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A POINT COLLOCATION SCHEME FOR THE STATIONARY

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Yongsik Kim

Abstract. An efficient and stable point collocation scheme based on

a meshfree method is studied for the stationary incompressible Navier-
Stokes equations. We describe the diffuse derivatives associated with the

moving least square method. Using these diffuse derivatives, we propose
a point collocation method to fit in solving the Navier-Stokes equations

which improves the stability of the direct point collocation scheme. The

convergence of the numerical solution is investigated from numerical ex-
amples. The driven cavity flow and the backward facing step flow are

implemented for the reliability of the scheme. Also, the viscous flow on

complicated geometry is successfully calculated such as the flow past a
circular cylinder in duct.

1. Introduction

The objective of this paper is to propose a point collocation scheme for the
stationary incompressible Navier-Stokes equations which is an extension of the
previous work [11]. We proposed a direct point collocation schemes by a mesh-
free approximation which is called the fast moving least square reproducing
kernel method (FMLSRK) [11].

Through a couple of decades, various meshfree approximations and algo-
rithms have been studied [3, 4, 5, 6, 8, 13, 14, 15, 16, 17, 18, 19, 21, 22, 25].
While these methods are developed in the context of the Galerkin formula-
tion, direct discretisation schemes such as point collocation methods were also
proposed [1, 7, 12, 20, 23]. Most of meshfree methods share a main idea of mak-
ing the shape functions which are related to the moving least square process.
Those shape functions have certain reproducing property of polynomials, and
that makes meshfree methods applicable to the collocation scheme. However,
previous works on meshfree methods use the classical derivatives of basis to
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discretize partial differential equations, and that is a cause of excessive cost.
In FMLSRK approximation, we use the diffuse derivatives of shape functions
from the local interpolation, and the overall cost is remarkably reduced in the
meshfree collocation schemes. The main difference between the FMLSRK and
other meshfree approximation is the view on the derivatives of interpolation
basis. In the process of obtaining interpolation basis, we interpret remnants as
derivatives of interpolation basis.

In our previous work [11], we validated point collocation schemes for the
Poisson equation and the Stokes equations. However, it is observed that there
are certain instability phenomena for asymmetric Stokes problems. Further,
the Navier-Stokes equations have intrinsic asymmetric property. Hence, we
develop new collocation scheme which is suitable to the stationary incompress-
ible Navier-Stokes equations. The main idea of the scheme is the constrained
minimization procedure with the essential boundary condition as constraints.
Introducing residual operators for momentum equation and divergence free
condition, we define a square residual functional. Then, the numerical solution
is the minimizer of the square residual functional with the essential boundary
condition as constraints. In algebraic point of view, the proposed scheme is
a kind of the least square process. Eventually, we solve a symmetric positive
definite matrix even though original problem is asymmetric. While the descrip-
tion of the basic method follows the previous work [11], we need the concept of
the dilation function [10] in calculating the flow on complicated geometry. We
refer the work of Kim et al. [10] for further detail.

As numerical examples, convergence of relative L2, L∞ errors were shown
numerically for an exact solution of the Navier-Stokes equations. The driven
cavity flow and the backward facing step flow are illustrated for the reliability
of code. Furthermore, the flow in duct passing around a circular cylinder is
also implemented to show the robustness of the scheme even on complicated
geometry.

2. Fast moving least square reproducing kernel approximation

In this section, we briefly describe the FMLSRK approximation. The main
difference between the FMLSRK and other meshfree methods is the way to
obtain derivatives of shape functions. Derivatives of FMLSRK shape functions
are obtained from the process of obtaining shape function itself without further
cost. We interpret the limit of derivatives of local approximation as derivatives
of global approximations. It can be explained as turning over the sequence of
obtaining derivatives of shape functions. For the detail of FMLSRK, we refer
[11]. Also we note that multi-index notation is used throughout the paper.

Let Pm(x) be the vector such that its elements are made by all of polyno-
mials of order less than or equal to m with x ∈ Rn. For example, if n = 2
and m = 2, then Pm(x) is (1, x, y, x2, xy, y2)T . Suppose we have given node
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set Λ = {xI ∈ Ω | I = 1, 2, . . . , NP} on the domain Ω ⊂ Rn. With a com-
pactly supported continuous non-negative window function Φ, the resulting
shape functions of FMLSRK are defined as the following:

Ψ
[α]
I (x) ≡ α!

