Browse > Article
http://dx.doi.org/10.4134/BKMS.2013.50.5.1737

A POINT COLLOCATION SCHEME FOR THE STATIONARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS  

Kim, Yongsik (Department of Financial Engineering Ajou University)
Publication Information
Bulletin of the Korean Mathematical Society / v.50, no.5, 2013 , pp. 1737-1751 More about this Journal
Abstract
An efficient and stable point collocation scheme based on a meshfree method is studied for the stationary incompressible Navier-Stokes equations. We describe the diffuse derivatives associated with the moving least square method. Using these diffuse derivatives, we propose a point collocation method to fit in solving the Navier-Stokes equations which improves the stability of the direct point collocation scheme. The convergence of the numerical solution is investigated from numerical examples. The driven cavity ow and the backward facing step ow are implemented for the reliability of the scheme. Also, the viscous ow on complicated geometry is successfully calculated such as the ow past a circular cylinder in duct.
Keywords
point collocation method; meshfree approximation; Navier-Stokes equations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Zhao and B. Zhang, A high-order characteristics upwind FV method for incompressible ow and heat transfer simulation on unstructured grids, Comput. Methods Appl. Mech. Engrg. 190 (2000), no. 5-7, 733-756.   DOI   ScienceOn
2 T. Zhu, J. Zhang, and S. N. Atluri, A meshless local boundary integral equation (LBIE) method for solving nonlinear problems, Comput. Mech. 22 (1998), no. 2, 174-186.   DOI   ScienceOn
3 S. Li and W. K. Liu, Synchronized reproducing kernel interpolation via multiple wavelet expansion, Comput. Mech. 21 (1998), 28-47.   DOI
4 S. Li and W. K. Liu, Reproducing kernel hierarchical partition of unity. I. Formulation and theory, Internat. J. Numer. Methods Engrg. 45 (1999), no. 3, 251-288.   DOI
5 S. Li and W. K. Liu, Reproducing kernel hierarchical partition of unity. II. Applications, Internat. J. Numer. Methods Engrg. 45 (1999), no. 3, 289-317.   DOI
6 W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko, Reproducing kernel particle methods for structural dynamics, Internat. J. Numer. Methods Engrg. 38 (1995), no. 10, 1655-1679.   DOI   ScienceOn
7 Y. Luo and U. Haussler-Combe, A generalized nite-difference method based on min- imizing global residual, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 13-14, 1421-1438.   DOI   ScienceOn
8 W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids 20 (1995), no. 8-9, 1081-1106.   DOI   ScienceOn
9 W. K. Liu, S. Li, and T. Belytschko, Moving least-square reproducing kernel methods. I. Methodology and convergence, Comput. Methods Appl. Mech. Engrg. 143 (1997), no. 1-2, 113-154.   DOI   ScienceOn
10 Y. Y. Lu, T. Belytschko, and L. Gu, A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Engrg. 113 (1994), no. 3-4, 397-414.   DOI   ScienceOn
11 J. M. Melenk and I. Babuska, The partition of unity nite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1-4, 289-314.   DOI   ScienceOn
12 B. Nayroles, G. Touzot, and P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech. 10 (1992), 307-318.   DOI
13 X. Zhang, X. Liu, K. Song, and M. W. Lu, Least-square collocation meshless method, Internat. J. Numer. Methods Engrg. 51 (2001), no. 9, 1089-1100.   DOI   ScienceOn
14 S. N. Atluri, H. G. Kim, and J. Y. Cho, A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG) methods, Comput. Mech. 24 (1999), 348-372.   DOI   ScienceOn
15 H. J. Choe, D. W. Kim, H. H. Kim, and Y. S. Kim, Meshless method for the stationary incompressible Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 1 (2001), no. 4, 495-526.   DOI
16 H. J. Choe, D. W. Kim, and Y. S. Kim, Meshfree method for the non-stationary incom- pressible Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 1, 17-39.   DOI
17 F. C. Gunther and W. K. Liu, Implementation of boundary conditions for meshless methods, Comput. Methods Appl. Mech. Engrg. 163 (1998), no. 1-4, 205-230.   DOI   ScienceOn
18 C. A. Duarte and J. T. Oden, An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1-4, 237-262.   DOI   ScienceOn
19 J. Furst and T. Sonar, On meshless collocation approximations of conservation laws: Preliminary investigations on positive schemes and dissipation models, Z. Angew. Math. Mech. 81 (2001), no. 6, 403-415.   DOI   ScienceOn
20 R. A. Gingold and J. J. Monaghan, Smoothed Particle Hydrodynamics: theory and ap- plication to non-spherical stars, Monthly Notices of the Royal Astronomical Society 181 (1977), 275-389.
21 D. W. Kim and H. K. Kim, Point collocation method based on the FMLSRK approximation for electromagnetic field analysis, IEEE Trans. on Magnetics 40 (2004), 1029-1032.   DOI   ScienceOn
22 D. W. Kim and Y. S. Kim, Point collocation methods using the fast moving least square reproducing kernel approximation, Internat. J. Numer. Methods Engrg. 56 (2003), no. 10, 1445-1464.   DOI   ScienceOn
23 Y. S. Kim, D. W. Kim, S. Jun, and J. H. Lee, Meshfree point collocation method for the stream-vorticity formulation of 2D incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engng. 196 (2007), no. 33-34, 3095-3109.   DOI   ScienceOn
24 B. F. Armaly, F. Durst, and J. C. Pereira, Experimental and theoritical investigation of backward-facing step flow, J. Fluid Mech. 127 (1983), 473-496.   DOI   ScienceOn
25 N. R. Aluru, A point collocation method based on reproducing kernel approximations, Int. J. Numer. Methods Engng. 47 (2000), 1083-1121.   DOI   ScienceOn