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Truss Optinization based on Stochastic Simulated Annealing

o O] )} % %
Lee, Cha-Don

ool ¥ E &
Lee, Won-Don

Abstract

A stochastic simulated annealing (SSA) is a recent approach to the solution of
problems characterized by large number of interacting degrees of freedom. SSA
simulates the degrees of freedom in a problem in a such a way that they are a
collection of atoms slowly being coolded into a ground state which would
correspond to the stationary point of the problem. In this paper, for a
randomly disturbed current design, 'SSA optimization technique is used, which
establishes a probabilistic oriterion for acceptance or rejection of current
design and iteratively improves it to arrive at a stationary point at which
critical temperature is reached. Sinple truss optimization problems which
consider as their constraints only the tensile and compressive yielding
strength of the members are tested using SSA. Satisfactory results are

obtained and some discussions are given for the behavior of SSA on the tested
truss structures.

t. INTRODUCTION Along the main stream of  linear

programming (LP) and nonlinear programming
With the impressive progress of (NLP) techniques, refined algorithms have
development in the computer technology . been branched out in order to take into

together with the developement of efficient’

structural analysis of design methods in the
last decade it becomes possible with varying
degrees of success to efficiently handle the
structural optimization which contains large
degree of freedom and variables. In the
area of structural engineering, the method of
optimization has been steadily applied to
various structural problems, Distinguishable
linear and nonlinear optimization techniques
have been successfully developed for finding
optinal set of the material, topology,
geometry or cross—sectional dimensions of
different types of structures subject to
particular loading system (Kavlie and Moe,
1871: Pedersen, 1973; Kirshc, 19815 Ding and
Esping, 1985; and Scholz and Faller, 1986).
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account for the discrete nature of structure,
fabricated standardized structural conponents
for example. Although great success has
been achieved during the past decades in
structural optimization, those techniques
generally have difficulties in avoiding Yocal
minima and results are sometimes dependent
upon the choice of the initial values in the
design space.

Recently, with the aid of high speed
conputers, a combinatorial optimization has
been introduced in the field of computer
science and has been successfully applied to
the problems having a large number (possibly
millions) of interacting decisions or degrees
of freemdom. Example for this group includes
the Travelling Salesman  Problem(TSP),



probably the best known problem in
combinatorial optimization. A
combinatorial optimization problem is

formulized as a pair (R,C), where R is the
finite-or possibly countable infinite-set of
configurations (or configuration space) and C
a cost function, C:R— (R), which assigns a
real number to each configuration. The
algorithm is based on randomization
techniques and a number of aspects of
iterative improvement algorithms is
incorporated (Laarhoven and Arts, 1987).

Nearly optimum solutions to many
combinatorial problems can be found using
stochastic simulated annealing (SSA)
(Kirkpatric,Gelatt and Vecchi, 1983), whose
name is originated on the ground of
thermodynamics. Stochastic simulated
annealing finds a global minimum of an
objective function (say, Hamiltonian H(S),
S=(S), S2, ..., Sn) by combining gradient
descent with a random process. The method
allows, under certain conditions, choices of
S which actually increase H, thus providing
SSA with a mechanism for escaping local
minima, Decreasing slowly a parameter T
(symbolically often referred to as the
temperature) the severity and frequency of
these uphill moves is gradually reduced so
that the system settles into a global
minimum.

2. Stochastic Simulated Annealing (SSA)

A brief theoretical review on SSA is given
in this section. In thermodynamics, an
ensemble is defined as a mental collection of
a very large number, 7, of systems, each
contains N molecules and constructed to be a
replica on a thermodynamis(macroscopic) level
of the actual thermodynamic system. In
particular, if a system is closed, and
isothermal, this system is called “canonical
ensemble.”

It is well stated in statistical mechanis
that probabitiy(P;) observing a given quantum
state Ej in an arbitrary system of a
canonical ensemble is equal to: '

Pj=—. . 4))
7 pIRE 1Y
where 7 = total number of systems in the
supersystem;
nj= number of systems with energy state
of E;;

Q1= possible no. of states in
supersystem consitent with distri-
bution (nl, --- nk).

the most probable distribution(to
which the largest Qt belongs) completely
dominates in average computation and thus
eq. (1) becomes:
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where Ej = energy state of Ej (for a given
number of molecules(N) and
a volume(V));
K = Boltsman constant; and
T = tenperature.
Eq.(2) states that the probability of
obeserving a given quantum state in a
canonical ensemble decreases exponentially

with the energy of the quantum state,
The average energy in the system of canonical
ensemble is therefore given as:

B> =/ E(x)-P(x)dx
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where E,P = energy and probability in enery of
E, respectively 3 and
X = configurational variables
= (X, X2,.., Xn).