ρ|α|
eTαM

−1(x) Pm

(
xI − x

ρ

)
Φρ(xI − x).

Here, Φρ(x − x̄) = 1
ρnΦ

(
x−x̄
ρ

)
and M is the conventional moment matrix as

the following;

M(x) ≡
NP∑
I=1

Pm

(
xI − x̄

ρx̄

)
PT
m

(
xI − x̄

ρx̄

)
Φρ(xI − x).

Also α = (α1, . . . , αn) is multi index and eα is the α-th unit vector in R
(n+m)!
n!m! .

We note that only continuity is required for the window function instead of
differentiability. For example, if n = 2 and m = 2, explicit shape functions are
the following.

Ψ
[(0,0)]
I (x)

Ψ
[(1,0)]
I (x)

Ψ
[(0,1)]
I (x)

Ψ
[(2,0)]
I (x)

Ψ
[(1,1)]
I (x)

Ψ
[(0,2)]
I (x)


=



1 0 0 0 0 0
0 1

ρ 0 0 0 0

0 0 1
ρ 0 0 0

0 0 0 2
ρ2 0 0

0 0 0 0 1
ρ2 0

0 0 0 0 0 2
ρ2


M−1(x)



1
xI−x
ρ

yI−y
ρ

(xI−x)2

ρ2
(xI−x)(yI−y)

ρ2

(yI−y)2

ρ2


Φρ(xI−x).

If α is zero, Ψ
[α]
I s are usual shape functions in meshfree approximation.

Otherwise, i.e., α 6= 0, Ψ
[α]
I corresponds to

∂Ψ
[0]
I

∂xα . Hence, there is no more step
to produce derivatives of shape functions.

Defining the global interpolation operator as Dρ,α
m u(x)=

∑NP
I=1 Ψ

[α]
I (x)u(xI),

the general consistency theorem and the interpolation theorem by FMLSRK
are obtained (see [11]).

Theorem 2.1. Suppose that u(x) is a polynomial of the order less than or
equal to m. Then the interpolation operator Dρ,α

m produces Dα u(x), i.e.,

(1) Dρ,α
m u(x) = Dα u(x)

for any α, |α| ≤ m.

Theorem 2.2. Assume the window function Φ(x) ∈ C0
0 (Rn) and v(x) ∈

Cm+1(Ω), where Ω is a bounded open set in Rn. Let Λ = {xI | I = 1, . . . , NP}
be a regular node set. Suppose the boundary of Ω is smooth and suppΨ

[0]
I ∩ Ω̄

is convex for each I.
If m and p satisfy m > n

p −1, then the following interpolation estimate holds

(2) ‖Dβv−Dρ,β
m v‖Lp(Ω) ≤ C(m) ρm+1−|β| ‖v‖Wm+1,p(Ω) for all 0 ≤ |β| ≤ m.
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For convenience of further study, a linear operator will be defined between
vector spaces which are generated by shape functions.

Definition 1. We define the finite dimensional vector space Hα
ρ . The α-th

shape functions Ψ
[α]
I (x)’s make the vector space

(3) Hα
ρ = {

∑
xI∈Λ

uI Ψ
[α]
I (x) |uI ∈ R}, |α| ≤ m,

and we define the linear operator Dρ,α
m,h : H0

ρ → Hα
ρ such that

Dρ,α
m,h

(
Ψ

[0]
I (x)

)
= Ψ

[α]
I (x) for all I = 1, 2, . . . , NP.

We call it the α-th discrete differential operator.

By definition, we see that Dρ,0
m,h is the identity operator. On the other hand,

the role of Ψ
[α]
I (x) is to take the place of the direct derivative DαΨ

[0]
I (x) of the

shape function Ψ
[0]
I (x). Also, we note that there is a following relation,

(4) Dρ,α
m = Dρ,α

m,h ◦D
ρ,0
m : C0(Ω̄) → Hα

ρ ,

where C0(Ω̄) is the set of all continuous functions up to boundary of Ω.

