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INSTABILITY IN A PREDATOR-PREY MODEL WITH DIFFUSION
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ABSTRACT. This paper treats the conditions for the existence and stability properties of sta-
tionary solutions of a predator-prey interaction with self and cross-diffusion. We show that at a
certain critical value a diffusion driven instability occurs, i.e. the stationary solution stays sta-
ble with respect to the kinetic system (the system without diffusion) but becomes unstable with
respect to the system with diffusion and that Turing instability takes place. We note that the
cross-diffusion increase or decrease a Turing space ( the space which the emergence of spatial
patterns is holding) compared to the Turing space with self-diffusion, i.e. the cross-diffusion
response is an important factor that should not be ignored when pattern emerges

1. INTRODUCTION

The theory of spatial pattern formation via Turing instability (see [11])-wherein an equilib-
rium of a nonlinear system is asymptotically stable in the absence of diffusion but unstable in
the presence of diffusion - plays an important role in ecology, embryology and elsewhere in
biology and chemistry (see [4], [5], [8], [9]). Since the relation between the organisms and the
space seems to be essential to stability of an ecological system, the effect of diffusion on the
possibility of species coexistence in an ecological community has been an important subject in
population biology (see [7], [10], [11]).

In recent years there has been considerable interest to investigate the stability behavior of
a system of interacting populations by taking into account the effect of self as well as cross-
diffusion. The term self-diffusion implies the per capita diffusion rate of each species is influ-
enced only by its own density, i.e. there is no response to the density of the other one. Cross-
diffusion implies the per capita diffusion rate of each species is influenced not only by its own
but also by the other ones density. The value of the cross-diffusion coefficient may be positive,
negative or zero. The term positive cross-diffusion coefficient denotes the movement of the
species in the direction of lower concentration of another species and negative cross-diffusion
coefficient denotes that one species tends to diffuse in the direction of higher concentration
of another species. The dynamics of interacting population with self and cross-diffusion are
investigated by several researchers (see [2], [3], [4], [6]) and others.
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In this paper we are going to study the effect of the self and cross-diffusion on the stability
of the equilibria in a reaction diffusion predator-prey model of Cavani-Farkas type (see [2],
[4] ) and we explore under which parameter values Turing instability can occur giving rise to
non-uniform stationary solutions, this model described by the following equations:

∂N

∂t
= εN(1− N

K
)− βNP

β + N
+ d11

∂2N

∂x2
+ d12

∂2P

∂x2
, x ∈ [0, l], t > 0, (1)

∂P

∂t
= −P (

γ + δP

1 + P
) +

βNP

β + N
+ d21

∂2N

∂x2
+ d22

∂2P

∂x2
, x ∈ [0, l], t > 0,

where N(t), P (t) represent the population density of prey and predator at time t, respectively.
The prey grows with intrinsic growth rate ε up to carrying capacity K in the absence of pre-
dation. Here γ > 0 and δ > 0 are the minimal mortality and the limiting mortality of the
predator, respectively (the natural assumption is 0 < γ ≤ δ), dik > 0 are the diffusion coef-
ficients, i, k = 1, 2. The meaning of the half saturation constant is that at N = β the specific
growth rate βN

β+N (called also a Holling type functional response) of the predator is equal to half
its maximum β (the conversion rate is taken to be equal to the half saturation constant for sake
of simplicity). The advantage of this model over the more often used models is that here the
predator mortality is neither a constant nor an unbounded function, still, it is increasing with
the predator abundance.

Assuming that prey and predator are diffusing according to Fick′s law in the interval x ∈
[0, l]. We are interested in solutions N : R+ × [0, l] −→ R+, P : R+ × [0, l] −→ R+ with
no-flux boundary conditions

Nx(t, 0) = Nx(t, l) = Px(t, 0) = Px(t, l) = 0, (2)

and initial conditions
N(x, 0) ≥ 0, P (x, 0) ≥ 0, x ∈ [0, l]. (3)

Properly posed initial and boundary conditions yield well posed problem concerning this sys-
tem of PDE′s in forward time if

D =
(

d11 d12

d21 d22

)
, (4)

has eigenvalues with positive real parts, i.e.,

d11d22 > d12d21 (5)

which means that ′′self-diffusion is stronger than cross diffusion′′, i.e. the flow of the respective
densities in the spatial domain depends strongly on their own density than on the others.

Let us set F = (F1, F2), U = (N, P ) where

F1(N,P ) = εN(1− N

K
)− βNP

β + N
, F2(N, P ) = −P (

γ + δP

1 + P
) +

βNP

β + N
, (6)
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the system takes the form

Ut = F (U) + D
∂2U

∂x2
, (7)

while the boundary conditions remain

Ux(t, 0) = Ux(t, l) = 0. (8)

Clearly, a spatially constant solution U(t) = (N(t), P (t)) of (7) satisfies the boundary condi-
tions (8) and the kinetic system

Ut = F (U). (9)

2. THE MODEL WITHOUT DIFFUSION

In this section, we will study system (1)-(2) without diffusion, i.e.,
.

