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CONVERGENCE THEOREMS FOR TWO FAMILIES OF
WEAK RELATIVELY NONEXPANSIVE MAPPINGS

AND A FAMILY OF EQUILIBRIUM PROBLEMS

Xin Zhang and Yongfu Su

Abstract. The purpose of this paper is to prove strong convergence
theorems for common fixed points of two families of weak relatively non-
expansive mappings and a family of equilibrium problems by a new mono-
tone hybrid method in Banach spaces. Because the hybrid method pre-
sented in this paper is monotone, so that the method of the proof is
different from the original one. We shall give an example which is weak
relatively nonexpansive mapping but not relatively nonexpansive map-
ping in Banach space l2. Our results improve and extend the correspond-
ing results announced in [W. Takahashi and K. Zembayashi, Strong con-
vergence theorem by a new hybrid method for equilibrium problems and
relatively nonexpansive mappings, Fixed Point Theory Appl. (2008), Ar-
ticle ID 528476, 11 pages; doi:10.1155/2008/528476] and [Y. Su, Z. Wang,
and H. Xu, Strong convergence theorems for a common fixed point of two
hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no.
11, 5616–5628] and some other papers.

1. Introduction

Let E be a real Banach space and C a nonempty closed convex subset
of E. A mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤
‖x − y‖ for every x, y ∈ C. Iterative methods for approximation of fixed
points of a nonexpansive mapping have been studied by many researchers; see
[10, 14, 20, 21, 22, 25, 31, 34] and others.

On the other hand, a closed hemi-relatively nonexpansive mapping, which
is another generalization of a nonexpansive mapping and a relatively nonex-
pansive mapping, has been considered recently. Its properties and iterative
schemes for such a mapping have been studied in [16, 22, 25] and others.

Equilibrium problems which were introduced by Blum and Oettli [3] in 1994
have had a great impact and influence in the development of several branches
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of pure and applied sciences. It has been shown that the equilibrium problem
theory provides a novel and unified treatment of a wide class of problems which
arise in economics, finance, physics, image reconstruction, ecology, transporta-
tion, network, elasticity and optimization.

Let E be a real Banach space and let E∗ be the dual of E. Let C be a
nonempty closed convex subset of E, and f a bifunction from C × C to R,
where R denotes the set of real numbers. The equilibrium problem (for short,
EP) is to find p ∈ C such that

(1.1) f(p, y) ≥ 0 for all y ∈ C.

The set of solutions of (1.1) is denoted by EP (f). Given a mapping T : C →
E∗, let f(x, y) = 〈Tx, y − x〉 for all x, y ∈ C. Then p ∈ EP (f) if and only if
〈Tp, y − p〉 ≥ 0 for all y ∈ C; i.e., p is a solution of the variational inequality,
there are several other problems, for example, the complementarity problem,
fixed point problem and optimization problem, which can also be written in the
form of an EP. In other words, the EP is an unifying model for several problems
arising in physics, engineering, science, optimization, economics, etc. In the last
two decades, many papers have appeared in the literature on the existence of
solutions of EP; see, for example [3] and references therein. Matsushita and
Takahashi [18] introduced the following iteration: a sequence {xn} defined by

(1.2) xn+1 = ΠCJ−1(αnJxn + (1− αn)JTxn),

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in
[0, 1], T is a relatively nonexpansive mapping and ΠC denotes the generalized
projection from E onto a closed convex subset C of E. They prove that the
sequence {xn} converges weakly to a fixed point of T .

Many authors studied the problem of finding a common element of the set
of fixed points of a relatively nonexpansive mapping and the set of solutions of
an equilibrium problem in the framework of Banach spaces, see, for instance,
[31] and the references therein.

Recently, Kimura and Takahashi [15] established strong convergence theo-
rems by the hybrid method for a family of relatively nonexpensive mappings
as follows:

Theorem 1.1. Let E be a strictly convex reflexive Banach space having the
Kadec-Klee property and a Fréchet differentiable norm, let C be a non-empty
and closed convex subset of E and {Sλ : λ ∈ Λ} a family of relatively nonex-
pansive mappings of C into itself having a common fixed point. Let {αn} be a
sequence in [0, 1] such that lim infn→∞ αn < 1. For an arbitrarily chosen point
x ∈ E, generate a sequence {xn} by the following iterative scheme: x1 ∈ C,
C1 = C, and




yn(λ) = J∗(αnJxn + (1− αn)JSλxn) for all λ ∈ Λ,

Cn+1 = {z ∈ Cn : supλ∈Λ φ(z, yn(λ)) ≤ φ(z, xn)},
xn+1 = PCn+1(x),
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for every n ∈ N, then {xn} converges strongly to PF x ∈ C, where F =
∩λ∈ΛF (Sλ) is the set of common fixed points of {Sλ} and PK is the metric
projection of E onto a nonempty closed convex subset K of E.

Very recently, Y. Su, Z. Wang, and H. Xu [28] proposed the new strong
convergence theorems, one of which as follows:

Theorem 1.2. Let E be a uniformly convex and uniformly smooth real Banach
space, let C be a non-empty and closed convex subset of E, let T, S : C → C
be two closed hemi-relatively non-expansive mappings such that F := F (T ) ∩
F (S) 6= ∅. Define a sequence {xn} in C by the following algorithm:





x0 ∈ C chosen arbitrarily,

zn = J−1(β(1)
n Jxn + β(2)

n JTxn + β(3)
n JSxn),

yn = J−1(αnJxn + (1− αn)Jzn),

Cn = {z ∈ Cn−1

⋂
Qn−1 : φ(z, yn) ≤ φ(z, xn)},

C0 = {z ∈ C : φ(z, y0) ≤ φ(z, x0)},
Qn = {z ∈ Cn−1

⋂
Qn−1 : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

Q0 = C,

xn+1 = ΠCn∩Qn(x0),

with the conditions:
(i) lim infn→∞ β

(1)
n β

(2)
n > 0;

(ii) lim infn→∞ β
(1)
n β

(3)
n > 0;

(iii) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1).
Then {xn} converges strongly to ΠF x0, where ΠF is the generalized projection
of C onto F .

Motivated by these results above, we prove strong convergence theorems for
common fixed points of two families of weak relatively nonexpansive mappings
and a family of equilibrium problems by a new hybrid method in Banach spaces.
The main results are more general than the theorems of Y. Su, Z. Wang, and
H. Xu [28], and at the same time, our hybrid algorithm and the method of the
proof are all different from that of [28]. In addition, we succeed in applying our
algorithm to a family of equilibrium problems, which is different from others’
method.

In recent years, the definition of weak relatively nonexpansive mapping has
been presented and studied by many authors [26, 28, 36], but they have not
given the example which is weak relatively nonexpansive mapping but not
relatively nonexpansive mapping. In this paper, we give an example which
is a weak relatively nonexpansive mapping but not a relatively nonexpansive
mapping in a Banach space l2.
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2. Preliminaries

In what follows, E denotes a real Banach space with norm ‖ · ‖ and let E∗

the dual of E. The norm of E∗ is also denoted by ‖ · ‖. For y∗ ∈ E∗, its value
at x ∈ E is denoted by 〈x, y∗〉.

