DOI QR코드

DOI QR Code

DECAY RESULTS OF WEAK SOLUTIONS TO THE NON-STATIONARY FRACTIONAL NAVIER-STOKES EQUATIONS

  • Zhaoxia Liu (College of Science Minzu University of China)
  • Received : 2023.05.16
  • Accepted : 2023.10.19
  • Published : 2024.05.31

Abstract

The goal of this paper is to study decay properties of weak solutions to Cauchy problem of the non-stationary fractional Navier-Stokes equations. By using the Fourier splitting method, we give the time L2-decay rate of weak solutions, which reveals that L2-decay is generally determined by its linear generalized Stokes flow. In second part, we establish various decay results and the uniqueness of the two dimensional fractional Navier-Stokes flows. In the end of this article, as an appendix, the existence of global weak solutions is given by making use of Galerkin' method, weak and strong compact convergence theorems.

Keywords

Acknowledgement

This work is supported by NSF of China under Grant No. 12371123.

References

  1. H.-O. Bae and B. J. Jin, Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations, J. Differential Equations 209 (2005), no. 2, 365-391. https://doi.org/10.1016/j.jde.2004.09.011 
  2. H.-O. Bae and B. J. Jin, Temporal and spatial decays for the Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), no. 3, 461-477. https://doi.org/10.1017/S0308210500003966 
  3. H.-O. Bae and B. J. Jin, Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains, J. Funct. Anal. 240 (2006), no. 2, 508-529. https://doi.org/10.1016/j.jfa.2006.04.029 
  4. H.-O. Bae and B. J. Jin, Existence of strong mild solution of the Navier-Stokes equations in the half space with nondecaying initial data, J. Korean Math. Soc. 49 (2012), no. 1, 113-138. https://doi.org/10.4134/JKMS.2012.49.1.113 
  5. L. Brandolese, Space-time decay of Navier-Stokes flows invariant under rotations, Math. Ann. 329 (2004), no. 4, 685-706. https://doi.org/10.1007/s00208-004-0533-2 
  6. L. Brandolese and F. Vigneron, New asymptotic profiles of nonstationary solutions of the Navier-Stokes system, J. Math. Pures Appl. (9) 88 (2007), no. 1, 64-86. https://doi.org/10.1016/j.matpur.2007.04.007 
  7. L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), no. 6, 771-831. https://doi.org/10.1002/cpa.3160350604 
  8. R. R. Coifman, P. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247-286. 
  9. P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 (1999), no. 5, 937-948. https://doi.org/10.1137/S0036141098337333 
  10. Q. Jiu and H. Yu, Decay of solutions to the three-dimensional generalized Navier-Stokes equations, Asymptot. Anal. 94 (2015), no. 1-2, 105-124. https://doi.org/10.3233/ASY-151307 
  11. S. Lai, J. Wu, and Y. Zhong, Stability and large-time behavior of the 2D Boussinesq equations with partial dissipation, J. Differential Equations 271 (2021), 764-796. https://doi.org/10.1016/j.jde.2020.09.022 
  12. J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), no. 1, 193-248. https://doi.org/10.1007/BF02547354 
  13. J.-L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969. 
  14. M. E. Schonbek, L2 decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 88 (1985), no. 3, 209-222. https://doi.org/10.1007/BF00752111 
  15. M. E. Schonbek, Asymptotic behavior of solutions to the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J. 41 (1992), no. 3, 809-823. https://doi.org/10.1512/iumj.1992.41.41042 
  16. M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations in Hm spaces, Comm. Partial Differential Equations 20 (1995), no. 1-2, 103-117. https://doi.org/10.1080/03605309508821088 
  17. M. E. Schonbek, The Fourier splitting method, in Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), 269-274, Int. Press, Cambridge, MA, 1995. 
  18. C. D. Sogge, Fourier integrals in classical analysis, second edition, Cambridge Tracts in Mathematics, 210, Cambridge Univ. Press, Cambridge, 2017. https://doi.org/10.1017/9781316341186 
  19. R. M. Temam, Navier-Stokes equations, revised edition, Studies in Mathematics and its Applications, 2, North-Holland, Amsterdam, 1979. 
  20. J. Wu, Dissipative quasi-geostrophic equations with Lp data, Electron. J. Differential Equations 2001 (2001), No. 56, 13 pp. 
  21. J. Wu, Generalized MHD equations, J. Differential Equations 195 (2003), no. 2, 284-312. https://doi.org/10.1016/j.jde.2003.07.007 
  22. J. Wu, The generalized incompressible Navier-Stokes equations in Besov spaces, Dyn. Partial Differ. Equ. 1 (2004), no. 4, 381-400. https://doi.org/10.4310/DPDE.2004.v1.n4.a2 
  23. J. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Comm. Math. Phys. 263 (2006), no. 3, 803-831. https://doi.org/10.1007/s00220-005-1483-6 
  24. J. Wu, X. J. Xu, and N. Zhu, Stability and decay rates for a variant of the 2D Boussinesq-Benard system, Commun. Math. Sci. 17 (2019), no. 8, 2325-2352. https://doi.org/10.4310/CMS.2019.v17.n8.a11