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BOUNDEDNESS OF THE STRONG MAXIMAL OPERATOR

WITH THE HAUSDORFF CONTENT

Hiroki Saito

Abstract. Let n be the spatial dimension. For d, 0 < d ≤ n, let Hd

be the d-dimensional Hausdorff content. The purpose of this paper is
to prove the boundedness of the dyadic strong maximal operator on the

Choquet space Lp(Hd,Rn) for min(1, d) < p. We also show that our

result is sharp.

1. Introduction

The purpose of this paper is to prove the boundedness of the strong maximal
function on the Choquet spaces. For a locally integrable function f on Rn, the
strong maximal operator MS is defined by

MSf(x) := sup
R

1R(x)−
∫
R

|f(y)|dy,

where the supremum is taken over all rectangles in Rn whose sides are parallel
to the coordinate axes and the barred integral −

∫
R
f dx stands for the usual

integral average of f over R. 1R denotes the characteristic function of R. As
usual, we can reduce the problem to the dyadic situation. We denote by D(R)
the family of all dyadic intervals in R, that is,

D(R) = {2k(m+ [0, 1)) : k,m ∈ Z}.
Then elements of R = D(R)×D(R)× · · ·×D(R) = {

∏n
k=1 Ik : Ik ∈ D(R)} are

called the dyadic rectangles. On the other hand, we denote the usual dyadic
cubes by D(Rn), i.e.,

D(Rn) = {2k(m+ [0, 1)n) : k ∈ Z,m ∈ Zn}.
We define the dyadic strong maximal function by

MSf(x) = sup
R∈R

1R(x)−
∫
R

|f(y)|dy,
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where the supremum is taken over all dyadic rectangles in R.
If E ⊂ Rn and 0 < d ≤ n, then the d-dimensional Hausdorff content Hd of

E is defined by

Hd(E) := inf

∞∑
j=1

l(Qj)
d,

where the infimum is taken over all coverings of E by countable families of
dyadic cubes Qj and l(Q) denotes the side length of the cube Q. In [2], for
the Hardy-Littlewood maximal operator M , Orobitg and Verdera proved the
strong type inequality

(1.1)

∫
Rn

(Mf)p dHd ≤ C
∫
Rn

|f |p dHd

for d/n < p <∞, and the weak type inequality

sup
t>0

tHd({x ∈ Rn : Mf(x) > t})1/p ≤ C
∫
Rn

|f |p dHd, t > 0,

for p = d/n. Here, the integrals are taken in the Choquet sense, that is, the
Choquet integral of f ≥ 0 with respect to a set function C is defined by∫

Rn

f dC :=

∫ ∞
0

C({x ∈ Rn : f(x) > t}) dt.

Formerly, Adams proved the strong type estimate for p = 1 and 0 < d < n in
[1] by using duality of BMO and the Hardy space H1 among other things.

In this note, we prove the following strong type inequality for MS .

Theorem 1.1. Let 0 < d ≤ n. Then for min(1, d) < p <∞, we have∫
Rn

(MSf)p dHd ≤ C
∫
Rn

|f |dHd.

Moreover, the exponent p is sharp.

Remark 1.2. (1) Using the standard dyadic argument, we can prove the same
inequality for MS . Further, one may expect to establish the weak type
estimate for p = min(1, d). But we cannot prove it until now, and further
refinement of the known proofs for the endpoint estimate for the strong
maximal operator would be needed.

(2) We define the k-th variable maximal operator by

Mkf(x) = sup
I∈D

1I(xk)−
∫
I

|f(x1, . . . , yk, . . . , xn)|dyk

for 1 ≤ k ≤ n. That is, Mk is the operator defined on functions in Rn

by letting the one-dimensional Hardy-Littlewood maximal operator acts
on the k-th variable while keeping the remaining variables fixed. We first
notice that the strong maximal operator is dominated pointwisely by an
iterated maximal operator as follows

(1.2) MSf(x) ≤MnMn−1 · · ·M1f(x).
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By Fubini’s theorem for the Lebesgue measure dx and boundedness of Mk

on Lp(R,dx), we can get

‖MSf‖Lp(Rn,dx) ≤ C‖f‖Lp(Rn,dx)

for p > 1. However, we have not known whether the Fubini-type theorem
holds or not for the Hausdorff content, this strategy does not work.

(3) Comparing Orobitg and Verdera’s result (1.1), one may be wondering why
the range p,min(1, d) < p < ∞ in Theorem 1.1, does not depend on the
spatial dimension n. We will give a remark on this point in the last section.