A Banach space E is said to be strictly convex if ‖x+y
2 ‖ < 1 for all x, y ∈ E

with ‖x‖ = ‖y‖ = 1 and x 6= y. E is said to have the Kadec-Klee property
if a weakly convergent sequence {xn} in E with limit x0 ∈ E satisfies that
limn→∞ ‖xn‖ = ‖x0‖, then {xn} converges strongly to x0.

Let SE = {x ∈ E : ‖x‖ = 1} and define f : SE × SE × R\{0} → R by

f(x, y, t) =
‖x + ty‖ − ‖x‖

t

for x, y ∈ SE and t ∈ R\{0}. A norm of E is said to be Gâteaux differentiable
if limt→∞ f(x, y, t) has a limit for each x, y ∈ SE . In this case, E is said to be
smooth. A norm of E is said to be Fréchet differentiable if limt→∞ f(x, y, t)
is attained uniformly for y ∈ SE for each x ∈ E. It is known that E∗ has a
Fréchet differentiable norm if and only if E is strictly convex and reflexive, and
has the Kadec-Klee property.

Denote by 〈·, ·〉 the duality product. The normalize dduality mapping J
from E to E∗ is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for all x ∈ E, where E∗ denotes the dual space of E and 〈·, ·〉 the generalized
duality pairing between E and E∗. It is well known that if E is a smooth,
strictly convex, and reflexive Banach space, then J is a single-valued one-to-
one mapping onto E∗. In this case, the inverse mapping J−1 coincides with
the duality mapping on E∗. For more details, see [9, 18, 29].

Suppose that a Banach space E is smooth. Then J is a single-valued map-
ping. The function φ : E × E → R is defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2
for all x, y ∈ E. We know several fundamental properties of φ as follows:
φ(x, y) ≥ 0 for all x, y ∈ E. For a sequence {yn} in E and x ∈ E, {yn} is
bounded if and only if {φ(x, yn)} is bounded. For more details, see [5].

Let C be a nonempty closed convex subset of E, and let T be a mapping
from C into itself. We denote by F (T ) the set of fixed points of T .

A point p in C is said to be an asymptotic fixed point of T [24] if C contains a
sequence {xn} which converges weakly to p such that limn→∞ ‖Txn−xn‖ = 0.
The set of asymptotic fixed point of T will be denoted by F̂ (T ).

A mapping T of C into itself is said to be relatively nonexpansive [6, 7, 17]
if the following conditions are satisfied:

(1) F (T ) is nonempty;
(2) φ(u, Tx) ≤ φ(u, x), ∀u ∈ F (T ), x ∈ C;
(3) F̂ (T ) = F (T ).
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The hybrid algorithms for fixed point of relatively nonexpensive mappings and
applications have been studied by many authors, for example [6, 7, 17, 27, 33,
35].

A point p in C is said to be a strong asymptotic fixed point of T [26,
36] if C contains a sequence {xn} which converges strongly to p such that
limn→∞ ‖Txn − xn‖ = 0. The set of strong asymptotic fixed points of T will
be denoted by F̃ (T ). A mapping T from C into itself is called weak relatively
nonexpansive if

(1) F (T ) is nonempty;
(2) φ(u, Tx) ≤ φ(u, x), ∀u ∈ F (T ), x ∈ C;
(3) F̃ (T ) = F (T ).

Remark 1. In [36], the weak relatively nonexpansive mapping is also said to be
relatively weak nonexpansive.

Remark 2. In [27], the authors have given the definition of hemi-relatively
nonexpansive mapping as follows. A mapping T from C into itself is called
hemi-relatively nonexpansive if

(1) F (T ) is nonempty;
(2) φ(u, Tx) ≤ φ(u, x), ∀u ∈ F (T ), x ∈ C.

It is obvious that a relatively nonexpansive mapping is a weak relatively
nonexpansive mapping and a weak relatively nonexpansive mapping is a hemi-
relatively nonexpansive mapping. In fact, for any mapping T : C → C, we have
F (T ) ⊂ F̃ (T ) ⊂ F̂ (T ). Therefore, if T is a relatively nonexpansive mapping,
then F (T ) = F̃ (T ) = F̂ (T ).

If E is a strictly convex and reflexive Banach space, and A ⊂ E × E∗ is
a continuous monotone mapping with A−10 6= ∅, then it is proved in [31]
that Jr := (J + rA)−1J for r > 0 is relatively nonexpansive. Moreover, if
T : E → E is relatively nonexpansive, then using the definition of φ one can
show that F (T ) is closed and convex.

The following conclusion is obvious.

Conclusion. A mapping is closed hemi-relatively nonexpansive if and only if
it is weak relatively nonexpansive.

Let Cn be a sequence of nonempty closed convex subsets of a reflexive Banach
space E. We denote two subsets s − LinCn and w − LsnCn as follows: x ∈
s − LinCn if and only if there exists {xn} ⊂ E such that {xn} converges
strongly to x and that xn ∈ Cn for all n ∈ N. Similarly, y ∈ w − LsnCn if
and only if there exist a subsequence {Cni} of {Cn} and a sequence {yi} ⊂ E
such that {yi} converges weakly to y and that yi ∈ Cni for all i ∈ N. We
define the Mosco convergence [19] of {Cn} as follows: If C0 satisfies that C0 =
s − LinCn = w − LsnCn, it is said that {Cn} converges to C0 in the sense of
Mosco and we write C0 = M − limn→∞ Cn. For more details, see [2].
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The generalized projection ΠC : E → C is a map that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(x, y), that is, ΠCx = x,
where x is the solution to the minimization problem

φ(x, x) = min
y∈C

φ(y, x),

existence and uniqueness of the operator ΠC follow from the properties of the C
functional φ(x, y) and strict monotonicity of the mapping J . In Hilbert spaces,
ΠC = PC .

The following theorem plays an important role in our results.

Theorem 2.1 (See Ibaraki, Kimura, and Takahashi [11]). Let E be a smooth,
reflexive, and strictly convex Banach space having the Kadec-Klee property.
Let {Kn} be a sequence of nonempty closed convex subsets of E. If K0 =
M − limn→∞Kn exists and is nonempty, then {ΠKn

x} converges strongly to
{ΠK0x} for each x ∈ C.

We also need the following lemmas for the proof of our main results.

Lemma 2.2 (Kamimura and Takahashi [13]). Let E be a uniformly convex and
smooth Banach space and let {yn}, {zn} be two sequences of E. If φ(yn, zn) → 0
and either {yn} or {zn} is bounded, then ‖yn − zn‖ → 0.

Lemma 2.3 (Alber [1]). Let E be a reflexive, strictly convex and smooth Ba-
nach space, let C be a nonempty closed convex subset of E and let x ∈ E.
Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x)

for all y ∈ C.

Lemma 2.4 (Cho et al. [8]). Let X be a uniformly convex Banach space and
Br(0) be a closed ball of X. Then there exists a continuous strictly increasing
convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

‖λx + µy + γz‖2 ≤ λ‖x‖2 + µ‖y‖2 + γ‖z‖2 − λµg(‖x− y‖)
for all x, y, z ∈ Br(0) and λ, µ, γ ∈ [0, 1] with λ + µ + γ = 1.

