ω, ν]A(~p,q),β(ϕ) = sup
Q∈Q

(ϕ(|Q|)|Q|)mβ+ 1
q−

1
p

(
1

ϕ(|Q|)|Q|

∫
Q

νdx

) 1
q

×
m∏
i=1

(
1

ϕ(|Q|)|Q|

∫
Q

ω
1−p′i
i dx

) 1
p′
i
<∞;

(ii) we say that (~ω, ν) satisfies the B(~p,q),β(ϕ) condition if

[~ω, ν]B(~p,q),β(ϕ)

= sup
Q∈Q

(ϕ(|Q|)|Q|)mβ+ 1
q−

1
p

(
1

ϕ(|Q|)|Q|

∫
Q

νdx

) 1
q

×

(
m∏
i=1

1

ϕ(|Q|)|Q|

∫
Q

ωidx

)
exp

(
1

ϕ(|Q|)|Q|

∫
Q

log

m∏
i=1

ω
− 1
pi

i dx

)
<∞;

(iii) we say that (~ω, ν) ∈ S(~p,q),β(ϕ) if it satisfies

[~ω, ν]S(~p,q),β(ϕ) = sup
Q∈Q

(∫
Q

Mϕ,β(σ1χQ, σ2χQ, . . . , σmχQ)qνdx

) 1
q

×

(
m∏
i=1

σi(Q)
1
pi

)−1

<∞.

Remark 1.6. From the structure of Mα and the definitions of the conditions
A(~p,q), S(~p,q) and B(~p,q) in [10, 9, 1], it follows that the definitions of three
multiple two-weight conditions for Mϕ,β are natural. Taking q = p and

ν = ν~ω =
∏m
i=1 ωi

p
pi in (i), we say that ~ω satisfies the A~p,β(ϕ) condition.

As ϕ(|Q|) = 1 and β = α
mn (0 ≤ α < mn), then (~ω, ν) ∈ A(~p,q).

Definition 1.7 ([3]). Let ωi (i = 1, 2, . . . ,m) be nonnegative locally integrable
function on Rn, 1 < p1, p2, . . . , pm < ∞ and 1

p = 1
p1

+ 1
p2

+ · · ·+ 1
pm

. We say
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that ~ω belongs to W∞~p if

[~ω]W∞
~p

= sup
Q∈Q

(∫
Q

m∏
i=1

M(ωiχQ)
p
pi dx

)(∫
Q

m∏
i=1

ω
p
pi
i dx

)−1

<∞.

The main aim of this paper is to consider the multiple weighted strong
and weak type estimates for the multilinear fractional new maximal operator
and study the characterization of two-weighted inequalities for Mϕ,β . What
should be stressed is that the strong boundedness of Mα cannot be obtained
as (~ω, ν) ∈ A(~p,q) (see [10]). Thus, (~ω, ν) has to satisfy the following certain
power bump condition for some h > 1,

sup
Q∈Q
|Q|

α
n+ 1

q−
1
p

(
1

|Q|

∫
Q

νqdx

) 1
q
m∏
i=1

(
1

|Q|

∫
Q

ω
−hp′i
i dx

) 1
hp′
i
<∞.

To show the boundedness of Mα from Lp1(ω1) × Lp2(ω2) × · · · × Lpm(ωm)
into Lq(ν) in the two-weight A(~p,q) case, Cao and Xue added the condition
~σ ∈W∞~p in [1]. However, we can prove that Mϕ,β is bounded from Lp1(ω1)×
Lp2(ω2) × · · · × Lpm(ωm) to Lq(ν) if and only if [~ω, ν]A(~p,q),β(ϕ) < ∞, which

extends some results in [10] and [1]. Before to state our main results, we also
need the following definition.

Definition 1.8 ([3]). Let ωi (i = 1, 2, . . . ,m) be nonnegative locally inte-

grable function on Rn, σi = ω
1−p′i
i and 1

p = 1
p1

+ 1
p2

+ · · ·+ 1
pm

with 1 <

p1, p2, . . . , pm <∞. We say that ~ω ∈ RH~p if

[~ω]RH~p = sup
Q∈Q

m∏
i=1

(∫
Q

σidx

) p
pi

(∫
Q

m∏
i=1

σ
p
pi
i dx

)−1

<∞.

In what follows, we always assume that C is a positive constant which is
irrelevant to the main parameters, but it may take different values in different
lines. Occasionally, we will use the notation T : X → Y to mean T is a bounded
operator from X to Y .

Our main results are formulated as follows. We first give the multiple
weighted strong and weak characterizations for Mϕ,β .