Remark 2.3. It is natural to extend the above method using the dilation func-
tion. The constant dilation parameter ρ can be replaced with the continuous
dilation function ρx. However, it is difficult to adopt a dilation function to
meshfree methods using exact evaluation of derivatives. In [10], an algorithm
to make continuous dilation function from a given node distribution was pro-
posed. The interpolation theorem (Theorem 2) is also valid for the case of
using the dilation function. In that case, ρ is replaced with max

x∈Ω
ρx.

3. Preconditioned point collocation scheme using dilation function

The pre-conditioned point collocation scheme is quite natural in FMLSRK.
For simplicity, we choose the Poisson equation as an example to explain the
pre-conditioned point collocation scheme. Using FMLSRK approximation, we
interpolate the solution u(x) of a given partial differential equation such as

(5) u ≈ U =

NP∑
J=1

uJ Ψ
[0]
J (x, ρx) ∈ H0

ρx ,

where uI will be determined by the governing equation. Then Theorem 2.1
and Definition 1 lead us to discretize the derivatives of u(x) as follows:

(6) Dβu ≈ Dρx,β
m,h U =

NP∑
J=1

uJ Ψ
[β]
J (x, ρx) ∈ Hβ

ρx for 0 < |β| ≤ m.

We are going to solve strong form of the governing equation like finite difference
method (FDM). However, we find some difference from this method. First, no
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grid structure is needed. Second, it has interpolation not only for the solution
but also for derivatives of solution up to the order of the consistency. Third,
it is easy to make higher order scheme by increasing the order of the basis
polynomial vector Pm.

Now, let Ω be a bounded domain in Rn with its boundary Γ. Here we only
consider n = 2, since the scheme has no dependency of dimension. We consider
the Poisson equation:

−∆u = f, in Ω(7)

u = g, on ΓD(8)

∂u

∂n
= h, on ΓN(9)

where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = φ.
We propose a pre-conditioned point collocation scheme in terms of the ap-

proximations (5) and (6) such as

U(x) =
∑
xJ∈Λ

uJ Ψ
[(0,0)]
J (x, ρx) ∈ H0

ρx ,

−
∑
xJ∈Λ

uJ
(
ρ2
xI ∆hΨJ(xI , ρxI )

)
= ρ2

xI f(xI) for all xI ∈ Λi,(10)

∑
xJ∈Λ

uI ΨJ(xI , ρxI ) = g(xI) for all xI ∈ Λd,(11)

∑
xJ∈Λ

uJ
(
ρxI ∇hΨJ(xI , ρxI )

)
· n(xI) = ρxI h(xI) for all xI ∈ Λn,(12)

∆hΨJ(x, ρx) ≡ Ψ
[(2,0)]
J (x, ρx) + Ψ

[(0,2)]
J (x, ρx),

∇hΨJ(x, ρx) ≡
(

Ψ
[(1,0)]
J (x, ρx),Ψ

[(0,1)]
J (x, ρx)

)
,

where Λ = Λi∪Λd∪Λn, and Λi, Λd and Λn are sets of interior nodes, Dirichlet
boundary nodes and Neumann boundary nodes, respectively. Here n(xI) is the
outward unit normal vector at xI ∈ Λn. In this case, at least the second order
approximated derivatives are essential. Thus, we choose the order m of basis
polynomial Pm greater than or equal to 2.

4. A point collocation scheme for the stationary incompressible
Navier-Stokes equations

In this section, we propose a collocation scheme by FMLSRK for the sta-
tionary incompressible Navier-Stokes equations in Rn (n = 2, 3),

−ν∆u + (u · ∇)u +∇p = f , in Ω(13)

∇ · u = 0, in Ω(14)

u = g, on ∂Ω(15)
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where the boundary value g satisfies the compatibility condition for solvability:

(16)

∫
∂Ω

g · n dΓ = 0.

Here the pressure is determined up to constant.
What we propose for the Navier-Stokes flow is adopting two nested node sets

for velocity and pressure. The fine node set is for the velocity, while the course
node set is for the pressure. In [4, 5], authors adopted same kind of node sets for
the incompressible Navier-Stokes equations with Galerkin formulation. Also in
[11], same kind of node sets are used for the stationary incompressible Stokes
equations with point collocation scheme. For the unique solvability of the
viscous incompressible flows, a pair of node sets satisfying LBB-like condition
(i.e., similar with LBB condition) seems to be inevitable.