N = εN(1− N

K
)− βNP

β + N
, (10)

.
P = −P (

γ + δP

1 + P
) +

βNP

β + N
.

The following conditions are reasonable and natural:

γ < β ≤ δ, (11)

β < K, (12)

γ <
βK

β + K
. (13)

Condition (11) ensures that the predator mortality is increasing with density, and that the preda-
tor null-cline has a reasonable concave down shape; (12) ensures that for the prey an Allée-
effect zone exists where the increase of prey density is favourable to its growth rate; (13) is
needed to have a positive equilibrium point of system (10). System (10) is made up by two
identical uncoupled systems. Under these conditions the system has at least one equilibrium
with positive coordinates. This is the point of intersection of the prey null-cline

P = H1(N) =
ε

βK
(K −N)(β + N) (14)

and the predator null-cline

P = H2(N) =
(β − γ)N − βγ

(δ − β)N + βδ
. (15)

Thus, denoting the coordinates of a positive equilibrium by (N, P ), these coordinates satisfy
P = H1(N) = H2(N).

Note that if K > β, we have an interval u1 ∈ (0, K−β
2 ), where the Allée-effect holds, i.e.,

the increase of the prey quantity is beneficial to its growth rate.
In particular, we will focus our attention to the existence of equilibria and their local stability.

This information will be crucial in the next section where we study the effect of the diffusion
parameters on the stability of the steady states.
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The Jacobian matrix of the system (10) linearized at (N,P ) is

A =
(

Θ1 −Θ2

Θ3 −Θ4

)
, (16)

where

Θ1 =
εN(K − β − 2N)

K(β + N)
, Θ2 =

βN

β + N
, Θ3 =

β2P

(β + N)2
, Θ4 =

(δ − γ)P
(1 + P )2

. (17)

The characteristic equation is given by

λ2 − traceAλ + det A = 0, (18)

where
traceA = Θ1 −Θ4, detA = Θ2Θ3 −Θ1Θ4 (19)

If (N,P ) lies outside the Allée-effect zone then Θ1 < 0. Since, obviously, Θ2, Θ3, Θ4 > 0
in this case traceA < 0 and detA > 0, i.e. all eigenvalues of the matrix A, have negative real
parts.

The equilibrium point (N, P ) lies in the Allée-effect zone if

H1(
k − β

2
) < H2(

k − β

2
). (20)

Recall that (N,P ) lies in the Allée-effect zone and is locally asymptotically stable if Reλ < 0,
which is equivalent to have traceA < 0 and detA > 0. For this, we will assume that

Θ1 < Θ4 and Θ2Θ3 > Θ1Θ4. (21)

3. TURING INSTABILITY

Definition: We say that the equilibrium (N,P ) is Turing unstable if it is an asymptotically
stable equilibrium of the kinetic system (10) but is unstable with respect to solutions of (1)-(2)
(see [11]).

We linearize system (1) at the point (N,P ). Introducing the new coordinates V = (V1, V2) =
(N −N, P − P ), the linearized system assumes the form

Vt = AV + D
∂2V

∂x2
, (22)

while the boundary conditions remain

Vx(t, 0) = Vx(t, l) = 0. (23)

We solve the linear boundary value problem by Fourier’s method. Solutions are assumed in the
form V (t, x) = y(t)ψ(x). The functions y : [0,∞) → R2, ψ : [0, l] → R are to satisfy

.
y = (A− λD)y, (24)

where dot denotes differentiation with respect to time, and

ψ
′′

= −λψ, ψ
′
(0) = ψ

′
(l) = 0, (25)



INSTABILITY IN A PREDATOR-PREY MODEL WITH DIFFUSION 25

where prime denotes differentiation with respect to the spatial variable x.
The eigenvalues of the boundary value problem (25) are

λj = (jπ/l)2, j = 0, 1, 2, 3, ... (26)

with corresponding eigenfunctions

ψj(x) = cos(jπx/l). (27)

Clearly, 0 = λ0 < λ1 < λ2 < .... These eigenvalues are to be substituted into (24). Denoting
two independent solutions of (27) taken with λ = λj by y1j , y2j , the solution of the boundary
value problem (22)-(23) is obtained in the form