Theorem 1.9. Let 0 ≤ β < 1, 1
p = 1

p1
+ 1

p2
+ · · ·+ 1

pm
with 1 ≤ p1, p2, . . . , pm

< ∞, and 0 < p ≤ q < ∞. Suppose that ~ω = (ω1, ω2, . . . , ωm) and ν are
nonnegative locally integrable functions on Rn. Then (~ω, ν) ∈ A(~p,q),β(ϕ) if
and only if Mϕ,β is bounded from Lp1(ω1) × Lp2(ω2) × · · · × Lpm(ωm) into
Lq,∞(ν).

Theorem 1.10. Let 0 ≤ β < 1, 0 < p ≤ q < ∞, and 1
p = 1

p1
+ 1

p2
+ · · ·+ 1

pm

with 1 < p1, p2, . . . , pm < ∞. Suppose that ωi (i = 1, 2, . . . ,m) and ν are
weights. Then Mϕ,β is bounded from Lp1(ω1)× Lp2(ω2)× · · · × Lpm(ωm) into
Lq(ν) if and only if (~ω, ν) ∈ A(~p,q),β(ϕ).
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In addition, the two-weighted inequalities of Mϕ,β are obtained as follows.

Theorem 1.11. Let ωi (i = 1, 2, . . . ,m) and ν be weights, σi = ω
1−p′i
i ,

and ~ω ∈ RH~p. Suppose that 0 ≤ β < 1, 1
p = 1

p1
+ 1

p2
+ · · ·+ 1

pm
with

1 < p1, p2, . . . , pm < ∞, and 0 < p ≤ q < ∞. Then the following statements
are equivalent:

(i) (~ω, ν) ∈ S(~p,q),β(ϕ).
(ii) Mϕ,β : Lp1(ω1)× Lp2(ω2)× · · · × Lpm(ωm)→ Lq(ν).

Moreover, there exists a positive constant C such that

[~ω, ν]S(~p,q),β(ϕ) ≤ ‖Mϕ,β‖Lp1 (ω1)×Lp2 (ω2)×···×Lpm (ωm)→Lq(ν)

≤ C[~ω]
1
p

RH~p
[~ω, ν]S(~p,q),β(ϕ).

Theorem 1.12. Let 0 ≤ β < 1, 0 < p ≤ q < ∞, 0 < r < 1, and
1
p = 1

p1
+ 1

p2
+ · · ·+ 1

pm
with 1 < p1, p2, . . . , pm < ∞. Suppose that ~ω =

(ω1, ω2, . . . , ωm) and ν are weights, σi = ω
1−p′i
i (i = 1, 2, . . . ,m), and (~σ, ν) ∈

B(~p,q),β(ϕ). Then there is a positive constant C such that

‖Mϕ,β(~f)‖Lq(ν) ≤ C[~σ, ν]B(~p,q),β(ϕ)

m∏
i=1

‖fi‖Lpi (ωi).

Now, we have the following relationships of the conditions S(~p,q),β(ϕ),
A(~p,q),β(ϕ) and B(~p,q),β(ϕ).

Theorem 1.13. Let ω1, ω2, . . . , ωm and ν be weights, σi = ω
1−p′i
i (i = 1, 2, . . .,

m). Suppose that 0 ≤ β < 1, 1
p = 1

p1
+ 1

p2
+ · · ·+ 1

pm
with 1 < p1, p2, . . . , pm <

∞, and 0 < p ≤ q <∞. Then
(i) There exists a positive constant C such that for any 0 < r < 1 there holds

[~ω, ν]A(~p,q),β(ϕ) ≤ [~ω, ν]S(~p,q),β(ϕ) ≤ C[~σ, ν]B(~p,q),β(ϕ).

(ii) If m = 1, ν = ω, β = 0, and q = p, then

[~σ, ν]B(~p,q),β(ϕ) ≤ [ω]
p
p−1

Ap,β(ϕ).

Finally, we obtain the following characterization of the one-weight A(~p,q),β(ϕ).

Theorem 1.14. Let 0 ≤ β ≤ γ
1+γ , 0 < p ≤ q <∞, and 1

p = 1
p1

+ 1
p2

+ · · ·+ 1
pm

with 1 < p1, p2, . . . , pm < ∞. If ~ω ∈ A(~p,q),β(ϕ), then for i = 1, 2, . . . ,m,

ω
−p′i
i ∈ Amp′i,β(ϕ) and (

∏m
i=1 ωi)

q ∈ Amq,β(ϕ).

The article is organized as follows: Section 2 is devoted to giving some major
lemmas. The proofs of Theorems 1.9 and 1.10 will be given in Section 3. The
proof of Theorem 1.11 is given in Section 4. In Section 5, we show the proof of
Theorem 1.12 by using a key lemma. By combining Theorem 1.11 and Theorem
1.12, the proofs of Theorems 1.13 and 1.14 shall be given in Section 6.
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2. Some preliminaries

In this section, we first recall the notions of tent spaces. Let X be the cone
[0,∞)n minus the set of dyadic points, that is

X = [0,∞)n \ {(2−lk1, 2
−lk2, . . . , 2

−lkn) : l ∈ Z, ki ∈ N}.

