References
- Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, 15–50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996.
- G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers Group, Dordrecht, 1993.
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123–145.
- D. Butnariu, Y. Censor, and S. Reich, Iterative averaging of entropic projections for solving stochastic convex feasibility problems, Comput. Optim. Appl. 8 (1997), no. 1, 21–39. https://doi.org/10.1023/A:1008654413997
- D. Butnariu and A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers, Dordrecht, 2000.
- D. Butnariu, S. Reich, and A. J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal. 7 (2001), no. 2, 151–174.
- Y. Censor and S. Reich, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization 37 (1996), no. 4, 323–339. https://doi.org/10.1080/02331939608844225
- Y. J. Cho, H. Zhou, and G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47 (2004), no. 4-5, 707–717. https://doi.org/10.1016/S0898-1221(04)90058-2
- K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83. Marcel Dekker, Inc., New York, 1984.
- B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957–961.
- T. Ibaraki, Y. Kimura, and W. Takahashi, Convergence theorems for generalized projections and maximal monotone operators in Banach spaces, Abstr. Appl. Anal. 2003 (2003), no. 10, 621–629. https://doi.org/10.1155/S1085337503207065
- M. M. Israel, Jr. and S. Reich, Extension and selection problems for nonlinear semigroups in Banach spaces, Math. Japon. 28 (1983), no. 1, 1–8.
- S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), no. 3, 938–945. https://doi.org/10.1137/S105262340139611X
- Y. Kimura, On Mosco convergence for a sequence of closed convex subsets of Banach spaces, Banach and function spaces, 291–300, Yokohama Publ., Yokohama, 2004.
- Y. Kimura and W. Takahashi, On a hybrid method for a family of relatively nonexpansive mappings in a Banach space, J. Math. Anal. Appl. 357 (2009), no. 2, 356–363. https://doi.org/10.1016/j.jmaa.2009.03.052
- P. Kumam, Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space, Turkish J. Math. 33 (2009), no. 1, 85–98.
- S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory 134 (2005), no. 2, 257–266. https://doi.org/10.1016/j.jat.2005.02.007
- S. Matsushita and W. Takahashi, Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl. 2004 (2004), no. 1, 37–47. https://doi.org/10.1155/S1687182004310089
- U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585.
- K. Nakajo and W. Takahashi, Approximation of a zero of maximal monotone operators in Hilbert spaces, Nonlinear analysis and convex analysis, 303–314, Yokohama Publ., Yokohama, 2003.
- X. Qin, Y. J. Cho, and S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225 (2009), no. 1, 20–30. https://doi.org/10.1016/j.cam.2008.06.011
- X. Qin, Y. J. Cho, S. M. Kang, and H. Zhou, Convergence of a modified Halpern-type iteration algorithm for quasi-Á-nonexpansive mappings, Appl. Math. Lett. 22 (2009), no. 7, 1051–1055. https://doi.org/10.1016/j.aml.2009.01.015
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287–292.
- R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75–88.
- N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3641–3645.
- Y. Su, J. Gao, and H. Zhou, Monotone CQ algorithm of fixed points for weak relatively nonexpansive mappings and applications, J. Math. Res. Exposition 28 (2008), no. 4, 957–967.
- Y. Su, D. Wang, and M. Shang, Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings, Fixed Point Theory Appl. 2008 (2008), Art. ID 284613, 8 pp. https://doi.org/10.1155/2008/284613
- Y. Su, Z. Wang, and H. Xu, Strong convergence theorems for a common fixed point of two hemi-relatively nonexpansive mappings, Nonlinear Anal. 71 (2009), no. 11, 5616–5628. https://doi.org/10.1016/j.na.2009.04.053
- W. Takahashi, Nonlinear Functional Analysis: Fixed Point Theory and its Applications, Yokohama Publishers, Yokohama, 2000.
- W. Takahashi, Y. Takeuchi, and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 276–286. https://doi.org/10.1016/j.jmaa.2007.09.062
- W. Takahashi and K. Zembayashi, Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory Appl. 2008 (2008), Art. ID 528476, 11 pp.
- W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal. 70 (2009), no. 1, 45–57. https://doi.org/10.1016/j.na.2007.11.031
- L. Wei, Y. J. Cho, and H. Zhou, A strong convergence theorem for common fixed points of two relatively nonexpansive mappings and its applications, J. Appl. Math. Comput. 29 (2009), no. 1-2, 95–103. https://doi.org/10.1007/s12190-008-0092-x
- R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel) 58 (1992), no. 5, 486–491. https://doi.org/10.1007/BF01190119
- H. Zegeye and N. Shahzad, Strong convergence for monotone mappings and relatively weak nonexpansive mappings, Nonlinear Anal. (2008) doi:10.1016/j.na.2008.03.058.
- H. Zegeye and N. Shahzad, Strong convergence theorems for monotone mappings and relatively weak nonexpansive mappings, Nonlinear Anal. 70 (2009), no. 7, 2707–2716.
Cited by
- Strong Convergence of Modified Iteration Processes for Relatively Weak Nonexpansive Mappings vol.52, pp.4, 2012, https://doi.org/10.5666/KMJ.2012.52.4.433