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Abstract - An analytic solution approach to the
time-varying obstacle avoidance problem is pursued. We
formulate the problem in robot joint space(JS), and
introduce the view-rime concept to deal with the time-
varying obstacles. The view-time is a set of continuous
times in which a time-varying obstacle is viewed and
approximated by an equivalent stationary obstacle. The
equivalent stationary obstacle is transformed into the JS
obstacle. In IS, the path and trajectory avoiding the JS
obstacle is planned.

I. INTRODUCTION

A robot usually works in an environment with other
robots, work pieces, machines, and workers. The robot
should avoid collisions with these obstacles. These
obstacles are usually non-stationary. They move and change
their shapes, i.e, they are time-varying The time-varying
obstacle avoidance problem is to plan the robot motion
from an initial to a goal configuration avoiding time-
varying obstacles. The problem is one of the main issues of
robot motion planning. The problem generally may not be
solved by path planning or trajectory planning alone[l].
Researchers on the problem have often adopted and
modified the methods for stationary obstacle avoidance.
Their approaches are classified as follows:

1) The method using a space-time concept{2],[3]: A space
is extended to a space-time by adding an extra time
dimension to the space. In the space-time, the motion
planning for time-varying obstacle avoidance is reduced
to the path planning for stationary obstacle avoidance.

2) The method adjusting the velocity of a robot{1],{4],|5]:
By varying the trajectory on an initially given path in
Cartesian space(CS) or JS, the robot can avoid time-
varying obstacles.

3) The method using an artificial potential field6),[7],[8]:
The artificial potential field is a field of forces where
obstacles are repulsive surfaces against the robot, and
the goal point is an attractive pole to the robot.

4) The method using a distance function between
objects[9]: The collision is described in terms of the
distances between objects. Keeping the distances
between the robot and the objects above some positive
value prevents the collision between them.

In this paper, a new concept, view-time, is introduced
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to solve the time-varying obstacle avoidance problem. The
view-time based motion planning method is applicable to
the various collision avoidance problems with stationary
and time-varying obstacles.

II. PROBLEM FORMULATION
A. Nomenclature

N : degrees of freedom of a robot.

q,(t) : generalized joint variable of the i-th joint.

(x,y'z) : point represented in the i-th link coordinate
system.

(x,y,z) : point represented in the base coordinate system.

t, : initial time of robot motion.

t, : final time of robot motion.

T= {t |t St <t }:motion time set of the robot.

T, =t, -1, : motion time period of the robot.

" ALg,) 4x4 homogeneous transformation matrix
representing the i-th link coordinate system with
respect to the (i-1)-th link coordinate system with the
i-th generalized joint variable g,

*An(QiGpoln) = "A(G,) 'AL(G,) - o Ag(Qy)

B. Mathematical Representations of Robot, Obstacle and
the Related Concepts

In CS, it is difficult to represent the configuration and
shape of a robot manipulator. In N-dimensional JS, the
configuration of a robot is defined as a point.

Definition 1: The configuration of a robot at time t in JS,
'M(1), is defined as:
M) = ( q,(1), g, (1), ..., 4,{(D))
a
For all teT, ’M(t)eR™, and the function 'M : T — R"
describes the path and trajectory of the robot motion in JS.
So, the robot motion planning means the planning of 'M(t)
for all teT.

Definition 2: The work space of a robot in JS, 'WS, is
defined as:
'WS = ¢ (qqu’“"qn) | quhl gliﬁipn ? i:1’2""’N }
where q,,,, : lower limit of the i-th joint motion
Q... - Upper limit of the i-th joint motion



Let COS(t) be the set of all points that are in an obstacle
in Cartesian space.

Definition 3: The JS Obstacle corresponding to COS(t),
'OS[€0S(t)), is defined as:

10S[OS(t)] = t"J 108,[€0S(1)

where,
0SS OS(t)]= { (q,(t),4,(1),...q, (D) | C-1 and C-2 }
C-1:-forj = i+1,..N, q,,, <q(v=q_,,
C-2: for j = 12,..i, q(t) satisfies
AL 4, (0,0,(1),-,q(t)) +(%,'y, 2, DT

(RpuYor 2o 1)
for all (x,,y,,.z,,) € OS(t), and for all
(*x,,'y,,'2,) ethe i-th link
a
'OS,[€OS(1)] is the set of all the JS robot configurations
that cause the collision between “OS(t) and the i-th link of
the robot. The shape of 'OS[°0OS(t)] depends on the
kinematic characteristics of the robot and the shape of
“OS(t).