X̃ = X × {2−l : l ∈ Z} denotes the upper half-space. Then for every couple

(y, ρ) ∈ X̃, there exists only dyadic cube Q = Qyρ which has the side length

ρ = 2−l and contains y. Write (y, ρ) ∈ Γ̃(x) if and only if x ∈ Qyρ.
For any E ⊂ [0,∞)n, define

Ê =

( ⋃
x∈Ec

Γ̃(x)

)c
.

Thus,

(y, ρ) ∈ Ê if and only if Qyρ ⊂ E.

We need the following lemmas, which are vital to the proofs of our theorems.

Lemma 2.1 ([1]). Let ν be a nonnegative locally integrable function on Rn

and 0 < p <∞. Then for all functions f̃i(y, ρ = 2−l) with a support contained

on Q̂[0, θ], there exist nonnegative scalars {λj}∞j=1, functions {ãj(y, ρ)}∞j=1 and
dyadic cubes {Qj}∞j=1 such that

supp ãj are disjoint and |ãj(y, ρ)| ≤ ν(Qj)
− 1
p χ̃

Q̂j
(y, ρ);(2.1)

m∏
i=1

f̃i(y, ρ) =
∑
j

λj ãj(y, ρ) a.e..(2.2)

Lemma 2.2. Let 0 ≤ β < 1 and x, t ∈ Rn. For any k ≥ 0 and ~f =
(f1, f2, . . . , fm) ≥ 0, we define the following truncated version maximal op-
erator,

M(k)
ϕ,β(~f)(x) = sup

x∈Q∈Q,|Q|≤2k

m∏
i=1

1

(ϕ(|Q|)|Q|)1−β

∫
Q

|fi(yi)|dyi.

Then there is C > 0 such that

M(k)
ϕ,β(~f)(x) ≤ C

|Bk|

∫
Bk

τ−t ◦Md
ϕ,β ◦ ~τt(~f)(x)dt,

where Bk = [−2k+2, 2k+2]n, τtf(x) = f(x−t), and ~τt ~f = (τtf1, τtf2, . . . , τtfm).

Proof. Using the similar arguments as the proof of [2, Lemma 3.3], we can
derive the conclusion of Lemma 2.2. Thus, the details are omitted here. �
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3. Proofs of Theorems 1.9 and 1.10

Proof of Theorem 1.9. We only consider the case as 1<pi<∞ (i=1, 2, . . . ,m)
because with the minor modifications for the case of some pi = 1 as in the
linear situation. Let (~ω, ν) ∈ A(~p,q),β(ϕ) and ‖fi‖Lpi (ωi) = 1 (i = 1, 2, . . . ,m).
Then using Hölder’s inequality, we have(

m∏
i=1

1

(ϕ(|Q|)|Q|)1−β

∫
Q

|fi|

)q
ν(Q)

≤ (ϕ(|Q|)|Q|)q(mβ+ 1
q−

1
p )

(
1

ϕ(|Q|)|Q|

∫
Q

ν

)[ m∏
i=1

(
1

ϕ(|Q|)|Q|

∫
Q

ω
1−p′i
i

) 1
p′
i

×
(∫

Q

|fi|piωi
) 1
pi

]q

≤ C
m∏
i=1

(∫
Q

|fi|piωi
) q
pi

.

Since ‖fi‖Lpi (ωi) = 1, then
∏m
i=1

(∫
Q
|fi|piωi

) 1
pi ≤ 1. Thus,

m∏
i=1

1

(ϕ(|Q|)|Q|)1−β

∫
Q

|fi| ≤
C

ν(Q)
1
q

(
m∏
i=1

(∫
Q

|fi|piωi
) 1
pi

) p
q

.

Therefore,

Mϕ,β(~f)(x) ≤ C

(
m∏
i=1

(
M c
ν

(
|fi|piωi
ν

)
(x)

) 1
pi

) p
q

,

where M c
ν is the weighted centered maximal function. Applying the fact that

M c
ν is of weak type (1,1) with respect to ν, and weak-type Hölder’s inequality

in [5], we have

‖Mϕ,β(~f)‖Lq,∞(ν) ≤ C

∥∥∥∥∥
m∏
i=1

(
M c
ν

(
|fi|piωi
ν

)) 1
pi

∥∥∥∥∥
p
q

Lp,∞(ν)

≤ C

(
m∏
i=1

∥∥∥∥M c
ν

(
|fi|piωi
ν

)∥∥∥∥ 1
pi

L1,∞(ν)

) p
q

≤ C.