Lemma 2.5 (Kamimure and Takahashi [13]). Let E be a uniformly convex
and smooth Banach space and let r > 0. Then there exists a strictly increasing,
continuous, and convex function g : [0, 2r] → R such that g(0) = 0 and g(‖x−
y‖) ≤ φ(x, y) for all x, y ∈ Br.

For solving the equilibrium problem let us assume that the bifunction f :
C × C → R satisfies the following conditions:

(A1) f(x, x) = 0, ∀ x ∈ C,
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0, ∀ x, y ∈ E,
(A3) for all x, y, z ∈ C, lim supt↓0 f(tz + (1− t)x, y) ≤ f(x, y),
(A4) for all x ∈ C, y → f(x, y) is convex and lower semi-continuous.
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Lemma 2.6 (Blum and Oettli [3]). Let C be a closed convex subset of a smooth,
strictly convex, and reflexive Banach space E, let f be a bifunction from C×C
to R satisfying (A1)-(A4), and let r > 0 and x ∈ E. Then, there exists z ∈ C
such that

f(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀ y ∈ C.

Lemma 2.7 (Takahashi and Zembayashi [32, Lemma 2.8]). Let C be a closed
convex subset of a uniformly smooth, strictly convex, and reflexive Banach space
E, and let f be a bifunction from C ×C to R satisfying (A1)-(A4). For r > 0,
define a mapping Tr : E → C as follows:

Tr(x) = {z ∈ C : f(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀ y ∈ C}

for all x ∈ E. Then, the following hold:
(1) Tr is single-valued;
(2) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;
(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex;

Lemma 2.8 (Takahashi and Zembayashi [31]). Let C be a closed convex subset
of a uniformly smooth, strictly convex, and reflexive Banach space E, and let
f be a bifunction from C × C to R satisfying (A1)-(A4), and let r > 0. Then,
for x ∈ E and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

3. Main results

Theorem 3.1. Let E be a strictly convex, reflexive and uniformly smooth
Banach space having the Kadec-Klee property, let C be a non-empty and closed
convex subset of E and Let {fλ : λ ∈ Λ} be a family of bifunctions from
C × C to R, satisfying (A1)-(A4). Let {Sλ : λ ∈ Λ} and {Tλ : λ ∈ Λ} be
two families of weak relatively nonexpansive mappings of C into itself such that
F := ∩λ∈ΛF (Sλ) ∩ ∩λ∈ΛF (Tλ) ∩ ∩λ∈ΛEP (fλ) 6= ∅. For an arbitrarily chosen
point x0 ∈ E, generate a sequence {xn} by the following iterative scheme:
x1 ∈ C, C1 = C, and
(3.1)



zn(λ) = J−1(β(1)
n Jxn + β

(2)
n JTλxn + β

(3)
n JSλxn),

yn(λ) = J−1((1− αn)Jxn + αnJzn(λ)),
un(λ) ∈ C such that fλ(un(λ), y) + 1

rn
〈y − un(λ), Jun(λ)− Jyn(λ)〉 ≥ 0

for all y ∈ C for all λ ∈ Λ,

Cn+1 = {z ∈ Cn : supλ∈Λ φ(z, un(λ)) ≤ φ(z, xn)},
xn+1 = ΠCn+1(x0),
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with the conditions:
(i) lim infn→∞ β

(1)
n β

(2)
n > 0;

(ii) lim infn→∞ β
(1)
n β

(3)
n > 0;

(iii) 0 ≤ αn ≤ α < 1 for some α ∈ (0, 1);
(iv) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to ΠF x0 ∈ C, where ΠF is the generalized pro-
jection of E onto F .

Proof. Firstly, we show that Cn is closed and convex for each n ∈ N.
From the definition of φ, we may show that

Cn+1 = {z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ φ(z, xn)}

= ∩λ∈Λ{z ∈ Cn : φ(z, un(λ)) ≤ φ(z, xn)}
= ∩λ∈Λ{z ∈ C : 2〈z, Jxn − Jun(λ)〉+ ‖un(λ)‖2 − ‖xn‖2 ≤ 0} ∩ Cn,

and thus Cn is closed and convex for every n ∈ N.
Secondly, we prove that F ⊂ Cn for all n ∈ N.
Let p ∈ F . Putting un(λ) = Trnyn(λ) for each n ∈ N and λ ∈ Λ. On the

other hand, from Lemma 2.7, one has Trn is a hemi-relatively nonexpansive
mapping, then, for all p ∈ F we obtain

φ(p, zn(λ)) = φ(p, J−1(β(1)
n Jxn + β(2)

n JTλxn + β(3)
n JSλxn))

= ‖p‖2 − 2〈p, β(1)
n Jxn + β(2)

n JTλxn + β(3)
n JSλxn〉

+ ‖β(1)
n Jxn + β(2)

n JTλxn + β(3)
n JSλxn‖2

≤ β(1)
n φ(p, xn) + β(2)

n φ(p, Tλxn) + β(3)
n φ(p, Sλxn)

≤ β(1)
n φ(p, xn) + β(2)

n φ(p, xn) + β(3)
n φ(p, xn)

= φ(p, xn).

By the similar reason, we have, for all p ∈ F that

(3.2)

φ(p, un(λ)) = φ(p, Trnyn(λ))

≤ φ(p, yn(λ))

= φ(p, J−1(αnJzn(λ) + (1− αn)Jxn))

= ‖p‖2 − 2〈p, αnJzn(λ) + (1− αn)Jxn〉
+ ‖αnJzn(λ) + (1− αn)Jxn)‖2

≤ αnφ(p, zn(λ)) + (1− αn)φ(p, xn)

≤ αnφ(p, xn) + (1− αn)φ(p, xn)

= φ(p, xn).

That is, p ∈ Cn for all n ∈ N, and hence F ⊂ Cn for all n ∈ N. Since F is
nonempty, Cn is a nonempty closed convex subset of E and thus ΠCn exists
for every n ∈ N. Hence {xn} is well defined.
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Thirdly, we shall show that limn→∞ xn = x = ΠC0x0.
Since {Cn} is a decreasing sequence of closed convex subsets of E such that

C0 = ∩∞n=1Cn is nonempty, it follows that

M − lim
n→∞

Cn = C0 = ∩∞n=1Cn 6= ∅.

By Theorem 2.1, {xn} = {ΠCnx0} converges strongly to {x} = {ΠC0x0}.
Fourthly, we prove that x ∈ F .
Since x ∈ Cn for every n ∈ N, it follows that supλ∈Λ φ(x, un(λ)) ≤ φ(x, xn)

for every n ∈ N. So we get

0 ≤ lim
n→∞

sup
λ∈Λ

φ(x, un(λ)) ≤ lim
n→∞

φ(x, xn) = 0.

Hence, from Lemma 2.2, we can get

lim
n→∞

‖un(λ)− x‖ = 0 for any λ ∈ Λ.