Since there is no essential difference of this point collocation scheme to the
space dimension n, we concentrate only for 2-dimensional problems. Let Ω be
the 2-dimensional region of fluid, and xVI ’s and xPK ’s be chosen as node points

in Ω for velocity and pressure, respectively. Also, suppose ΛV and ΛP are sets
of xVI ’s and xPK ’s, respectively. Let us denote {ΨJ}xVJ ∈ΛV and {Ψ̄P

K}xPK∈ΛP

are sets of shape functions corresponding to velocity nodes and pressure nodes,
respectively. Let U = (U, V ) and P be the numerical solution by FMLSRK,
for the stationary incompressible Navier-Stokes equations (13), (14) and (15)
as follows:

U(x) =
∑

xVJ ∈ΛV

UJ Ψ
[(0,0)]
J (x),

P (x) =
∑

xPK∈ΛP

PK Ψ̄
[(0,0)]
K (x),

where UJ = (UJ , VJ).
The discrete differential operators are used for the discretization of the par-

tial differential equations, which are defined in Definition 1. In short, the
following approximations of derivatives are used,

Dα U(x) ≈ Dρ,α
m,h U(x) =

∑
xVJ ∈ΛV

UJ Ψ
[α]
J (x),

Dα P (x) ≈ Dρ,α
m,h P (x) =

∑
xPK∈ΛP

PK Ψ̄
[α]
K (x),

where UJ = (UJ , VJ) and |α| ≤ m.
For simplicity, let us define the discrete differential symbols ∇h and ∆h

induced from Definition 1 as follows:

∆hΨJ = Ψ
[(2,0)]
J + Ψ

[(0,2)]
J ,

∇hΨJ = (Ψ
[(1,0)]
J ,Ψ

[(0,1)]
J ),

∇ · Ψ̄J = Ψ̄
[(1,0)]
J + Ψ̄

[(0,1)]
J .
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Now, define the error residual operators on Ω for the Navier-Stokes equations,
one for the momentum equations and another for the incompressibility:

RM(w,u, p) ≡ −ν Ah(u) +Bh(w,u) + Ch(p)− f ,

RC(u) ≡ Ch∗ (u),

where Ah(·), Bh(·, ·, ·), Ch(·) and Ch∗ (·) are the approximate differential oper-
ators defined as the following:

Ah(u) =
∑

xVJ ∈ΛV

UJ ∆hΨJ ,

Bh(w,u) =
∑

xVJ ∈ΛV

UJ

(
W · ∇hΨJ

)
,

Ch(p) =
∑

xPK∈ΛP

PK ∇hΨ̄K ,

Ch∗ (u) =
∑

xVJ ∈ΛV

UJ · ∇hΨJ ,

where W is the (0, 0)-th approximation of w with respect to velocity shape
functions ΨJ ’s.

Let us define the square residual functional associated with node sets ΛV

and ΛP :

(17) R(W,U, P ) =
∑

xVJ ∈ΛV

1

2
RM(W,U, P )2(xVJ ) +

∑
xPK∈ΛP

1

2
RC(U)2(xPK).

Now we consider the constrained minimization problem of R(U,U, P ) with
respect to (U, P ):

• Minimum(U,P )R(U,U, P )
subjected to U|Γ = g and P (xJ0) = p0 where Γ is the boundary of Ω,
the point xJ0 ∈ ΛP is a chosen point among pressure nodes and p0 is
some fixed value for pressure.

The last constraint plays a role in determining the pressure uniquely. It is
known that the pressure is determined up to constant in mathematical theory
of fluid.

To obtain the minimizer of the problem, the successive iteration scheme is
used for the Navier-Stokes equations, since it is non-linear functional.

� STEP 0: Choose U(n) satisfying boundary condition.
� STEP 1: Find the minimizer (U(n+1), P (n+1)), i.e.,

R(U(n),U(n+1), P (n+1)) = Minimize(U,P )R(U(n),U, P )

subjected to U(n+1)|Γ = g and P (xJ0) = p0.
� STEP 2: If ‖U(n+1) − U(n)‖L2 < ε, then STOP. Otherwise, set
n = n+ 1 and go to STEP 0. Here, ε > 0 is a tolerance for successive
error.
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Figure 1. Node distributions of velocity and pressure for
the Navier-Stokes flow: velocity node(�) and pressure node(�)

5. Numerical examples

Four numerical examples are presented in this section. Except the flow in
the backward-facing step, it is assumed that ν = 1

100 , which is equivalent to
Re = 100, through examples. Through all numerical calculations, we choose
the window function of the form

(18) Φ(x) =

{
( 1− ‖x‖ )4, when ‖x‖ < 1,

0, otherwise.