For general fi, if we replace fi → fi
‖fi‖Lpi (ωi)

(i = 1, 2, . . . ,m), then

‖Mϕ,β(~f)‖Lq,∞(ν) ≤ C
m∏
i=1

‖fi‖Lpi (ωi).
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Conversely, suppose that Mϕ,β is bounded from Lp1(ω1)× Lp2(ω2)× · · · ×
Lpm(ωm) into Lq,∞(ν). Then for any λ > 0, there holds

ν({x ∈ Rn :Mϕ,β(~f)(x) > λ}) ≤

(
C

λ

m∏
i=1

‖fi‖Lpi (ωi)

)q
.

Let fi ≥ 0. Fix a cube Q with
∏m
i=1(fi)Q,ϕ,β > 0, where (fi)Q,ϕ,β =:

1
(ϕ(|Q|)|Q|)1−β

∫
Q
fidx. For x ∈ Q, from the definition of Mϕ,β , we have

m∏
i=1

(fi)Q,ϕ,β ≤Mϕ,β(f1χQ, f2χQ, . . . , fmχQ)(x).

If
∏m
i=1(fi)Q,ϕ,β > λ, then using the above inequality, we have

Q ⊂ {x ∈ Rn :Mϕ,β(f1χQ, f2χQ, . . . , fmχQ)(x) > λ}.

Hence,

ν(Q) ≤ ν({x ∈ Rn :Mϕ,β(f1χQ, f2χQ, . . . , fmχQ)(x) > λ})

≤

(
C

λ

m∏
i=1

‖fi‖Lpi (ωi)

)q
.

Set fi = ω
1−p′i
i . Then

(ϕ(|Q|)|Q|)mβ+ 1
q−

1
p

(
1

ϕ(|Q|)|Q|

∫
Q

ν

) 1
q
m∏
i=1

(
1

ϕ(|Q|)|Q|

∫
Q

ω
1−p′i
i

) 1
p′
i ≤ C.

Therefore, (~ω, ν) ∈ A(~p,q),β(ϕ). The proof is complete. �

Proof of Theorem 1.10. LetMϕ,β be bounded from Lp1(ω1)×Lp2(ω2)× · · · ×
Lpm(ωm) into Lq(ν). Then the following inequality holds(∫

Q

(
Mϕ,β(~f)

)q
ν

) 1
q

≤ C
m∏
i=1

(∫
Q

|fi|piωi
) 1
pi

.

Assume that fi = ω
1−p′i
i ≥ 0. Then

(ϕ(|Q|)|Q|)mβ+ 1
q−

1
p

(
1

ϕ(|Q|)|Q|

∫
Q

ν

) 1
q
m∏
i=1

(
1

ϕ(|Q|)|Q|

∫
Q

ω
1−p′i
i

) 1
p′
i ≤ C.

Therefore, we can obtain that (~ω, ν) ∈ A(~p,q),β(ϕ).
Conversely, suppose that (~ω, ν) ∈ A(~p,q),β(ϕ). We first prove the bound-

edness for the dyadic version,

Md
ϕ,β(~f)(x) = sup

x∈Q∈D

m∏
i=1

1

(ϕ(|Q|)|Q|)1−β

∫
Q

|fi(yi)|dyi,
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where D denotes the standard dyadic grid on Rn consists of the cubes
2−k([0, 1)n + j), k ∈ Z, j ∈ Zn. Let a be a constant such that a > 2mn.
We take the following set,

Ωk = {x ∈ Rn :Md
ϕ,β(~f)(x) > ak}.

If Ωk is non-empty, then we write Ωk =
⋃
j Qkj and every Qkj is a maximal

dyadic cube satisfying

ak <

m∏
i=1

1

(ϕ(|Qkj |)|Qkj |)1−β

∫
Qkj

|fi(yi)|dyi ≤ 2mnak.

By the properties of dyadic cubes, we know that Ωk+1 ⊆ Ωk and Q(k+1)j ⊂
Qkj for some j. Thus, it follows from Hölder’s inequality and the A(~p,q),β(ϕ)
condition that(∫

Rn

(
Md

ϕ,β(~f)
)q
ν

) 1
q

(3.1)

=

(∑
k

∫
Ωk\Ωk+1

(
Md

ϕ,β(~f)
)q
ν

) 1
q

≤ a

∑
kj

(
m∏
i=1

1

(ϕ(|Qkj |)|Qkj |)1−β

∫
Qkj

|fi|ω
p′i−1

p′
i

i ω

1−p′i
p′
i

i

)q

×

(∫
Qkj

ν

)) 1
q

≤ C
∑
kj

 m∏
i=1

(
1

(ϕ(|Qkj |)|Qkj |)1−β

∫
Qkj

|fi|piωi

) q
pi

×

(
1

(ϕ(|Qkj |)|Qkj |)1−β

∫
Qkj

ω
1−p′i
i

) q

p′
i

(∫
Qkj

ν

) 1
q

≤ C[~ω, ν]A(~p,q),β(ϕ)

∑
kj

 m∏
i=1

(∫
Qkj

|fi|piωi

) q
pi

 1
q

≤ C[~ω, ν]A(~p,q),β(ϕ)

m∏
i=1

(∫
Rn
|fi|piωi

) 1
pi

.

