• Title/Summary/Keyword: stationary solution

Search Result 182, Processing Time 0.025 seconds

INSTABILITY IN A PREDATOR-PREY MODEL WITH DIFFUSION

  • Aly, Shaban
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2009
  • This paper treats the conditions for the existence and stability properties of stationary solutions of a predator-prey interaction with self and cross-diffusion. We show that at a certain critical value a diffusion driven instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion) but becomes unstable with respect to the system with diffusion and that Turing instability takes place. We note that the cross-diffusion increase or decrease a Turing space (the space which the emergence of spatial patterns is holding) compared to the Turing space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges.

  • PDF

A POINT COLLOCATION SCHEME FOR THE STATIONARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Kim, Yongsik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1737-1751
    • /
    • 2013
  • An efficient and stable point collocation scheme based on a meshfree method is studied for the stationary incompressible Navier-Stokes equations. We describe the diffuse derivatives associated with the moving least square method. Using these diffuse derivatives, we propose a point collocation method to fit in solving the Navier-Stokes equations which improves the stability of the direct point collocation scheme. The convergence of the numerical solution is investigated from numerical examples. The driven cavity ow and the backward facing step ow are implemented for the reliability of the scheme. Also, the viscous ow on complicated geometry is successfully calculated such as the ow past a circular cylinder in duct.

DETERMINATION OF GLOBAL STABILITY OF THE SLOSH MOTION IN A SPACECRAFT VIA NUMERICAL EXPERIMENT (수치적 실험에 의한 위성 내부 유동체의 안정-불안정 영역 판별)

  • 강자영
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.351-358
    • /
    • 2003
  • The global stability of the attitude motion of a spin-stabilized space vehicle is investigated by performing numerical experiment. In the previous study, a stationary solution and a particular resonant condition for a given model were found by using analytical method but failed to represent the system stability over parameter values near and off the stationary points. Accordingly, as an extension of the previous work, this study performs numerical experiment to investigate the stability of the system across the parameter space and determines stable and unstable regions of the design parameters of the system.

Truss Optimization based on Stochastic Simulated healing (SSA기법에 의한 트러스 최적화)

  • 이차돈;이원돈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.73-78
    • /
    • 1992
  • A stochastic simulated anneal ins (SSA) is a recent approach to the solution of problems characterized by large number of interacting degrees of freedom. SSA simulates the degrees of freedom in a problem in a such a way that they are a collection of atoms slowly being coolded into a ground state which would correspond to the stationary point of the problem. In this paper, for a randomly disturbed current design, SSA optimization technique is used, which establishes a probabilistic criterion for acceptance or rejection of current design and iteratively improves it to arrive at a stationary Point at which critical temperature is reached. Simple truss optimization problem which consider as their constraints only the tensile and compressive yielding strength of the members are tested using SSA. Satisfactory results are obtained and some discussions are given for the behavior of SSA on the tested truss structures.

  • PDF

A Strady-State One-Dimensional Analysis of an Oxygen Electrode in Stationary and Flowing Liquid (정체 및 유동액체에서 산소전극의 안정상태 일차원적 해석)

  • 김태진
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.150-156
    • /
    • 1989
  • The chaacterisitics of a commercial membrance-coverd electrode in air-saturated saline solution were investigated in terms of a steadystate one-dimensional model. The electrode system miiersed in an aqueous medium consists of three layers: an external concentration boundary layer, a membrance, and an inner electrolyte layer. The membrance can be permeabld to the water and impermeable to the ionic species. In stationary midium, the water migrates from the external medium to the inner electrolyte layer until a thermodynamic equilibrium is reached. In a following midium, however, there is a reverse direction of water movement due to the hyrodynamic pressure differential until both thickness of the electrolyte layer and the membrance are equal.

  • PDF

A robot motion planning method for time-varying obstacle avoidance

  • Ko, Nak-Yong;Lee, Bum-Hee;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.491-496
    • /
    • 1992
  • An analytic solution approach to the time-varying obstacle avoidance problem is pursued. We formulate the problem in robot joint space(JS), and introduce the view-time concept to deal with the time-varying obstacles. The view-time is a set of continuous times in which a time-varying obstacle is viewed and approximated by an equivalent stationary obstacle. The equivalent stationary obstacle is transformed into the JS obstacle. In JS, the path and trajectory avoiding the JS obstacle is planned.