So we obtain

(3.3) lim
n→∞

‖un(λ)− xn‖ = 0 for any λ ∈ Λ.

It follows from (3.2) that

0 ≤ φ(p, un(λ)) ≤ φ(p, yn(λ)) ≤ φ(p, xn)

so we obtain

0 ≤ φ(p, xn)− φ(p, yn(λ)) ≤ φ(p, xn)− φ(p, un(λ))

therefore,

0 ≤ lim
n→∞

(φ(p, xn)− φ(p, yn(λ))) ≤ lim
n→∞

(φ(p, xn)− φ(p, un(λ))) = 0,

so one easily obtains
lim

n→∞
(yn(λ)− xn) = 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

(1− αn)‖Jzn(λ)− Jxn‖ = ‖Jyn(λ)− Jxn‖ = 0.

Since 0 ≤ αn ≤ α < 1, then

lim
n→∞

‖Jzn(λ)− Jxn‖ = 0.

Further, since E has the Kadec-Klee property, the norm of E∗ is Fréchet dif-
ferentiable and therefore J−1 is norm-to-norm continuous, hence we have that

lim
n→∞

‖zn(λ)− xn‖ = 0,

so that zn(λ) → x as n →∞.
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Since E is a uniformly smooth Banach space, one knows that E∗ is a uni-
formly convex Banach space. For any λ ∈ Λ, let r = supn∈N∪{0}{‖xn‖, ‖Sλxn‖,
‖Tλxn‖}. From Lemma 2.4, we have

φ(p, zn(λ)) = φ(p, J−1(β(1)
n Jxn + β(2)

n JTλxn + β(3)
n JSλxn))

= ‖p‖2 − 2〈p, β(1)
n Jxn + β(2)

n JTλxn + β(3)
n JSλxn〉

+ ‖β(1)
n Jxn + β(2)

n JTλxn + β(3)
n JSλxn‖2

≤ ‖p‖2 − 2〈p, β(1)
n Jxn + β(2)

n JTλxn + β(3)
n JSλxn〉

+ β(1)
n ‖Jxn‖2 + β(2)

n ‖JTλxn‖2

+ β(3)
n ‖JSλxn‖2 − β(1)

n β(2)
n g(‖Jxn − JTλxn‖)

≤ β(1)
n φ(p, xn) + β(2)

n φ(p, Tλxn)

+ β(3)
n φ(p, Sλxn)− β(1)

n β(2)
n g(‖Jxn − JTλxn‖)

≤ φ(p, xn)− β(1)
n β(2)

n g(‖Jxn − JTλxn‖)
and hence

β(1)
n β(2)

n g(‖Jxn − JTλxn‖) ≤ φ(p, xn)− φ(p, zn(λ)) → 0

as n →∞. By using the same way, we can prove that

β(1)
n β(3)

n g(‖Jxn − JSλxn‖) ≤ φ(p, xn)− φ(p, zn(λ)) → 0

as n → ∞. From the properties of the mapping g and the conditions (i), (ii)
we have

‖Jxn − JTλxn‖ → 0
as n →∞, and

‖Jxn − JSλxn‖ → 0
as n → ∞. Further, since E has the Kadec-Klee property, the norm of E∗ is
Fréchet differentiable and therefore J−1 is norm-to-norm continuous, hence we
have that

lim
n→∞

‖xn − Tλxn‖ = 0

and
lim

n→∞
‖xn − Sλxn‖ = 0.

Since Tλ and Sλ are two weak relatively nonexpansive mappings for any
λ ∈ Λ, we have that x ∈ F (Tλ) and x ∈ F (Sλ) for any λ ∈ Λ and thus
x ∈ ∩λ∈ΛF (Tλ) ∩ ∩λ∈ΛF (Sλ).

Then, we show x ∈ ∩λ∈ΛEP (fλ). From un(λ) = Trnyn(λ) and Lemma 2.8,
we obtain

φ(un(λ), yn(λ)) = φ(Trnyn(λ), yn(λ))

≤ φ(x, yn(λ))− φ(x, Trnyn(λ))

≤ φ(x, xn)− φ(x, Trnyn(λ))

= φ(x, xn)− φ(x, un(λ)).
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It follows from (3.3) that

φ(un(λ), yn(λ)) → 0 as n →∞.

Noticing that Lemma 2.2, we get

‖un(λ)− yn(λ)‖ → 0 as n →∞.

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

‖Jun(λ)− Jyn(λ)‖ → 0.

From the (A2), we note that

‖y − un(λ)‖‖Jun(λ)− Jyn(λ)‖
rn

≥ 1
rn
〈y − un(λ), Jun(λ)− Jyn(λ)〉

≥ −fλ(un(λ), y)

≥ fλ(y, un(λ)), ∀y ∈ C, ∀λ ∈ Λ.

By taking the limit as n →∞ in above inequality and from (A4) and un(λ) →
x, we have fλ(y, x) ≤ 0 for all y ∈ C, for all λ ∈ Λ. For 0 < t < 1 and y ∈ C,
define yt = ty + (1 − t)x. Noticing that y, x ∈ C, we obtain yt ∈ C, which
yields that fλ(yt, x) ≤ 0. It follows from (A1) that

0 = fλ(yt, yt) ≤ tfλ(yt, y) + (1− t)fλ(yt, x) ≤ tfλ(yt, y).

That is, fλ(yt, y) ≥ 0.
Let t ↓ 0, from (A3), we obtain fλ(x, y) ≥ 0, ∀y ∈ C. This implies that

x ∈ EP (fλ). This shows that x ∈ F .
Finally, since x = ΠC0x0 ∈ F and F is a nonempty closed convex subset of

C0 = ∩∞n=1Cn, we conclude that x = ΠF x0 This completes the proof. ¤

Taking αn ≡ 0, Theorem 3.1 reduces to the following result.

Theorem 3.2. Let E be a strictly convex, reflexive and uniformly smooth
Banach space having the Kadec-Klee property, let C be a non-empty and closed
convex subset of E and Let {fλ : λ ∈ Λ} be a family of bifunctions from
C × C to R, satisfying (A1)-(A4). Let {Sλ : λ ∈ Λ} and {Tλ : λ ∈ Λ} be
two families of weak relatively nonexpansive mappings of C into itself such that
F := ∩λ∈ΛF (Sλ) ∩ ∩λ∈ΛF (Tλ) ∩ ∩λ∈ΛEP (fλ) 6= ∅. For an arbitrarily chosen
point x0 ∈ E, generate a sequence {xn} by the following iterative scheme:
x1 ∈ C, C1 = C, and
(3.4)




yn(λ) = J−1(β(1)
n Jxn + β(2)

n JTλxn + β(3)
n JSλxn),

un(λ) ∈ C such that fλ(un(λ), y) +
1
rn
〈y − un(λ), Jun(λ)− Jyn(λ)〉 ≥ 0

for all y ∈ C, for all λ ∈ Λ,

Cn+1 = {z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ φ(z, xn)},

xn+1 = ΠCn+1(x0),
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with the conditions:
(i) lim infn→∞ β

(1)
n β

(2)
n > 0;

(ii) lim infn→∞ β
(1)
n β

(3)
n > 0;

(iii) {rn} ⊂ [a,∞) for some a > 0.
Then {xn} converges strongly to ΠF x0 ∈ C, where ΠF is the generalized pro-
jection of E onto F .