Eq. (4) shows how the energy <E> changes as
a temperature T changes and it represents
simulation of an annealing process of a
heated solid. The difficulties in
evaluating P(X) in eq.(4) and the fact that
P(x) is proportional to the exp(-£/kT) and
thus varies very rapidly with E(x) lead to
employ importance sampling technique forming
a Markov chain (Berne, 1977). Construction
of a Markov chain is accomplished by the use
of a transition matrix Pij by Metropolis et.
al. The Markov chain constructed below has
unique limit distribution 7z (=c-e~E/kT ) and
does not depend on the configurational
integration:

Pij = Pij* —®
Pij*. i/ i
Pii = I-3 Pij

J=i
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where Pij = Prlj, t+1/ i, t] s (6)

ri(t) = Twi(t-1)Pij s and

Pij* = transition matrix of the
underlying Markov chain.



The SSA algorithm which realizes above
equations is schematically presented below
and based on which  optimal solutions of
trusses under the FSD criterion are sought.
The algorithm was programmed with C.

SSA  Algorithm:

T = starting temperature
while (T > Tmin) .
do until (equilibrium is reached)
purturb A[i]
obtain Enew (A[iD)
if Enew < Eold
accept A[i]
else
r = random number
if exp (~(Enew-Eold)/T) > r
acoept Ali] -
else ’
reject
Lower T

3. Truss Optimization: Examples

In general optimum structural design can
be stated as minimizing the cost function by
properly choosing design and ocorresponding
variables subjected to constraints which are
related to the design and the behavior of
structure, Design variables of interest in
this study are chosen to be member areas and
stress constraints in terms of tensile and
compressive yielding strengths are only
imposed, limiting exanples to the FSD (fully
stressed design) ariteria, The problem
formulation then can be defined as:

m .
min Z = XAi-L;
i=)

subject to gi(ALjD) < 0, i=1,2,...,nc —(?)
J=t,2,...,m
Aj 2 Alower limit,

Using a penalty function (Reklaitis et.al.,
1983), the above constrained optimum problem
is transformed to a unconstrained problem:

min z = ZAi-Li + R-2<gi>? (8)

where Ai = cross sectional area of member i;
Li = length of member i;
R = penalty parameter; and
{gi>=0 if gi <0
9 if gi >0

(1).Three bar truss: SSA is applied to a

rather simple three-bar truss which is
subjected to the load P=20K. (see Fig. 1).
The conditions are :
3
min Z= TAilL; 9)
i=t
subject to  ~15 < o1L20
-15 <0220
Al,A22>0

The exact solution is given by Schmit
(1960) and it is reproduced in Fig 2. The
minimum volume 263.9in3 is obtained at
A1=0.788 in? and A2=0.410 in2, For the same
truss the results from SSA is presented in
Fig. 3. Minimum volume attained from SSA is
264.8in3 at A1=0.76in2 and A2=0.5in2, Near
the optimum, it can be seen from Fig.2 that
small move of objective function in the
design space bring a relatively sensitive
changes in the value of A2,

(2). Ten bar Trusst Truss geometry and
loading conditions are given in Fig. 4.
Fig. 5 presents results from optimization by

SSA under the stress constraints loil £
25ksi, i=1,2,..,10 with initial areas given
by Ai® = 5.0, Column (2) in Table |1

represents correponding cross sectional areas
at the optimum volume of 15962 in3 for this
truss. To see if there can be an improvement
in final design, the values of colum (2) are
used as inputs and the second run is made for
the same ranges of the temperature given for
the case in column(2). The results are given
in column (3) and in Fig. 6. There seems to
be essentially no difference between two
designs. This supports independency of SSA
on the initial values and that the method
leads the design wvariables to a global
minimum as time T approaches to the freezing
temperature. Member forces in column (4) in
Table | is obtained using the areas given in
column (2) in Table 1 and its corresponding
stresses are shown in column (5) in Table 1.
Except members 3,4,8 and 9, all other members
are in fully stressed states.