  • PDF

Inertia Force Problem and Nozzle Contact Mechanism on Linear Motor Drive Injection Molding Machine (리니어모터식 사출성형기의 반력문제 및 노즐터치기구)

  • Bang, Yeong-Bong;Yun, Deung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.171-177
    • /
    • 2002
  • This paper presents the inertial force problem of ultrahigh-speed injection molding machine using linear motors, and presents its solutions. To make very thin products by injection molding, very high injection speed is required, and linear motors are used for this purpose. But direct drive by linear motors may cause brief nozzle separation from the sprue bushing because of the inertia force as large as the total output thrust of the linear motors, and this momentary separation can cause molten plastic leakage. In this paper, two solutions are proposed for this inertia force problem. One is the mechanical cancellation of the inertia force, and the other to increase the nozzle contact force. With the latter solution, the stationary platen bending worsens, so a new nozzle contact mechanism is also proposed, which can prevent the stationary platen bending.

DECAY RESULTS OF WEAK SOLUTIONS TO THE NON-STATIONARY FRACTIONAL NAVIER-STOKES EQUATIONS

  • Zhaoxia Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.637-669
    • /
    • 2024
  • The goal of this paper is to study decay properties of weak solutions to Cauchy problem of the non-stationary fractional Navier-Stokes equations. By using the Fourier splitting method, we give the time L2-decay rate of weak solutions, which reveals that L2-decay is generally determined by its linear generalized Stokes flow. In second part, we establish various decay results and the uniqueness of the two dimensional fractional Navier-Stokes flows. In the end of this article, as an appendix, the existence of global weak solutions is given by making use of Galerkin' method, weak and strong compact convergence theorems.

Spike Rejection Method for Improving Altitude Control Performance of Quadrotor UAV Using Ultrasonic Rangefinder (초음파 거리계를 이용하는 쿼드로터 무인항공기의 고도 제어 성능 향상을 위한 스파이크 제거 기법)

  • Kim, Sung-Hoon;Choi, Kyeung-Sik;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.196-202
    • /
    • 2016
  • In this paper, a stationary wavelet transform method is proposed for improving the altitude control performance of quadrotor UAV using an ultrasonic rangefinder. A ground tests are conducted using an ultrasonic rangefinder that is much used for vertical takeoff and landing. An ultrasonic rangefinder suffers from signal's spike due to specular reflectance and acoustic noise. The occurred spikes in short time span need to be analyzed at both sides time and frequency domain. It was known that stationary wavelet transform is the transferring solution to the problem occurred by down sampling from DWT also more efficient to remove noise than DWT. The analyzed spikes of the ultrasonic rangefinder using a stationary wavelet transform and experimental results show that it can effectively remove the spikes of the ultrasonic rangefinder.

A Development of the Small Signal Analyzer for the Stationary Drift-Diffusion Equation (정상상태에서 드리프트-확산 방정식의 소신호 해석 프로그램 개발)

  • Lim, Woong-Jin;Lee, Eun-Gu;Kim, Tae-Han;Kim, Cheol-Seong
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.45-55
    • /
    • 1999
  • The small signal analyzer for the stationary drift-diffusion equation is developed. The slotboom variables of the potential, electron and hole concentrations for the response of applied small signal are defined and the stationary drift-diffusion equation is linearlized on DC operation point by $S^3A$ method. Frontal solver, which is used to solve the global matrix, progresses the accuracy of the solution in high frequency and minimizes the requirement of the memory. The simulations are executed on the structure of 3 dimensional N'P junction diode and 2 dimensional n-MOSFET to verify the proposed algorithm. The average relative errors of the conductance and the capacitance compared with MEDICI are about 26% and 0.67 for N'P junction diode and 7.75% and 2.24% for n-MOSFET. The simulation by the proposed algorithm can analyze the stationary drift-diffusion equation for applied small signal in high frequency region about 100GHz.

  • PDF