For non-dyadic version, from Minkowski’s inequality and Lemma 2.2, it fol-
lows that

‖M(k)
ϕ,β(~f)‖Lq(ν) ≤

C

|Bk|

∥∥∥∥∫
Bk

τ−t ◦Md
ϕ,β ◦ ~τt(~f)dt

∥∥∥∥
Lq(ν)

(3.2)
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≤ C

|Bk|

∫
Bk

‖τ−t ◦Md
ϕ,β ◦ ~τt(~f)‖Lq(ν)dt

≤ C

|Bk|

∫
Bk

‖Md
ϕ,β~τt(

~f)‖Lq(τtν)dt.

Since (~ω, ν) ∈ A(~p,q),β(ϕ), then we can get that (~τt~ω, τtν) ∈ A(~p,q),β(ϕ) inde-
pendently of t. Therefore, by the inequalities (3.1) and (3.2) we have

‖M(k)
ϕ,β(~f)‖Lq(ν) ≤ C[~τt~ω, τtν]A(~p,q),β(ϕ)

1

|Bk|

∫
Bk

m∏
i=1

‖τtfi‖Lpi (τtωi)dt

≤ C[~ω, ν]A(~p,q),β(ϕ)

m∏
i=1

‖fi‖Lpi (ωi).

Finally, letting k tend to infinity, the proof of Theorem 1.10 is finished. �

4. Proof of Theorem 1.11

To obtain the conclusions of Theorem 1.11, we need the following lemma.

Lemma 4.1. Let 0 ≤ β < 1, 1
p = 1

p1
+ 1

p2
+ · · ·+ 1

pm
with 1 < p1, p2, . . . , pm <

∞. Suppose that ωi (i = 1, 2, . . . ,m) is nonnegative locally integrable function

on Rn, σi = ω
1−p′i
i , and ~ω ∈ RH~p. Then there exists a positive constant C such

that for all ~f ∈ Lp1(ω1)× Lp2(ω2)× · · · × Lpm(ωm), one can find dyadic cubes
{Qj}∞j=1 and nonnegative scalars {λj}∞j=1 satisfying∑

j

λpj

 1
p

≤ C
m∏
i=1

‖fi‖Lpi (ωi);(4.1)

Md,θ
ϕ,β(~f)(x)χ(0,θ)n(x) ≤ [~ω]

1
p

RH~p

∑
j

λj

m∏
i=1

σi(Qj)
− 1
pi(4.2)

×Md
ϕ,β(σ1χQj , . . . , σmχQj )(x)χQj (x)

for almost everywhere x ∈ (0,∞)n, where the truncated dyadic version maximal

operator Md,θ
ϕ,β is defined by

Md,θ
ϕ,β(~f)(x) = sup

x∈Q∈D,Q⊂(0,θ)n

m∏
i=1

1

(ϕ(|Q|)|Q|)1−β

∫
Q

|fi(yi)|dyi.

Proof. Since the inequality (4.1) has already been proved in [1], so we only
need to show the inequality (4.2). Write

f̃i(y, ρ) =
1

σi(Qyρ)

∫
Qyρ

|fi/σi|σidx.
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Then

Md,θ
ϕ,β(~f)(x) = sup

x∈Qyρ∈D,Qyρ⊂(0,θ)n

m∏
i=1

σi(Qyρ)

(ϕ(|Qyρ|)|Qyρ|)1−β f̃i(y, ρ).

Set ν = ν~σ =
∏m
i=1 σ

p
pi
i in Lemma 2.1. Then from the inequalities (2.1) and

(2.2), we have

m∏
i=1

σi(Qyρ)

(ϕ(|Qyρ|)|Qyρ|)1−β f̃i(y, ρ)

=
∑
j

λj ãj(y, ρ)

m∏
i=1

σi(Qyρ)

(ϕ(|Qyρ|)|Qyρ|)1−β

≤
∑
j

λj

(∫
Qj

m∏
i=1

σ
p
pi
i

)− 1
p m∏
i=1

σi(Qyρ)

(ϕ(|Qyρ|)|Qyρ|)1−β χ̃Q̂j (y, ρ)

≤ [~ω]
1
p

RH~p

∑
j

λj

(
m∏
i=1

σi(Qj)
− 1
pi

)
m∏
i=1

σi(Qyρ)

(ϕ(|Qyρ|)|Qyρ|)1−β χ̃Q̂j (y, ρ)

≤ [~ω]
1
p

RH~p

∑
j

λj

m∏
i=1

σi(Qj)
− 1
piMd

ϕ,β(σ1χQj , . . . , σmχQj )(x)χQj (x).