Taking Tλ ≡ Sλ, Theorem 3.1 reduces to the following result.

Theorem 3.3. Let E be a strictly convex, reflexive and uniformly smooth
Banach space having the Kadec-Klee property, let C be a non-empty and closed
convex subset of E and Let {fλ : λ ∈ Λ} be a family of bifunctions from C ×C
to R, satisfying (A1)-(A4). Let {Tλ : λ ∈ Λ} be a family of weak relatively
nonexpansive mappings of C into itself such that

F := ∩λ∈ΛF (Tλ) ∩ ∩λ∈ΛEP (fλ) 6= ∅.
For an arbitrarily chosen point x0 ∈ E, generate a sequence {xn} by the fol-
lowing iterative scheme: x1 ∈ C, C1 = C, and
(3.5)




zn(λ) = J−1(βnJxn + (1− βn)JTλxn) for all λ ∈ Λ,

yn(λ) = J−1((1− αn)Jxn + αnJzn(λ)) for all λ ∈ Λ,

un(λ) ∈ C such that fλ(un(λ), y) +
1
rn
〈y − un(λ), Jun(λ)− Jyn(λ)〉 ≥ 0

for all y ∈ C, for all λ ∈ Λ,

Cn+1 = {z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ φ(z, xn)},

xn+1 = ΠCn+1(x0),

with the conditions:
(i) lim infn→∞(1− αn)βn(1− βn) > 0;
(ii) lim supn→∞ αn < 1;
(iii) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to ΠF x0 ∈ C, where ΠF is the generalized pro-
jection of E onto F .

Next, we prove a convergence theorem for Halpern-type iterative algorithm.

Theorem 3.4. Let E be a strictly convex, reflexive and uniformly smooth
Banach space having the Kadec-Klee property, let C be a non-empty and closed
convex subset of E and Let {fλ : λ ∈ Λ} be a family of bifunctions from C ×C
to R, satisfying (A1)-(A4). Let {Sλ : λ ∈ Λ} and {Tλ : λ ∈ Λ} be two families
of weak relatively nonexpansive mappings of C into itself such that

F := ∩λ∈ΛF (Sλ) ∩ ∩λ∈ΛF (Tλ) ∩ ∩λ∈ΛEP (fλ) 6= ∅.
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For an arbitrarily chosen point x0 ∈ E, generate a sequence {xn} by the fol-
lowing iterative scheme: x1 ∈ C, C1 = C, and
(3.6)



zn(λ) = J−1(β(1)
n Jx0 + β(2)

n JTλxn + β(3)
n JSλxn),

yn(λ) = J−1((1− αn)Jxn + αnJzn(λ)),

un(λ) ∈ C such that fλ(un(λ), y) +
1
rn
〈y − un(λ), Jun(λ)− Jyn(λ)〉 ≥ 0

for all y ∈ C, for all λ ∈ Λ,

Cn+1 = {z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ (1− αnβ(1)
n )φ(z, xn) + αnβ(1)

n φ(z, x0)},

xn+1 = ΠCn+1(x0),

with the conditions:
(i) limn→∞ β

(1)
n = 0;

(ii) lim infn→∞ β
(2)
n β

(3)
n > 0;

(iii) lim infn→∞ αn > 0.
(iv) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to ΠF x0 ∈ C, where ΠF is the generalized pro-
jection of E onto F .

Proof. Firstly, we show that Cn is closed and convex for each n ∈ N.
From the definition of φ, we may show that

Cn+1 = {z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ (1− αnβ(1)
n )φ(z, xn) + αnβ(1)

n φ(z, x0)}

= ∩λ∈Λ{z ∈ Cn : φ(z, un(λ)) ≤ (1− αnβ(1)
n )φ(z, xn) + αnβ(1)

n φ(z, x0)}
= ∩λ∈Λ{z ∈ C : ‖un(λ)‖2 + 2〈z, (1− β(1)

n )Jxn + β(1)
n Jx0 − Jun(λ)〉

≤ (1− β(1)
n )‖xn‖2 + β(1)

n ‖x0‖2} ∩ Cn,

and thus Cn is closed and convex for every n ∈ N.
Secondly, we prove that F ⊂ Cn for all n ∈ N.
Let p ∈ F . Putting un(λ) = Trn

yn(λ) for each n ∈ N and λ ∈ Λ. On the
other hand, from Lemma 2.7, one has Trn is a hemi-relatively nonexpansive
mapping, then, for all p ∈ F we obtain

φ(p, zn(λ)) = φ(p, J−1(β(1)
n Jx0 + β(2)

n JTλxn + β(3)
n JSλxn))

= ‖p‖2 − 2〈p, β(1)
n Jx0 + β(2)

n JTλxn + β(3)
n JSλxn〉

+ ‖β(1)
n Jx0 + β(2)

n JTλxn + β(3)
n JSλxn‖2

≤ β(1)
n φ(p, x0) + β(2)

n φ(p, Tλxn) + β(3)
n φ(p, Sλxn)

≤ β(1)
n φ(p, x0) + β(2)

n φ(p, xn) + β(3)
n φ(p, xn)

= β(1)
n φ(p, x0) + (1− β(1)

n )φ(p, xn).
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By the similar reason and the results above, we have, for all p ∈ F that

(3.7)

φ(p, un(λ)) = φ(p, Trnyn(λ))

≤ φ(p, yn(λ))

= φ(p, J−1(αnJzn(λ) + (1− αn)Jxn))

= ‖p‖2 − 2〈p, αnJzn(λ) + (1− αn)Jxn〉
+ ‖αnJzn(λ) + (1− αn)Jxn‖2

≤ αnφ(p, zn(λ)) + (1− αn)φ(p, xn)

≤ αnβ(1)
n φ(p, x0) + (1− αnβ(1)

n )φ(p, xn).

That is, p ∈ Cn for all n ∈ N, and hence F ⊂ Cn for all n ∈ N. Since F is
nonempty, Cn is a nonempty closed convex subset of E and thus ΠCn

exists
for every n ∈ N. Hence {xn} is well defined.

Thirdly, we shall show that limn→∞ xn = x = ΠC0x0.
Since {Cn} is a decreasing sequence of closed convex subsets of E such that

C0 = ∩∞n=1Cn is nonempty, it follows that

M − lim
n→∞

Cn = C0 = ∩∞n=1Cn 6= ∅.

By Theorem 2.1, {xn} = {ΠCnx0} converges strongly to {x} = {ΠC0x0}.
Fourthly, we prove that x ∈ F .
Since x ∈ Cn for every n ∈ N, it follows that

sup
λ∈Λ

φ(x, un(λ)) ≤ (1− αnβ(1)
n )φ(x, xn) + αnβ(1)

n φ(x, x0)

for every n ∈ N. So we get

0 ≤ lim
n→∞

sup
λ∈Λ

φ(x, un(λ)) ≤ lim
n→∞

(1− αnβ(1)
n )φ(x, xn) + αnβ(1)

n φ(x, x0) = 0.