The collision between the robot and the obstacle can

be defined as the inclusion of 'M(t) into 'OS[€OS(t)).

Definition 4: The collision between the robot and the
obstacle occurs at time t, if ‘M(t) € OS[COS(1)].

a

C. Constraints on Collision-Free Robot Motion Planning

The constraints on robot motion planning are
classified into smoothness constraint, dynamic constraint,
and collision constraint. The smoothness constraint restricts
the velocity, the acceleration, and the jerk, to maintain the
smoothness of the joint motion trajectory.

Definition5: The smoothness constraint is defined as:
'M(t) €CN(t), for all teT
where, '"CN(t) = (’M() | [q"(t) |<VB,
1,” () | <AB, |¢®(t)|IB, i = 12,.,N }
VB, AB, JB,: velocity, acceleration, and jerk
bounds of the i-th joint motion

The dynamic constraint limits the joint torques and
forces required for the robot motion to the maximum
torques and forces of the joint actuators.

Definition 6: The dynamic constraint is described as:
'M(t) €CN, (1), for all teT )

where, 'CN_(t) = {'M(t) | 7. <757

' T=12,.N )
() = (7, Ty Ty )
= D(q(1)) -q* (1) + h(q(t),q" (1)) + c(q(1))
T, the minimum torque or force of the i-th
joint actuator }
T, . the maximum torque or force of the i-th
joint actuator
o
The collision constraint confines 'M(t) to the
collision-free space in JS.
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Definition 7: The collision constraint is described as:
'M(t) €CN_[°OS(1)], for all teT
where, 'CN_[OS(t)] = ‘WS - ’OS[cOS(t)]

D. Mathematical Formulation of the Problem

Let the initial configuration and the goal
configuration of the robot in JS be 'M_ and M,
respectively. The collision-free robot motion planning
problem is formulated as the following.

Collision-Free Robot Motion Planning Problem:
Plan the 'M(t) for all teT, satisfying the following
constraints and boundary conditions
1) Constraints:
TM(t) €CN,(1), "M(t) €CN, (1), "M(t) € CN(t) for
all teT
2) Boundary conditions:
ML) =M, 'M(t,) =M,
o
This formulation gives a useful view of the problem. The
problem is constructed by adding the collision constraint to
the general robot motion planning problem. In the time-
varying obstacle avoidance problem, the 'CN(t) varies
with time.

11l. VIEW-TIME AND ITS PROPERTIES

The position, orientation, and shape of a time-varying
obstacle vary with time. All these data at every number of
instances completely describe the motion of the obstacle.
However, it is impossible to deal with the infinite number
of data for time-varying obstacle avoidance. The view-time
concept can remove this difficulty.

The definitions of the view-time and the related
concepts are as follows.

Definition 8: The i-th view-time, vt, is a set of time
defined as:
vt = (t |t ) =012,
where, t, is the initial time, and ¢, <t, ifig.

Definition 9 (view-time period).
1) The i-th view-time period, vp, is defined as:
vp, =4y, - 8
2) If vp, = vp,, foralli = 1,2,.., then the view-time
period is fixed.
3) If there exists some j, such that vp, * vp,, then the
view-time period is varying.
a
Definition10: The swept volume of ©OS(t) in vt, €OS(vt),
is defined as:
cOS(vt) = { (x,y,2) | (x,y,2)€€OS(1), tevt }
o
Planning the robot motion avoiding ©OS(vt)
guarantees collision avoidance for the i-th view time vt So,
in vt, OS(vt) is regarded as the stationary obstacle
corresponding to the time-varying obstacle < OS(0). If Tovt,,
©OS(vt,) is the entire volume swept by the obstacle during



the motion.
From Definition 3, the JS obstacle corresponding to
cOS(vt) is 'OS[FOS(vt)]. The shape of 'OS[€0S(vt)] is

dependent on the kinematic characteristics of the robot
and the shape of OS(vt). The shape of OS(vt) is
dependent on vt, and the motion of the obstacle. These two
facts suggest that the collision-free path and trajectory be
affected by vt and the motion of the obstacle.

With these definitions, the following is the property
to be taken into account for collision-free motion planning
using the view-time.