2. Lemmas

We begin to prove the following lemma. This is due to Orobitg and Verdera
[2].

Lemma 2.1. For any dyadic cube Q ∈ D(Rn) and min(1, d) < p, we have∫
Rn

MS [1Q]p dHd ≤ Cl(Q)d.

Proof. Fix a dyadic interval I ∈ D(R). We define

π0(I) := I,

and πj(I) denotes the smallest interval in D(R) containing πj−1(I) for j =
1, 2, . . . . We see l(πj(I)) = 2j l(I). We denote by Prk, k = 1, 2, . . . , n the
projection on the xk-axis. Obviously, Q =

∏n
k=1 Prk(Q). Further, we define

Pm(Q) :=

{
n∏

k=1

πjk(Prk(Q)) :

n∑
k=1

jk = m

}
, m = 0, 1, 2, . . . .

In particular, we deduce that P0(Q) = {Q}, and that the number of elements
in Pm(Q) is #Pm(Q) =

(
m+n−1
n−1

)
. Here,

(
n
k

)
= n!

k!(n−k)! . Now we see that if

R ∈ Pm(Q), then

|R| =
n∏

k=1

l(πjk(Prk(Q)))

=

n∏
k=1

2jk l(Prk(Q))

= 2
∑n

k=1 jk |Q| = 2m|Q|.

This implies that the rectangle R in Pm(Q) contains the original cube Q and
its volume is just |Q| times 2m. Moreover, we set

Bm :=
⋃

R∈Pm(Q)

R, m = 0, 1, 2, . . . .
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By definition, we have

|Bm| ≤
∑

R∈Pm(Q)

|R|

= #Pm(Q) · 2m|Q|

=

(
m+ n− 1

n− 1

)
2m|Q|,

and this implies that Bm can be covered by at most
(
m+n−1
n−1

)
2m cubes Q. Now,

we can show that

MS [1Q](x) = 1Q(x) +

∞∑
m=1

2−m1Bm\Bm−1
(x).

Indeed, if m = 0 and x ∈ Q, then obviously MS [1Q](x) = 1. If m ≥ 1
and x ∈ Bm \ Bm−1, then there exists R ∈ Pm containing x, and for all
k; 0 ≤ k ≤ m− 1, and any R′ ∈ Pk, x does not belong to R′. Thus,

MS [1Q](x) =
|Q ∩R|
|R|

=
|Q|
|R|

=
1

2m
.

Now, we have

MS [1Q](x)p = 1Q(x) +

∞∑
m=1

2−mp1Bm\Bm−1
(x),

and hence ∫
Rn

MS [1Q]p dHd ≤ l(Q)d +

∞∑
m=1

2−mpHd(Bm \Bm−1)

≤ l(Q)d +

∞∑
m=1

2−mpHd(Bm).

Case d ≥ 1: We notice p > 1. By the previous observation, we can cover Bm

by
(
m+n−1
n−1

)
2m copies of cubes Q so that∫

Rn

MS [1Q]p dHd ≤ l(Q)d +

∞∑
m=1

2−mp

(
m+ n− 1

n− 1

)
2ml(Q)d

≤ l(Q)d + l(Q)d
∞∑

m=1

(m+ n− 1)n−1

(n− 1)!
2(1−p)m

and hence by d’Alembert’s criterion the last series converges as 1− p < 0.

Case d < 1: We notice p > d. Covering Bm by one large cube Q̃ whose side
length is 2ml(Q), we have∫

Rn

MS [1Q]p dHd ≤ l(Q)d +

∞∑
m=1

2−mp2mdl(Q)d
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= l(Q)d + l(Q)d
∞∑

m=1

2(d−p)m,

and the last series converges as d − p < 0. This completes the proof of the
lemma. �

3. Proof of Theorem 1.1

The proof is due to [2]. We may assume that f ≥ 0. For each integer k, let
{Qk

j }j be a family of nonoverlapping dyadic cubes Qk
j such that

{x ∈ Rn : 2k < f(x) ≤ 2k+1} ⊂
⋃
j

Qk
j

and ∑
j

l(Qk
j )d ≤ 2Hd({x ∈ Rn : 2k < f(x) ≤ 2k+1}).

Set g =
∑

k 2p(k+1)1Ak
, where Ak =

⋃
j Q

k
j . Thus, fp ≤ g.

Assume first that d < 1 and 1 ≤ p. Then

(MSf)p ≤MS [fp] ≤MS [g] ≤
∑
k

2p(k+1)
∑
j

MS [1Qk
j
].