(3). Ten bar truss with different yielding
strength: Another example is given for the
same truss under the same loading condition
except that loi!<25, (i=1,2,---,9) and 010!
<50. The areas at true optimum (column
(2), Table 2), the areas obtained from SSA
with starting initial areas of A°;=5 and
their corresponding stresses are given in
columns (3),(4) and (5), in Table 2,
respectively. It can be seen from this



table that except members 8 and 0, all
others are of fully or almost fully stressed

state. Fig. 7 shows the trends of
convergence of SSA  in  this particular
problem. The column (6) in Table 2 shows

the results obtained by assigning relatively
small initial areas (A°;=1) to each member
for ten bar truss. The result reveals that
regardless of the choice of initial areas,
SSA allows the design variables to converge
to a global minimum. It is worth
mentioning that since the SSA decreases
acceptance probability steadily to zero as
the temperature gets lowered this makes SSA
itself enable to break out of local minimum
and converge upon the global minimum,

In general, values of cross sectional
areas of truss are not obtained exactly from
SSA in this study although minimum volume is
satisfactorily attained. This is mainly due
to the nature of SSA in selecting random
number in finite sizes during the iterative
cooling process and also in terminating the
cooling process at a relatively high
temperature. With the expense of longer
computing time, taking a smaller perturbation
on the cross sectional areas as well as
further lowering of freezing temperature
would lead to a better solution. Since at a
relatively low temperature (clese to a
freezing) the rate of changes both in volume
and cross sectional areas of truss are small,
one may use one of the nonlinear programming
techniques to accelerate a convergence to an
exact minimum in the vicinity of a global
minimum, :

4. CONCLUSIONS

Stochastic simulated annealing (SSA) is an
algorithm based on a combinatorial
optimization and bases its derivation on the
cooling process of heated solid. SSA is
experimentally applied to a rather simple
truss optimization problems known as fully
stressed design (FSD) without considering
any buckling problems.

Applications of SSA to optimization
problems in this class were successfully
performed in obtaining optimum sectional
areas of trusses. SSA has a capability of

escaping local minima by accepting uphill
moves during the cooling process. In
relation to this it was observed in this

study that in a limited number of different
initial areas used for starting point at high
temperature, volumes at global minimum are
obtained regardless of choice of these
initial values.
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More realistic conditions on structural
constraints are being considered as an
extention to this study by the authors and it
seems that some elaborated work related to
reducing the computational time is needed
order to make SSA to converge
reasonable time frames.
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i Table 1. results from SSA for ten bar truss.

. 1 (2) (3} 4) (5
won . member [secticnal | sectional member | stress
. k’\/\«* w1, no. area area force
[ ’ e 1 8.156 8.08 -201.86 | 25

2 3.844 3.92 -98.13 -25
" ) — - " 3 0.215 0.103 1.87 | 18
4 0.1976 0,108 1.87 18
5 7.848 7.92 198 25
logsoT 6 5.437 5.56 —},38.8 =25
Figure 7. convergence to a minimum volume during 7 5.889 8'3337 (1)4301 (2)504
the annealing process for the ten bar 8 0.124 0' 24 —-2.644 _lé 7
truss. oyi=25 for i=1,2,--+9 and 0y!9=50 9 0.295 5';5 1.38 78 25'
for tension and compression. 10 5.4368 : :
Total 15962 15945
volume
Table 2. results from SSA for ten bar truss.
oyi=25 for i=1,2,--+9 and 0y1°=50
for tension and compression
(1) (2) (3) (4) (5) (6)
member true sectional| member |stress sectional
no. optimum area force area
(Ai°=5) (Ai9=5) [(Ai®=5) (A£0=1)
1 8.06 8.12 -203,1 -25 8.11
2 3.94 3.89 -96.8 -25 3.98
3 0.10 0.13 3.21 24.7 0,106
4 0.10 0.13 3.21 24,7 0,105
5 7.94 7.9 196,9 25 7.94
6 5.57 5,53 -136.9 -24.8 5,51
7 5.74 5.82 145.9 23.8 5.85
- 8 0.10 0.11 0.0744 0.676 0.105
9 0.1 0.18 -4,54 25 0.15
10 5.57 3.62 136.9 37.8 3.67
total 14976 15020 15052
volume