Propertyl:
1) If "M(t) € OS[SOS(vt)], the robot will not collide
with the obstacle OS(t), forall te {t | t<t<t,, )
2) IfF'M(t,,, ) ¢ {*OS[° OS(vt)JU' OS[°OS(vt,,, )] }, the
robot will not collide with the obstacle ©OS(t), at
time t=t,, .
3) If’Mle’OS[COS(vt))l for all j such that j > i, there
exists no path and trajectory from 'M(t) to 'M,,
avoiding the swept volumes OS(vt), j 2 i.
a
Although, 'M(t) is such that IM(t) € 0S[€OS(vt)] for all
tevt, it may happen that "M(t,,, ) € OS[€OS(vt,, )]. In this
case, the robot collides with the swept volume cOS(vt,,, )
at time t = t, . Therefore, the condition
'M(t) ¢OS[COS(vt)] doesn’t guarantee the collision
avoidance at time t = t,. As stated in 2) of Property 1,
the sufficient condition for collision avoidance at time t =
t,,, is that ‘M(t,,, ) € (OS[COS(vt)}|]'OS[FOS(vt, )] }-

IV. COLLISION-FREE MOTION PLANNING
METHOD

The conditions 1) and 2) in Property ! satisfy the
collision constraint in the collision-free motion planning
problem. The smoothness constraint and the dynamic
constraint are satisfied through trajectory planning. Based
on the properties of the view-time, we propose a procedure
to plan the collision-free motion.

Collision-Free Motion Planning Procedure:

Initialization:"M(t,)) = 'M_,i =0

Step 1 (Path Planning: Sec. IV.A):
Plan a collision-free path in JS avoiding 'OS|©OS(vt)]
from 'M(t) to 'M,.

Step 2 (Trajectory Planning: Sec. IV.B):
On the JS collision-free path, plan the trajectory of
the view-time vt, subject to the smoothness and
dynamic constraints.

Step 3 (Parh and Trajectory Modification:Sec. I1V.C):
If 'M(t,, ) €0S[€OS(vt, )], ie., collision occurs at
time t=t._, modify the path and trajectory "M(t) to

it 1?
avoid ‘OS [FOS(vt,, )] at the view-time vt.
Step 4 (Test of completion):
If '"M(t,, ) = 'M,, then
end the motion planning procedure.
If 'M(t, ) #°M,,

then increase i by one, and return to Szep 1.

The overall structure of the collision-free motion
planning method is shown in Fig. 1. From now on, we
explain each step of the procedure in some detail.

A. Path Planning ( Step 1)

The collision-free path in JS is planned using the V-
graph search method|5][7]). Since the V-graph search
method is applicable in polyhedral obstacle case, it is
necessary to approximate non-polyhedral obstacles by
polyhedral obstacles. In 2-dimensional JS, the V-graph
search method yields the shortest collision-free path from
'M(t,) to 'M, for the view-time vt. The generated path
consists of piecewise straight line segments. If there is no
path connecting 'M(t)) to 'M, in the V-graph, robot should
wait for the view-time vt that is,

T™M(t) = 'M(1), for all tevt, )

In 3-dimensional space, the V-graph search method
not necessarily yields the shortest collision-free path. A
near optimal path is generated in 3-dimensional space by
adding vertices on the edges of the obstacle and searching
the V-graph.

B. Trajectory Planning ( Step 2 )

Many trajectory planning methods often ignore the
dynamic constraint[10]. If the velocity and the acceleration
of the joints are confined to small bounds, the joint force
or torque for the robot motion can be kept within the
maximum force or torque of the joint actuator almost all
the times[10). With this assumption, VB, and AB, (i =
1,2,....,N) are assumed to be low values in our development.

Let "M, (vt) = ( Qi (VE), @y, (VE), ., Qs (VL) ) De the
JS coordinate of the k-th vertex of the collision free path
from *M(t,) to *M(t,,, ), and *My(vt) = 'M(t). A point in
the path segment between 'M,(vt) and 'M,  (vt) is
represented as,

TM(t) = (q,(1), gy(1), ..., qy(1) )

= oft)-{ 'M,,, (V1) - 'M,(v1)) } +'M,(v)  (2)
Thus,
q.(t) = (4()‘{ Gixss (Vti) - qu(Vti) )+ qi.k(VIi)’
i=1L2 .. ,N 3

The trajectory on the path segment from ‘M, (vt) to
M, ,, (vt) is determined by oft). For (3) and the definition
5, the smoothness constraint is represented as,

Smoothness Constraint:
[ ()] <Min ¢ VB, / (g, (V8) - g (V1) ) )
[&? ()] <Min { AB, / (g, (V) - q, (")) )

]d”(t)l <Min { "Bi /( Qi (Vt') - q..k(vtn) )}

C. Path and Trajectory Modification( Step 3 )

In the view-time vt, the path and trajectory is
planned to avoid the JS obstacle 'OS[“ OS(vt)]. Therefore,
it may happen that 'M(t,,,) €O0S[€OS(vt, )l i.e., collision
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occurs at time t=t, . In this case, we modify the JS
obstacle 'OS[€0OS(vt)]); and we replan the motion for the
view-time vt. The rule for JS obstacle modification is as
follows.