The first example is on the convergence rate of exact solution for the Navier-
Stokes equations. The domain of the fluid is 2-dimensional unit square Ω =
[0, 1]×[0, 1]. The exact solution u = (u, v) and p of the Navier-Stokes equations
(13), (14), (15) and (16) are chosen such that

u = sin3 πx sin2 πy cosπy,

v = − sin2 πx sin3 πy cosπx,

p = x2 − y2.

Then the external force f is calculated through the Navier-Stokes equations
(13).

Two node sets ΛV and ΛP are used for the velocity and the pressure re-
spectively, for solvability of the discrete equations. In Figure 1, the velocity
nodes are located at points where the gradient of pressure shape functions are
steep. It makes the condition number of the stiffness matrix smaller. To set the
Dirichlet boundary condition as constraint, we employ so called d’Alembert’s
principle (see [9]). Let the solution of the (n+1)-th step of the algorithm in the
previous section be (U(n+1), P (n+1)). Then we have the representation formula

U(n+1)(x) =
∑

xVJ ∈ΛV

U
(n+1)
J Ψ

[(0,0)]
J (x),
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P (n+1)(x) =
∑

xPK∈ΛP

P
(n+1)
K Ψ̄

[(0,0)]
K (x).

For simplicity, assume that the set of boundary nodes for velocity is Γd =
{xVJ ∈ ΛV | 1 ≤ J ≤ Nbdy}, where Nbdy is the number of boundary nodes.

Since U(n+1)(xVJ ) =
∑

xVI ∈ΛV U
(n+1)
I Ψ

[(0,0)]
I (xVJ ) = g(xVJ ) for xVJ ∈ Γd, we

have the following relation between nodal variables and essential boundary
conditions on the boundary of the domain,(

U
(n+1)
bdy

U
(n+1)
int

)
= A−1

(
G

U
(n+1)
int

)
.

Here matrices written above are defined as followings, while NV is the number
of velocity nodes:

U
(n+1)
bdy =


U

(n+1)
1
...

U
(n+1)
Nbdy

 , U
(n+1)
int =


U

(n+1)
Nbdy+1

...

U
(n+1)

NV

 , and G =

 g(xV1 )
...

g(xVNbdy )

 .

The matrix A is the following form

A =

(
ΨBB ΨBI

0 I

)
,

with defining ΨBB and ΨBI as followings,

ΨBB =


Ψ

[(0,0)]
1 (xV1 ) · · · Ψ

[(0,0)]
Nbdy

(xV1 )
...

. . .
...

Ψ
[(0,0)]
1 (xVNbdy ) · · · Ψ

[(0,0)]
Nbdy

(xVNbdy )


and

ΨBI =


Ψ

[(0,0)]
Nbdy+1(xV1 ) · · · Ψ

[(0,0)]

NV
(xV1 )

...
. . .

...

Ψ
[(0,0)]
Nbdy+1(xVNbdy ) · · · Ψ

[(0,0)]

NV
(xVNbdy )

 .

The initial solution of the scheme is chosen as a solution of the Stokes equations
with same force and same boundary condition. The minimizer of the residual
functional R(U(n),U(n+1), P (n+1)) have 0 Fréchet derivative value. Hence we
have

(19) M(U(n))

 ΨBB
−1 −ΨBB

−1ΨBI 0
0 I 0
0 0 I

  G

U
(n+1)
int

P(n+1)

 =

Fbdy
Fint

0

 ,

where

M(U(n)) =

(
−ν∆hΨJ(xVI ) + U(n) · ∇hΨJ(xVI ) ∇hΨJ(xVI )

∇ · Ψ̄J(xPK) 0

)
,
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P(n+1) =


P

(n+1)
1

...

P
(n+1)

NP

 .