Therefore,

Md,θ
ϕ,β(~f)(x)χ(0,θ)n(x)

≤ [~ω]
1
p

RH~p

∑
j

λj

m∏
i=1

σi(Qj)
− 1
piMd

ϕ,β(σ1χQj , . . . , σmχQj )(x)χQj (x).

The proof is finished. �

Proof of Theorem 1.11. (ii)⇒(i). By the boundedness ofMϕ,β from Lp1(ω1)×
Lp2(ω2)× · · · × Lpm(ωm) to Lq(ν) and σi = ω

1−p′i
i (i = 1, 2, . . . ,m), we have

[~ω, ν]S(~p,q),β(ϕ) ≤ sup
Q∈Q
‖Mϕ,β‖Lp1 (ω1)×Lp2 (ω2)×···×Lpm (ωm)→Lq(ν)

×
m∏
i=1

‖σiχQ‖Lpi (ωi)

(
m∏
i=1

σi(Q)
1
pi

)−1

= sup
Q∈Q
‖Mϕ,β‖Lp1 (ω1)×Lp2 (ω2)×···×Lpm (ωm)→Lq(ν).

Therefore, we can get that (~ω, ν) ∈ S(~p,q),β(ϕ).
(i)⇒(ii). We first prove the dyadic version, that is, we need to show

‖Md
ϕ,β(~f)‖Lq(ν) ≤ C[~ω]

1
p

RH~p
[~ω, ν]S(~p,q),β(ϕ)

m∏
i=1

‖fi‖Lpi (ωi).(4.3)
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By using reflections and translations of the cone [0,∞)n as done in [16], it is
sufficient to show

‖Md,θ
ϕ,β(~f)χ(0,θ)n‖Lq(ν) ≤ C[~ω]

1
p

RH~p
[~ω, ν]S(~p,q),β(ϕ)

m∏
i=1

‖fi‖Lpi (ωi).

From the S(~p,q),β(ϕ) condition, the inequalities (4.1) and (4.2), and Minkowski’s
inequality, we have

‖Md,θ
ϕ,β(~f)χ(0,θ)n‖pLq(ν)

= ‖Md,θ
ϕ,β(~f)pχ(0,θ)n‖

L
q
p (ν)

≤ [~ω]RH~p
∑
j

λpj

m∏
i=1

σi(Qj)
− p
pi

(∫
Qj

Md
ϕ,β(σ1χQj , . . . , σmχQj )

qνdx

) p
q

≤ [~ω]RH~p [~ω, ν]pS(~p,q),β(ϕ)

∑
j

λpj

≤ C[~ω]RH~p [~ω, ν]pS(~p,q),β(ϕ)

m∏
i=1

‖fi‖pLpi (ωi).

For non-dyadic version, since (~ω, ν) ∈ S(~p,q),β(ϕ) and ~ω ∈ RH~p, then we
know that (~τt~ω, τtν) ∈ S(~p,q),β(ϕ) and ~τt~ω ∈ RH~p independently of t. Thus, by
the inequalities (3.2) and (4.3), we have

‖M(k)
ϕ,β(~f)‖Lq(ν) ≤ C[~τt~ω]

1
p

RH~p
[~τt~ω, τtν]S(~p,q),β(ϕ)

1

|Bk|

∫
Bk

m∏
i=1

‖τtfi‖Lpi (τtωi)dt

= C[~ω]
1
p

RH~p
[~ω, ν]S(~p,q),β(ϕ)

m∏
i=1

‖fi‖Lpi (ωi).

Finally, letting k tend to infinity, this completes the proof of Theorem 1.11. �

5. Proof of Theorem 1.12

Before proving Theorem 1.12, we first give the following lemma, which can
be obtained by applying the similar arguments as the proofs of Lemma 4.1 and
[1, Lemma 5.1]. Thus, the details are omitted here.

Lemma 5.1. Let 0 ≤ β < 1, 1
p = 1

p1
+ 1

p2
+ · · ·+ 1

pm
with 1 < p1, p2, . . . , pm <

∞. Suppose that ω1, ω2, . . . , ωm are weights and 0 < r < 1. Then there
is a positive constant C such that for almost everywhere x ∈ (0,∞)n and
~f ∈ Lp1(ω1)× Lp2(ω2)× · · · × Lpm(ωm), one can find functions {ãj(y, ρ)}∞j=1,
dyadic cubes {Qj}∞j=1, and nonnegative scalars {λj}∞j=1 satisfying

|ãj(y, ρ)|(5.1)