Hence, from Lemma 2.2, we can get

lim
n→∞

‖un(λ)− x‖ = 0 for any λ ∈ Λ.

So we obtain

(3.8) lim
n→∞

‖un(λ)− xn‖ = 0 for any λ ∈ Λ.

It follows from (3.7) that

0 ≤ φ(p, un(λ))

≤ φ(p, yn(λ))

≤ αnβ(1)
n φ(p, x0) + (1− αnβ(1)

n )φ(p, xn),
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therefore,

0 ≤ lim
n→∞

(αnβ(1)
n φ(p, x0) + (1− αnβ(1)

n )φ(p, xn)− φ(p, yn(λ)))

≤ lim
n→∞

(αnβ(1)
n φ(p, x0) + (1− αnβ(1)

n )φ(p, xn)− φ(p, un(λ)))

= 0,

so one easily obtains
lim

n→∞
(yn(λ)− xn) = 0,

so that yn(λ) → x as n →∞.
Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

αn‖Jzn(λ)− Jxn‖ = ‖Jyn(λ)− Jxn‖ = 0.

Since lim infn→∞ αn > 0, then

lim
n→∞

‖Jzn(λ)− Jxn‖ = 0.

Further, since E has the Kadec-Klee property, the norm of E∗ is Fréchet dif-
ferentiable and therefore J−1 is norm-to-norm continuous, hence we have that

lim
n→∞

‖zn(λ)− xn‖ = 0,

so that zn(λ) → x as n →∞.
Since E is a uniformly smooth Banach space, one knows that E∗ is a uni-

formly convex Banach space. For any λ ∈ Λ, let r = supn∈N∪{0}{‖x0‖, ‖Sλxn‖,
‖Tλxn‖}. From Lemma 2.4, we have for all p ∈ F that

φ(p, zn(λ)) = φ(p, J−1(β(1)
n Jx0 + β(2)

n JTλxn + β(3)
n JSλxn))

= ‖p‖2 − 2〈p, β(1)
n Jx0 + β(2)

n JTλxn + β(3)
n JSλxn〉

+ ‖β(1)
n Jx0 + β(2)

n JTλxn + β(3)
n JSλxn‖2

≤ ‖p‖2 − 2〈p, β(1)
n Jx0 + β(2)

n JTλxn + β(3)
n JSλxn〉

+ β(1)
n ‖Jx0‖2 + β(2)

n ‖JTλxn‖2

+ β(3)
n ‖JSλxn‖2 − β(3)

n β(2)
n g(‖JTλxn − JSλxn‖)

≤ β(1)
n φ(p, x0) + β(2)

n φ(p, Tλxn)

+ β(3)
n φ(p, Sλxn)− β(3)

n β(2)
n g(‖JTλxn − JSλxn‖)

≤ β(1)
n φ(p, x0) + β(2)

n φ(p, xn)

+ β(3)
n φ(p, xn)− β(3)

n β(2)
n g(‖JTλxn − JSλxn‖)

≤ β(1)
n φ(p, x0) + (1− β(1)

n )φ(p, xn)− β(3)
n β(2)

n g(‖JTλxn − JSλxn‖)
and from condition (i) and xn → x, zn(λ) → x as n → ∞ for all λ ∈ Λ, we
obtain

β(3)
n β(2)

n g(‖JTλxn−JSλxn‖) ≤ β(1)
n φ(p, x0)+(1−β(1)

n )φ(p, xn)−φ(p, zn(λ)) → 0
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as n → ∞. From the properties of the mapping g and the condition (ii) we
have

(3.9) ‖JTλxn − JSλxn‖ → 0

as n →∞.
We can also get

‖Jxn − Jzn(λ)‖
= ‖Jxn − (β(1)

n Jx0 + β(2)
n JTλxn + β(3)

n JSλxn)‖
= ‖β(1)

n (Jxn − Jx0) + β(2)
n (Jxn − JTλxn) + β(3)

n (Jxn − JSλxn)‖
≥ ‖β(2)

n (Jxn − JTλxn) + β(3)
n (Jxn − JSλxn)‖ − ‖β(1)

n (Jxn − Jx0)‖,
which leads to

‖β(2)
n (Jxn−JTλxn)+β(3)

n (Jxn−JSλxn)‖ ≤ ‖Jxn−Jzn(λ)‖+‖β(1)
n (Jxn−Jx0)‖.

Since xn → x, zn(λ) → x as n → ∞ and limn→∞ β
(1)
n = 0, then from above

inequality we obtain

(3.10) ‖β(2)
n (Jxn − JTλxn) + β(3)

n (Jxn − JSλxn)‖ → 0

as n →∞.
On the other hand, by using the property of norm ‖ · ‖, we have

‖β(2)
n (Jxn − JTλxn) + β(3)

n (Jxn − JSλxn)‖
= ‖β(2)

n (Jxn − JTλxn) + β(3)
n (Jxn − JSλxn) + β(3)

n (Jxn − JTλxn)

− β(3)
n (Jxn − JTλxn)‖

= ‖(β(2)
n + β(3)

n )(Jxn − JTλxn) + β(3)
n (JTλxn − JSλxn)‖

≥ ‖(β(2)
n + β(3)

n )(Jxn − JTλxn)‖ − ‖β(3)
n (JTλxn − JSλxn)‖,

which leads to the following inequality

‖(β(2)
n + β(3)

n )(Jxn − JTλxn)‖
≤ ‖β(2)

n (Jxn − JTλxn) + β(3)
n (Jxn − JSλxn)‖+ ‖β(3)

n (JTλxn − JSλxn)‖.
Therefore, by using (3.9) and (3.10) we have

‖(β(2)
n + β(3)

n )(Jxn − JTλxn)‖ → 0,

this together with condition (ii) one has

lim
n→∞

‖(Jxn − JTλxn)‖ = 0.

Further, since E has the Kadec-Klee property, the norm of E∗ is Fréchet dif-
ferentiable and therefore J−1 is norm-to-norm continuous, hence we have that

lim
n→∞

‖xn − Tλxn‖ = 0.
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By the same way, we can prove that

lim
n→∞

‖xn − Sλxn‖ = 0.

Since Tλ and Sλ are two weak relatively nonexpansive mappings for any
λ ∈ Λ, we have that x ∈ F (Tλ) and x ∈ F (Sλ) for any λ ∈ Λ and thus
x ∈ ∩λ∈ΛF (Tλ) ∩ ∩λ∈ΛF (Sλ).

Then, we show x ∈ ∩λ∈ΛEP (fλ). From un(λ) = Trn
yn(λ) and Lemma 2.8,

we obtain

φ(un(λ), yn(λ)) = φ(Trn
yn(λ), yn(λ))

≤ φ(x, yn(λ))− φ(x, Trn
yn(λ))

≤ αnβ(1)
n φ(x, x0) + (1− αnβ(1)

n )φ(x, xn)− φ(x, Trn
yn(λ))

= αnβ(1)
n φ(x, x0) + (1− αnβ(1)

n )φ(x, xn)− φ(x, un(λ)).