V (t, x) =
∞∑

j=0

(a1jy1j(t) + a2jy2j(t)) cos(jπx/l) (28)

where aij(i = 1, 2; j = 0, 1, 2, ...) are to be determined according to the initial condition
V (0, x). If e.g. y1j(0) = (1, 0), y2j(0) = (0, 1) for j = 0, 1, 2, ... then

[
a10

a20

]
=

1
l

∫ l

0
V (0, x)dx,

[
a1k

a2k

]
=

2
l

∫ l

0
V (0, x) cos(jπx/l)dx (k = 0, 1, 2, ...).

The following notations will be used:

B(λ) = A− λD, Bj = B(λj) = A− λjD. (29)

According to Casten, Holland (see [1]) if for all j both eigenvalues of Bj have negative real
parts then the equilibrium (N, P ) of (7)-(8) is asymptotically stable; if at least one eigenvalue
of at least one matrix Bj has positive real part then (N,P ) of (7)-(8) is unstable.

traceBj = Θ1 −Θ4 − λj(d11 + d22), (30)

detBj = detD λ2
j + [Θ4d11 + Θ2d12 −Θ1d22 −Θ3d21]λj . + detA. (31)

We note that traceBj < 0, thus from Routh-Hurwitz criteria, the stability of the equilibrium
(N, P ) depends on the sign of det Bj . Since the coefficient matrix of the ODE in (24) is stable
if and only if detBj > 0 for each j = 0, 1, 2, ..., therefore using the Theorem 1 in [1], one
can easily see that in order to have Turing instability the quadratic polynomial (31) must be
nonpositive for some j = 0, 1, 2, ... . Dropping the index this condition assumes the form

ρ(λ) := detD λ2 −Πλ + det A ≤ 0, (32)
:= λ(detD λ−Π) + detA ≤ 0 for some λ > 0

where
Π = Θ1d22 −Θ4d11 + Θ3d21 −Θ2d12.

The polynomial ρ(λ) has two positive roots 0 < λ ≤ λ and (32) holds for λ if and only if

Π > 0 and Π2 ≥ 4 det(AD)
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since λ := Π−
√

Π2−4 det(AD)

2 det D , λ := Π+
√

Π2−4 det(AD)

2 det D . This with (5) imply that the polynomial
ρ(λ) is nonpositive for some λ > 0 between their positive roots 0 < λ ≤ λ.

We are going to establish the conditions of a Turing instability for the following cases un-
der the assumption that traceBj < 0 and the predator diffusion coefficient d22 > 0 as the
bifurcation parameter.

Case 1: d12 = d21 = 0 (self-diffusion).

This shows that each species moves along its own concentration gradient.
Theorem: Suppose that traceBj < 0 and detA > 0.
(i) If

d11 ≥ Θ1/λ1 (33)

then the zero solution of the linear problem (22)-(23) is asymptotically stable for all d22 > 0.
(ii) If

Θ1/λ1 > d11 ≥ Θ1/λ2 (34)

then at

d22 := d∗22crit =
detA + λ1d11Θ4

λ1(Θ1 − λ1d11)
(35)

the zero solution of the linear problem (22)-(23) undergoes a Turing instability.
Proof. (i) From (31) we have

detBj = detA + λjd11Θ4 − λjd22(Θ1 − λjd11).

Since λj , j = 0, 1, 2, , ...from a monotone increasing sequence (33) implies detBj > 0 for
all j = 0, 1, 2, , ....From (30) we see that traceBj < 0 for all j = 0, 1, 2, , ...hence the aero
solution of (22)-(23) is asymptotically stable.

(ii) If d11 satisfies (34) and d22 is chosen according to (35) then det B1 = 0. Clearly, for
0 < d22 < d∗22crit we have detB1 > 0, and for d∗22crit < d22 we have detB1 < 0. In all these
cases det Bj > 0, j 6= 1. Thus, taking into account what has been quoted after formula (29),
for 0 < d22 < d∗22crit the zero solution is asymptotically stable, for d∗22crit < d22 it is unstable.

Case 2: d12 = 0, d21 6= 0.
In this case under conditions (33) and (34) the matrix Bj have negative real parts and the

equilibrium point (N,P ) is Turing unstable if

d22 > d22crit :=
detA + λ1(d11Θ4 − d21Θ3)

λ1(Θ1 − λ1d11)
. (36)

If d21 < 0, this implies that the predator species tends to diffuse in the direction of higher
concentration of the prey species, and the prey species moves along its own concentration
gradient.

We note that d22crit > d∗22crit . This implies that decreasing the Turing space compared to
the first case, so that the emergence of spatial patterns is holding in small regions of parameter
space. This situation is a usual phenomenon in nature.
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If d21 > 0, this implies that the predator species tends to diffuse in the direction of lower
concentration of the prey species, and the prey species moves along its own concentration
gradient. Such a case arise in nature where the predator prefers to avoid group defense by a
large number of prey and chooses to catch its prey from a smaller group unable to sufficiently
resist.