≤ (ϕ(|Qj |)|Qj |)−
1
p exp

(
1

ϕ(|Qj |)|Qj |

∫
Qj

log

m∏
i=1

σ
− 1
pi

i dx

)
χ̃
Q̂j

(y, ρ);
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m∏
i=1

f̃i(y, ρ) =
∑
j

λj ãj(y, ρ) a.e.;(5.2)

∑
j

λpj

 1
p

≤ C
m∏
i=1

‖fi‖Lpi (ωi);(5.3)

Md,θ
ϕ,β(~f)(x)χ(0,θ)n(x)(5.4)

≤
∑
j

λj(ϕ(|Qj |)|Qj |)−
1
p

(
m∏
i=1

σi(Qj)

(ϕ(|Qj |)|Qj |)1−β

)

× exp

(
1

ϕ(|Qj |)|Qj |

∫
Qj

log

m∏
i=1

σ
− 1
pi

i dx

)
χQj(x).

Proof of Theorem 1.12. Proceeding as we did in the proof of Theorem 1.11, in
order to prove Theorem 1.12, then it is enough to show the following inequality

‖Md,θ
ϕ,β(~f)χ(0,θ)n‖Lq(ν) ≤ C[~σ, ν]B(~p,q),β(ϕ)

m∏
i=1

‖fi‖Lpi (ωi).

From the B(~p,q),β(ϕ) condition, Minkowski’s inequality, and the inequalities
(5.3) and (5.4), it follows that

‖Md,θ
ϕ,β(~f)χ(0,θ)n‖pLq(ν)

= ‖Md,θ
ϕ,β(~f)pχ(0,θ)n‖

L
q
p (ν)

≤

∥∥∥∥∥∥
∑
j

λpj (ϕ(|Qj |)|Qj |)−1

((
m∏
i=1

σi(Qj)

(ϕ(|Qj |)|Qj |)1−β

)

× exp

(
1

ϕ(|Qj |)|Qj |

∫
Qj

log

m∏
i=1

σ
− 1
pi

i dx

))p
χQj

∥∥∥∥∥
L
q
p (ν)

≤
∑
j

λpj

(ϕ(|Qj |)|Qj |)mβ+ 1
q−

1
p

(
1

ϕ(|Qj |)|Qj |

∫
Qj

νdx

) 1
q

×

(
m∏
i=1

1

ϕ(|Qj |)|Qj |

∫
Qj

σidx

)
exp

(
1

ϕ(|Qj |)|Qj |

∫
Qj

log

m∏
i=1

σ
− 1
pi

i dx

))p

≤ C[~σ, ν]pB(~p,q),β(ϕ)

m∏
i=1

‖fi‖pLpi (ωi).

The proof is complete. �
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6. Proofs of Theorems 1.13 and 1.14

Proof of Theorem 1.13. First, we prove (i) is true. By the A(~p,q),β(ϕ) condition
and the S(~p,q),β(ϕ) condition, we have

(ϕ(|Q|)|Q|)mβ+ 1
q−

1
p

(
1

ϕ(|Q|)|Q|

∫
Q

νdx

) 1
q
m∏
i=1

(
1

ϕ(|Q|)|Q|

∫
Q

ω
1−p′i
i dx

) 1
p′
i

=

(∫
Q

(
m∏
i=1

σi(Q)

(ϕ(|Q|)|Q|)1−β

)q
νdx

) 1
q m∏
i=1

(∫
Q

σidx

)− 1
pi

≤
(∫

Q

Mϕ,β(σ1χQ, σ2χQ, . . . , σmχQ)qνdx

) 1
q

(
m∏
i=1

σi(Q)
1
pi

)−1

≤ [~ω, ν]S(~p,q),β(ϕ).

Thus,

[~ω, ν]A(~p,q),β(ϕ) ≤ [~ω, ν]S(~p,q),β(ϕ).

Combining Theorem 1.11 and Theorem 1.12, we have

[~ω, ν]S(~p,q),β(ϕ) ≤ ‖Mϕ,β‖Lp1 (ω1)×Lp2 (ω2)×···×Lpm (ωm)→Lq(ν) ≤ C[~σ, ν]B(~p,q),β(ϕ).

Now, we prove (ii) holds. Let β = 0, q = p, m = 1, and ν = ω. Applying

Jensen’s inequality and σi = ω
1−p′i
i (i = 1, 2, . . . ,m), we have

(ϕ(|Q|)|Q|)mβ+ 1
q−

1
p

(
1

ϕ(|Q|)|Q|

∫
Q

νdx

) 1
q

(
m∏
i=1

1

ϕ(|Q|)|Q|

∫
Q

σidx

)

× exp

(
1

ϕ(|Q|)|Q|

∫
Q

log

m∏
i=1

σ
− 1
pi

i dx

)

=

((
1

ϕ(|Q|)|Q|

∫
Q

ωdx

)(
1

ϕ(|Q|)|Q|

∫
Q

ω1−p′dx

)p−1
) 1
p−1

×

((
1

ϕ(|Q|)|Q|

∫
Q

ωdx

)−1

exp

(
1

ϕ(|Q|)|Q|

∫
Q

logωdx

)) 1
p(p−1)

≤ [ω]
p
p−1

Ap,β(ϕ).