It follows from (3.8) that

φ(un(λ), yn(λ)) → 0 as n →∞.

Noticing that Lemma 2.2, we get

‖un(λ)− yn(λ)‖ → 0 as n →∞.

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

‖Jun(λ)− Jyn(λ)‖ → 0.

From the (A2), we note that

‖y − un(λ)‖‖Jun(λ)− Jyn(λ)‖
rn

≥ 1
rn
〈y − un(λ), Jun(λ)− Jyn(λ)〉

≥ −fλ(un(λ), y)

≥ fλ(y, un(λ)), ∀y ∈ C, ∀λ ∈ Λ.

By taking the limit as n →∞ in above inequality and from (A4) and un(λ) →
x, we have fλ(y, x) ≤ 0 for all y ∈ C, for all λ ∈ Λ. For 0 < t < 1 and y ∈ C,
define yt = ty + (1 − t)x. Noticing that y, x ∈ C, we obtain yt ∈ C, which
yields that fλ(yt, x) ≤ 0. It follows from (A1) that

0 = fλ(yt, yt) ≤ tfλ(yt, y) + (1− t)fλ(yt, x) ≤ tfλ(yt, y).

That is, fλ(yt, y) ≥ 0.
Let t ↓ 0, from (A3), we obtain fλ(x, y) ≥ 0, ∀y ∈ C. This implies that

x ∈ EP (fλ). This shows that x ∈ F .
Finally, since x = ΠC0x0 ∈ F and F is a nonempty closed convex subset of

C0 = ∩∞n=1Cn, we conclude that x = ΠF x0 This completes the proof. ¤

Taking αn ≡ 1, Theorem 3.3 reduces to the following result.
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Theorem 3.5. Let E be a strictly convex, reflexive and uniformly smooth
Banach space having the Kadec-Klee property, let C be a non-empty and closed
convex subset of E and Let {fλ : λ ∈ Λ} be a family of bifunctions from C ×C
to R, satisfying (A1)-(A4). Let {Sλ : λ ∈ Λ} and {Tλ : λ ∈ Λ} be two families
of weak relatively nonexpansive mappings of C into itself such that

F := ∩λ∈ΛF (Sλ) ∩ ∩λ∈ΛF (Tλ) ∩ ∩λ∈ΛEP (fλ) 6= ∅.
For an arbitrarily chosen point x0 ∈ E, generate a sequence {xn} by the fol-
lowing iterative scheme: x1 ∈ C, C1 = C, and
(3.11)




yn(λ) = J−1(β(1)
n Jx0 + β(2)

n JTλxn + β(3)
n JSλxn),

un(λ) ∈ C such that fλ(un(λ), y) +
1
rn
〈y − un(λ), Jun(λ)− Jyn(λ)〉 ≥ 0

for all y ∈ C, for all λ ∈ Λ,

Cn+1 = {z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ (1− β(1)
n )φ(z, xn) + β(1)

n φ(z, x0)}

xn+1 = ΠCn+1(x0),

with the conditions:
(i) limn→∞ β

(1)
n = 0;

(ii) lim infn→∞ β
(2)
n β

(3)
n > 0;

(iii) {rn} ⊂ [a,∞) for some a > 0.
Then {xn} converges strongly to ΠF x0 ∈ C, where ΠF is the generalized pro-
jection of E onto F .

Taking Tλ ≡ Sλ, Theorem 3.4 reduces to the following result.

Theorem 3.6. Let E be a strictly convex, reflexive and uniformly smooth
Banach space having the Kadec-Klee property, let C be a non-empty and closed
convex subset of E and Let {fλ : λ ∈ Λ} be a family of bifunctions from
C × C to R, satisfying (A1)-(A4). Let {Tλ : λ ∈ Λ} be a family of weak
relatively nonexpansive mappings of C into itself such that F := ∩λ∈ΛF (Tλ) ∩
∩λ∈ΛEP (fλ) 6= ∅. For an arbitrarily chosen point x0 ∈ E, generate a sequence
{xn} by the following iterative scheme: x1 ∈ C, C1 = C, and
(3.12)



zn(λ) = J−1(βnJx0 + (1− βn)JTλxn) for all λ ∈ Λ,

yn(λ) = J−1((1− αn)Jxn + αnJzn(λ)) for all λ ∈ Λ,

un(λ) ∈ C such that fλ(un(λ), y) +
1
rn
〈y − un(λ), Jun(λ)− Jyn(λ)〉 ≥ 0

for all y ∈ C, for all λ ∈ Λ,

Cn+1 = {z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ (1− αnβn)φ(z, xn) + αnβnφ(z, x0)},

xn+1 = ΠCn+1(x0),

with the conditions:
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(i) limn→∞ βn = 0;
(ii) lim infn→∞ αn > 0;
(iii) lim infn→∞ βn(1− βn) > 0;
(iv) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to ΠF x0 ∈ C, where ΠF is the generalized pro-
jection of E onto F .

Remark 3. We may use more general projections for this result than the gen-
eralized projections; see [14]. Namely, the Bregman projections, which include
various important examples in the convex analysis, are applicable to this result.
See also [4, 5].

4. An example of weak relatively nonexpansive mapping

Next, we give an example which is weak relatively nonexpansive mapping
but not relatively nonexpansive mapping in a Banach space l2.

Example 1. Let E = l2, where

l2 = {ξ = (ξ1, ξ2, ξ3, . . . , ξn, . . .) :
∞∑

n=1

|ξn|2 < ∞},

‖ξ‖ =

( ∞∑
n=1

|ξn|2
) 1

2

, ∀ ξ ∈ l2,

〈ξ, η〉 =
∞∑

n=1

ξnηn, ∀ ξ = (ξ1, ξ2, ξ3, . . . , ξn, . . .), η = (η1, η2, η3, . . . , ηn . . .) ∈ l2.

It is well known that, l2 is a Hilbert space, so that (l2)∗ = l2. Let {xn} ⊂ E
be a sequence defined by

x0 =(1, 0, 0, 0, . . .)

x1 =(1, 1, 0, 0, . . .)

x2 =(1, 0, 1, 0, 0, . . .)

x3 =(1, 0, 0, 1, 0, 0, . . .)
. . . . . . . . . . . . . . . . . . . . .

xn =(ξn,1, ξn,2, ξn,3, . . . , ξn,k, . . .)
. . . . . . . . . . . . . . . . . . . . . ,

where

ξn,k =

{
1 if k = 1, n + 1,

0 if k 6= 1, k 6= n + 1
for all n ≥ 1. Define a mapping T : E → E as follows

T (x) =

{
n

n+1xn if x = xn (∃ n ≥ 1),
−x if x 6= xn (∀ n ≥ 1).
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Conclusion 4.1. {xn} converges weakly to x0.

Proof. For any f = (ζ1, ζ2, ζ3, . . . , ζk, . . .) ∈ l2 = (l2)∗, we have

f(xn − x0) = 〈f, xn − x0〉 =
∞∑

k=2

ζkξn,k = ζn+1 → 0

as n →∞. That is, {xn} converges weakly to x0. ¤

Conclusion 4.2. {xn} is not a Cauchy sequence, so that, it does not converges
strongly to any element of l2.