By Lemma 2.1,∫
Rn

(MSf)p dHd ≤
∑
k

2p(k+1)
∑
j

∫
Rn

MS [1Qk
j
] dHd

≤ C
∑
k

2p(k+1)
∑
j

l(Qk
j )d

≤ C
∑
k

2p(k+1)Hd({x ∈ Rn : 2k < f(x) ≤ 2k+1})

≤ C
∑
k

22p

2p − 1

∫ 2kp

2(k−1)p

Hd({x ∈ Rn : f(x)p > t}) dt

≤ C
∫
Rn

fp dHd,

which proves this case.
Assume now that d < p < 1. Since f ≤

∑
k 2k+11Ak

,

MSf ≤
∑
k

2k+1
∑
j

MS [1Qk
j
].

We have that, since p < 1,

(MSf)p ≤
∑
k

2p(k+1)
∑
j

MS [1Qk
j
]p
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and, hence,∫
Rn

(MSf)p dHd ≤ C
∑
k

2(k+1)p
∑
j

l(Qk
j )d ≤ C

∫
Rn

fp dHd.

Finally, if we assume d ≥ 1, then since p > 1, so we have nothing to prove.
This completes the proof of the inequality in Theorem 1.1.

In the next section, we discuss the sharpness of the exponent p.

4. Sharpness

In this section, we show that the condition min(1, d) < p in Theorem 1.1 is
sharp. In particular, for some dyadic cube Q we show that∫

Rn

MS [1Q]p dHd =∞

if p ≤ min(1, d).
Let d < n. Fix a dyadic cube Q as

Q = [0, l(Q)]n.

That is, Q is the cube which is located in the first quadrant and one of its
vertices is on the origin. We denote F0 := Q, and

Fm := [0, 2ml(Q)]× [0, l(Q)]n−1, (m = 0, 1, 2, . . . ).

For each m, the rectangle Fm is in Pm(Q) and contains the cube Q and side-
lengths are 2ml(Q) and l(Q). We first observe∫

Rn

MS [1Q]p dHd = p

∫ ∞
0

Hd(MS [1Q] > t)tp−1 dt

= p

∞∑
m=0

∫ 2−m

2−m−1

Hd(MS [1Q] > t)tp−1 dt

≥ p
∞∑

m=0

Hd(MS [1Q] > 2−m)

∫ 2−m

2−m−1

tp−1dt

= (1− 2−p)

∞∑
m=1

Hd(Bm−1)2−mp

≥ (1− 2−p)

∞∑
m=1

Hd(Fm−1)2−mp,

where we have used the fact that

{x ∈ Rn : MS [1Q](x) > 2−m} = Bm−1 ⊃ Fm−1

in the last two lines. To compute Hd(Fm−1), we need to find the infimum
covering of Fm−1 by the dyadic cubes in D(Rn). It is easy to see that (see also
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Remark 4.1 below)

Hd(Fm−1) = min
0≤k≤m−1

2m−1−k(2kl(Q))d

= l(Q)d min
0≤k≤m−1

2kd+m−1−k

=

{
2m−1l(Q)d, (1 ≤ d < n),
2(m−1)dl(Q)d, (0 < d < 1).

Case 1 ≤ d < n: We have∫
Rn

MS [1Q]p dHd ≥ (1− 2−p)

∞∑
m=1

Hd(Fm−1)2−mp

= (1− 2−p)

∞∑
m=1

2m−1l(Q)d2−mp

= (1− 2−p)l(Q)d
∞∑

m=1

2(1−p)m−1,

then since p ≤ 1, the last series diverges.
Case 0 < d < 1: We have∫

Rn

MS [1Q]p dHd ≥ (1− 2−p)

∞∑
m=1

Hd(Fm−1)2−mp

= (1− 2−p)

∞∑
m=1

2(m−1)dl(Q)d2−mp

= (1− 2−p)l(Q)d
∞∑

m=1

2(d−p)m−d,

then since p ≤ d, the last series also diverges.

Remark 4.1. We describe the reason why the range p in Theorem 1.1 does
not depend on the dimension n. As mentioned above, we need to compute
the Hausdorff content of the dyadic rectangle Fm−1 and find the minimum
covering of Fm−1 by using the family of dyadic cubes. Actually, the covering
{Qj}j of Fm−1 which minimizes

∑
j l(Qj)

d is different depending on d. That
is, if 0 < d < 1, the minimum is attained by one large cube whose sidelength is
2m−1l(Q), and if 1 < d, 2m−1 cubes {Qj}, whose sidelengths are equal to l(Q),
attain the minimum. The border d = 1 does not depend on n, this is because
p is independent of n.
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