We note that d22crit < d∗22crit . This implies that increasing the Turing space compared to
the first case, so that the emergence of spatial patterns is holding in large regions of parameter
space.

Case 3: d12 6= 0, d21 = 0.
In this case under conditions (33) and (34) the matrix Bj have negative real parts and the

equilibrium point (N,P ) is Turing unstable if

d22 > d22crit :=
detA + λ1(d11Θ4 + d12Θ2)

λ1(Θ1 − λ1d11)
. (37)

If d12 < 0, this implies that the prey species moves towards the higher concentration of the
predator species, and the predator species moves along its own concentration gradient. This
situation can be compared in nature where the predator attracts the prey towards itself as a
predation technique and the suicidal tendencies among the prey exist.

Also here we note that d22crit < d∗22crit . This implies that increasing the Turing space
compared to the first case, so that the emergence of spatial patterns is holding in large regions
of parameter space.

If d12 > 0, this implies that the prey species moves in the direction of lower concentration of
the predator species, and the predator species moves along its own concentration gradient. This
situation can be compared in nature where the prey moves towards the lower concentration of
the predator in search of new food.

We note that d22crit > d∗22crit . This implies that decreasing the Turing space compared to
the first case, so that the emergence of spatial patterns is holding in small regions of parameter
space. This situation is a usual phenomenon in nature.

Case 4: d12 6= 0, d21 6= 0.
In this case under conditions (33) and (34) the matrix Bj have negative real parts and the

equilibrium point (N,P ) is Turing unstable if

d22 > d22crit :=
detA + λ1d11Θ4 + λ1(−d12d21λ1 + d12Θ2 − d21Θ3)

λ1(Θ1 − λ1d11)
. (38)

1) If d12 < 0, d21 < 0, this implies that the prey species tends to diffuse in the direction
of higher concentration of the predator species and the predator species tends to diffuse in the
direction of higher concentration of the prey species. Such situations are common in nature
when prey represent the investment capital and the predator represent labour force.

We note that Turing space increase (resp. decrease) if λ1 > d12Θ2−d21Θ3
d12d21

i.e. d22crit <

d∗22crit ( resp. < d12Θ2−d21Θ3
d12d21

i.e. d22crit > d∗22crit), so that the emergence of spatial patterns is
holding in large (resp. small) regions of parameter space.
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2) If d12 > 0, d21 > 0, this implies that the prey species moves in the direction of lower
concentration of the predator species and the predator species tends to diffuse in the direction
of lower concentration of the prey species. Such a case arise in nature where the prey moves
towards the lower concentration of the predator in search of new food. and the predator prefers
to avoid group defense by a large number of prey and chooses to catch its prey from a smaller
group unable to sufficiently resist.

We note that Turing space increase (resp. decrease) if λ1 > d12Θ2−d21Θ3
d12d21

i.e. d22crit <

d∗22crit ( resp. < d12Θ2−d21Θ3
d12d21

i.e .d22crit > d∗22crit), so that the emergence of spatial patterns
is holding in large (r×esp. small) regions of parameter space.

3) If d12 > 0, d21 < 0, this implies that the prey species tends to diffuse in the direction
of lower concentration of the predator species, and the predator species tends to diffuse in the
direction of higher concentration of the prey species. Such situations are common in nature for
the survival of the prey predator species.

We note that d22crit > d∗22crit . This implies that decreasing the Turing space compared to
the first case, so that the emergence of spatial patterns is holding in small regions of parameter
space.

4) If d12 < 0, d21 > 0, his implies that the prey species tends to diffuse in the direction
of higher concentration of the predator species and the predator species tends to diffuse in the
direction of lower concentration of the prey species.

We note that Turing space increase (resp. decrease) if λ1 > d12Θ2−d21Θ3
d12d21

i.e. d22crit <

d∗22crit (resp. < d12Θ2−d21Θ3
d12d21

i.e .d22crit > d∗22crit), so that the emergence of spatial patterns
is holding in large (resp. small) regions of parameter space.

4. CONCLUSIONS

In this paper we have considered a Cavani-Farkas type predator-prey interacting model with
self as well as cross-diffusion and investigated the stability conditions in different environmen-
tal consequences. We show that at a certain critical value a diffusion driven instability occurs,
i.e. the stationary solution stays stable with respect to the kinetic system (the system without
diffusion) but becomes unstable with respect to the system with diffusion and that Turing in-
stability takes place. We note that the cross-diffusion increase or decrease a Turing space (the
space which the emergence of spatial patterns is holding) compared to the Turing space with
self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored
when pattern emerges.
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