Proof. In fact, we have ‖xn − xm‖ =
√

2 for any n 6= m. Then {xn} is not a
Cauchy sequence. ¤

Conclusion 4.3. T has a unique fixed point 0, that is F (T ) = {0}.

Proof. The conclusion is obvious. ¤

Conclusion 4.4. x0 is an asymptotic fixed point of T .

Proof. Since {xn} converges weakly to x0 and

‖Txn − xn‖ = ‖ n

n + 1
xn − xn‖ =

1
n + 1

‖xn‖ → 0

as n →∞, so that, x0 is an asymptotic fixed point of T . ¤

Conclusion 4.5. T has a unique strong asymptotic fixed point 0, so that,
F (T ) = F̃ (T ).

Proof. In fact that, for any strong convergent sequence {zn} ⊂ E such that
zn → z0 and ‖zn − Tzn‖ → 0 as n → ∞, from conclusion 4.2, there exist
sufficiently large nature number N such that zn 6= xm for any n,m > N . Then
Tzn = −zn for n > N , it follows from ‖zn−Tzn‖ → 0 that 2zn → 0 and hence
zn → z0 = 0. ¤

Conclusion 4.6. T is a weak relatively nonexpansive mapping.

Proof. Since E = L2 is a Hilbert space, we have

φ(0, Tx) = ‖0− Tx‖2 = ‖Tx‖2 ≤ ‖x‖2 = ‖x− 0‖2 = φ(0, x), ∀ x ∈ E.

From conclusion 4.5, we have F (T ) = F̃ (T ), then T is a weak relatively non-
expansive mapping. ¤

Conclusion 4.7. T is not a relatively nonexpansive mapping.

Proof. From Conclusions 4.3 and 4.4, we have F (T ) 6= F̂ (T ), so that, T is not
a relatively nonexpansive mapping. ¤
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5. Approximation of a zero of a maximal monotone operator

In this section, we consider the problem of finding a zero of a maximal
monotone operator A, which can be applied to various kinds of problems such as
equilibrium problems, variational inequalities, convex minimization problems,
and others.

Now, we apply the theorem 3.1 to prove a strong convergence theorem con-
cerning maximal monotone operators in a Banach space E.

Let A be a multi-valued operator from E to E∗ with domain D(A) = {z ∈
E : Az 6= ∅} and range R(A) = {z ∈ E : z ∈ D(A)}. An operator A is said to
be monotone if

〈x1 − x2, y1 − y2〉 ≥ 0

for each x1, x2 ∈ D(A) and y1 ∈ Ax1, y2 ∈ Ax2. A monotone operator A is said
to be maximal if it’s graph G(A) = {(x, y) : y ∈ Ax} is not properly contained
in the graph of any other monotone operator. We know that if A is a maximal
monotone operator, then A−10 is closed and convex. The following result is
also well-known.

Theorem 5.1 (Rockafellar [24]). Let E be a reflexive, strictly convex and
smooth Banach space and let A be a monotone operator from E to E∗. Then
A is maximal if and only if R(J + rA) = E∗ for all r > 0.

Let E be a reflexive, strictly convex and smooth Banach space, and let A
be a maximal monotone operator from E to E∗. Using Remark 4.1 and strict
convexity of E, we obtain that for every r > 0 and x ∈ E, there exists a unique
xr such that

Jx ∈ Jxr + rAxr.

Then we can define a single valued mapping Jr : E → D(A) by Jr = (J +
rA)−1J and such Jr is called the resolvent of A. We know that A−10 = F (Jr)
for all r > 0, and Jr is a relatively nonexpansive mapping (see [12] for more
details). Using Theorem 3.1, we can consider the problem of strong convergence
concerning maximal monotone operators in a Banach space. Such a problem
has been also studied in [17, 27, 31] and some other references therein.

Theorem 5.2. Let E be a strictly convex reflexive and uniformly smooth Ba-
nach space having the Kadec-Klee property. Let A be a maximal monotone
operator of E into E∗, and let {fλ : λ ∈ Λ} be a family of bifunctions from
C × C to R, satisfying (A1)-(A4). Let Jr be the resolvent of A, where r > 0,
such that A−10 ∩ ∩λ∈ΛEP (fλ) 6= ∅. For an arbitrarily chosen point x0 ∈ E,
generate a sequence {xn} by the following iterative scheme: x1 ∈ C, C1 = C,
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and



zn(λ) = J−1(βnJxn + (1− βn)JJrxn) for all λ ∈ Λ,

yn(λ) = J−1(αnJxn + (1− αn)Jzn(λ)) for all λ ∈ Λ,

un(λ) ∈ C such that fλ(un(λ), y) +
1
rn
〈y − un(λ), Jun(λ)− Jyn(λ)〉 ≥ 0

for all y ∈ C, for all λ ∈ Λ,

Cn+1 = {z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ φ(z, xn)},

xn+1 = ΠCn+1(x0),

with the conditions:
(i) lim infn→∞(1− αn)βn(1− βn) > 0;
(ii) lim supn→∞ αn < 1;
(iii) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to ΠF x0 ∈ C, where ΠF is the generalized pro-
jection of E onto F .

Proof. Since Jr is a closed hemi-relatively non-expansive mapping, and A−10 =
F (Jr), from Theorem 3.3, we obtain Theorem 5.2. ¤

Theorem 5.3. Let E be a strictly convex reflexive and uniformly smooth Ba-
nach space having the Kadec-Klee property. Let A be a maximal monotone
operator of E into E∗, and let {fλ : λ ∈ Λ} be a family of bifunctions from
C × C to R, satisfying (A1)-(A4). Let Jr be the resolvent of A, where r > 0,
such that A−10 ∩ ∩λ∈ΛEP (fλ) 6= ∅. For an arbitrarily chosen point x0 ∈ E,
generate a sequence {xn} by the following iterative scheme: x1 ∈ C, C1 = C,
and



zn(λ) = J−1(βnJx0 + (1− βn)JJrxn) for all λ ∈ Λ,

yn(λ) = J−1((1− αn)Jxn + αnJzn(λ)) for all λ ∈ Λ,

un(λ) ∈ C such that fλ(un(λ), y) +
1
rn
〈y − un(λ), Jun(λ)− Jyn(λ)〉 ≥ 0

for all y ∈ C, for all λ ∈ Λ,

Cn+1 = {z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ (1− αnβn)φ(z, xn) + αnβnφ(z, x0)},

xn+1 = ΠCn+1(x0),

with the conditions:
(i) limn→∞ βn = 0;
(ii) lim infn→∞ αn > 0;
(iii) lim infn→∞ βn(1− βn) > 0;
(iv) {rn} ⊂ [a,∞) for some a > 0.

Then {xn} converges strongly to ΠF x0 ∈ C, where ΠF is the generalized pro-
jection of E onto F .
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Proof. Since Jr is a closed hemi-relatively non-expansive mapping, and A−10 =
F (Jr), from Theorem 3.6, we obtain Theorem 5.3. ¤
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