Eventually, after passing over constraint to force terms, over-determined linear
system is obtained. By multiplying the transpose of the stiffness matrix to
both sides, the minimizer is obtained.

The convergence rates of relative L2 errors and L∞ errors are illustrated
in Figure 2. Four different uniform node sets are used. Numbers of velocity
nodes and pressure nodes are (121, 36), (441, 121), (1681, 441), (6561, 1681)
respectively. We tested the problem with two types of shape functions: the
second order basis (m = 2) and the fourth order basis (m = 4). The figure
shows that the convergence rate for the pressure has the same order as that for
the velocity. In general, the order of L2 convergence rate for pressure is equal
to that of H1 convergence rate for velocity in FEM. In this point of view, it
seems that this result shows some benefits of this scheme.
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Figure 2. Relative errors (Re = 100)
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The second example is on the lid-driven cavity flow. The lid-driven cavity
problem has long been used as a test for new methods. We used same type
of node sets as in the first example. For the velocity, 51 × 51 nodes are used,
while 26×26 nodes are used for the pressure. Unit x-velocity is assigned on the
upper wall while 0 velocity is assigned on others. The plot of the streamlines,
the contour of the vorticity and the contour lines of the pressure are plotted in
Figure 3.

0 0.5 1
0

0.5

1

(a) streamlines

0 0.5 1
0

0.5

1

(b) contours of vorticity

0 0.5 1
0

0.5

1

(c) contours of pressure

Figure 3. Navier-Stokes driven cavity flow (Re = 100)

The third example is the backward facing step flow. In this example, it is
known that the recirculation region attached to the step is determined by the
Reynolds number and the scale of the step. The Reynolds numbers considered
are 50, 100, 150 and 200 for the case of equal step, i.e., the geometric size of
inflow and the size of step are same. Here, the interest is the size of the recir-
culation region and the reattachment point of the flow. The result in Figure 4
shows good agreement with previous results [2, 24]. In the numerical calcula-
tion, uniform node sets with (7841, 2021) numbers are used for the velocity and
the pressure respectively. The boundary condition is given by u = 4y(1 − y)
and v = 0 on the inlet(x = −1), while the outlet boundary condition is given
by ∂u

∂n = 0 and ∂v
∂n = 0 on x = 9, where n is the outward normal vector on the

outlet. On the wall, no-slip condition is assigned, i.e., u = 0 and v = 0.
As the last example, the Navier-Stokes flow around a circular cylinder in

duct is implemented. The emphasis in this example is on calculating viscous
flow in a complicated flow domain with a point collocation scheme. The domain
has properties of concavity and convexity. Node distributions for the velocity
and the pressure are shown in Figure 5. For efficiency of calculation, it is
used that the dilation function which is mentioned in the Remark 2.3. In this
example, we assign the no-slip condition for velocity u = (u, v) to the walls(duct

y = ±1 and cylinder x2 + y2 =
(

1
2

)2
) and assume u = 1 − y2 and v = 0 on

the inlet(x = −2). The boundary condition on the outlet(x = 10) is assigned
as ∂u

∂n = 0 and ∂v
∂n = 0, where n is the outward normal vector on the outlet.
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Figure 4. Stream lines of Navier-Stokes backward-facing
step flow

Three plots are in Figure 6. They are the plot of the streamlines, the contour
lines of the vorticity and the contour lines of the pressure for the incompressible
Navier-Stokes flow at Re = 100.

6. Conclusions

New point collocation scheme for the stationary incompressible Navier-Stok-
es equations by FMLSRK are proposed. The FMLSRK is a meshfree method
which uses approximated derivatives from the local approximation operator. It
is highly efficient, since it does not require direct calculations of derivatives for
shape functions. The proposed scheme is stable in the sense that the numerical
solution of the scheme is the minimizer of the square residual functional. And
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Figure 5. Node distributions for duct flow: velocity node(◦)
and pressure node(�)
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Figure 6. Navier-Stokes flow passing around a circular
cylinder in duct (Re = 100)

resulting stiffness matrix of the scheme is symmetric positive definite even
though the given problem does not have symmetric property.
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Through numerical examples, the proposed scheme is validated successfully.
The convergence rate of numerical solution to the true solution depends on
the consistency order. It is validated numerically that the scheme is applicable
even for problems on the complicated geometry.
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