Thus, [~σ, ν]B(~p,q),β(ϕ) ≤ [ω]
p
p−1

Ap,β(ϕ). The proof of Theorem 1.13 is complete. �

Proof of Theorem 1.14. We first consider ω
−p′i
i ∈ Amp′i,β(ϕ) (i = 1, 2, . . . ,m).

Let hi = p(m − 1
p′i

) and hj =
hip
′
j

p (1 ≤ j 6= i ≤ m). Then 1 < hj < ∞ and
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hi
p = m− 1

p′i
= 1

p +
∑

1≤j 6=i≤m

1
p′j

. Noting that 0 ≤ β ≤ γ
1+γ , then

|Q|
(ϕ(|Q|)|Q|)1−β =

|Q|β

(1 + |Q|)γ(1−β)
≤
(
|Q|

1 + |Q|

)β
≤ 1.(6.1)

Hence,

1

(ϕ(|Q|)|Q|)1−β

(∫
Q

ω
−p′i
i

) 1
mp′

i

(∫
Q

ω

p′i
mp′

i
−1

i

)mp′i−1

mp′
i

=

(
1

(ϕ(|Q|)|Q|)1−β

∫
Q

ω
−p′i
i

) 1
mp′

i

×

 1

(ϕ(|Q|)|Q|)1−β

∫
Q

 m∏
j=1

ωj


p
hi
∏
j 6=i

ωj

−
p
hi


hi
mp

,

where, 1

(ϕ(|Q|)|Q|)1−β

∫
Q

 m∏
j=1

ωj


p
hi
∏
j 6=i

ωj

−
p
hi


hi
mp

≤

 1

(ϕ(|Q|)|Q|)1−β

∫
Q

 m∏
j=1

ωj

p
1
hi ∏

j 6=i

(∫
Q

ω
−p′j
j

) 1
hj


hi
mp

=


 1

(ϕ(|Q|)|Q|)1−β

∫
Q

 m∏
j=1

ωj

p
1
p ∏
j 6=i

(
1

(ϕ(|Q|)|Q|)1−β

∫
Q

ω
−p′j
j

) 1
p′
j


1
m

≤


 1

(ϕ(|Q|)|Q|)1−β

∫
Q

 m∏
j=1

ωj

q
1
q ∏
j 6=i

(
1

(ϕ(|Q|)|Q|)1−β

∫
Q

ω
−p′j
j

) 1
p′
j


1
m

,

here we have used that the inequality (6.1) and Hölder’s inequality. Therefore,

1

(ϕ(|Q|)|Q|)1−β

(∫
Q

ω
−p′i
i

) 1
mp′

i

(∫
Q

ω

p′i
mp′

i
−1

i

)mp′i−1

mp′
i

≤


 1

(ϕ(|Q|)|Q|)1−β

∫
Q

 m∏
j=1

ωj

q
1
q
m∏
j=1

(
1

(ϕ(|Q|)|Q|)1−β

∫
Q

ω
−p′j
j

) 1
p′
j


1
m
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≤ C.

Now, we consider (
∏m
i=1 ωi)

q ∈ Amq,β(ϕ). Let qi = qpi
p (i = 1, 2, . . . ,m).

Since q≥p, then qi≥pi, 1
q = 1

q1
+ 1
q2

+· · ·+ 1
qm

, and m− 1
q = 1

q′1
+ 1

q′2
+ · · ·+ 1

q′m
.

Set ri = q′i(m− 1
q ) > 1. Thus, using the inequality (6.1) and Hölder’s inequality,

we obtain

1

(ϕ(|Q|)|Q|)1−β

(∫
Q

(
m∏
i=1

ωi

)q) 1
mq

∫
Q

(
m∏
i=1

ωi

)− q
mq−1


mq−1
mq

≤

(
1

(ϕ(|Q|)|Q|)1−β

∫
Q

(
m∏
i=1

ωi

)q) 1
mq
(

m∏
i=1

(
1

(ϕ(|Q|)|Q|)1−β

∫
Q

ω
−q′i
i

) 1
q′
i

) 1
m

≤

( 1

(ϕ(|Q|)|Q|)1−β

∫
Q

(
m∏
i=1

ωi

)q) 1
q m∏
i=1

(
1

(ϕ(|Q|)|Q|)1−β

∫
Q

ω
−p′i
i

) 1
p′
i


1
m

≤ C.

This completes the proof of Theorem 1.14. �
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