Rule 1 (JS Obstacle Modification):

If '"M(t,) in the view-time vt is such that 'M(t)
€ 0S[€OS(vt)], then replace 'OS[COS(vt )] with

10S'1C0S(vt,, )] = 'OS[€OS(vt, )] u’'OS[COS(VL)].
a
Avoiding the modified JS obstacle *OS’[€OS(vt )] in vt
means that the robot avoids 'OS[€OS(vt)] in vt _, ie., one
view-time ahead of vt. This method guarantees
'M(t,) ¢ OS[€OS(vt)], i.e., collision avoidance at time t =
t. But it may happen that ‘M(t) €0S’[COS(vt,)], ie.,
collision between the robot and the modified obstacle may
occur at time t = t_ . So, Rule 1 is generalized to Rule 2.

Rule 2 (r View-Time Look Ahead Scheme):
If 'M(t) in the view-time vt, is such that
"M(t,) € OS[©OS(vt,)], then
1) Determine r:
r=Min {k |'M(t,) €0S[FOS(V)], k = 12,.i }
2) Modify the JS obstacles:
Replace "OS[ OS(vt)] (j = i, i-r+1, _, i-1) with
'OS’[€0S(vt))] = 'OS[OS(vt)]J OS[COS(vt)].
3) Replan the paths and trajectories:
Replan the paths and trajectories for the view-
times vt, for all j = i-r, i-r+1, ., i-1.

V. AN APPLICATION AND SIMULATION
RESULTS

We apply the view-time based motion planning
method to the collision-free motion planning of an
articulated robot with a time-varying obstacle in the
workspace.

A. Simulation Model

Fig2 shows a two-link planar robot with revolute
joints and a rectangular obstacle. We plan and simulate
collision-free motion of the robot under the following
conditions.

1) The conditions on the robot are as follows.
(a) dimensions: /, = [, = 100 cm
(b) angular velocity bounds of the joint motions: VB, =
400 deg/sec, i=1.2
(c) angular acceleration bounds of the joint motions;
AB, = 100 deg/sec’, i=12
(d) starting point of the motion in JS: 'M, = (80 deg, -
10 deg)
(e) goal point of the motion in JS: 'M, = (-40 deg, 25
deg)
2) The conditions on the obstacle are as follows.
(a) dimensions: r, =1, = 20 cm
(b) starting point of the motion in CS: (130 ¢m, -20 cm)
(c) goal point of the motion in CS: (40 cm, 160 cm)
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(d) path of the motion in CS: straight line path
(e) maximum linear velocity of the motion in CS: 20
cm/sec
(f) maximum linear acceleration of the motion in CS: §
cm/sec’
In (b) and (c) of 2), the reference point of the obstacle
motion is assumed to be the lower left vertex of it.

B. Computation of the JS Obstacle

The Definition 3 implies that JS obstacle can be
obtained by solving the inverse kinematic problems
wherever a point of the robot body coincides with a point
of the obstacle. Since there are infinite number of points
in the robot body and in the obstacle, there are infinite
number of inverse kinematic probiems to be solved.
Instead of solving the infinite number of inverse kinematic
problems, we obtain the JS obstacle ' OS[¢OS(vt)] from the
JS collision-free space 'CN_[€OS(vt,)]. We compute the IS
collision-free space 'CN_[OS(vt)] wusing the slice
projection method{11]). Then, we find the JS obstacle
'OS[€0S(vt)] from 'CN_[€OS(vt)] by

'OS[FOS(vt)] = 'WS - 'CN[“OS(vt)] 4
The equation (4) is derived trom Definition 7.

In general, 'CN_[°OS(vt)] is not a polygon, and
neither is ‘OS[€ OS(vt)]. To find a collision-free path using
the V-graph search method, 'OS[€OS(vt,)] is approximated
by a convex hexagon ’OS[°OS(vt)]. Fig. 3 shows a JS
obstacle 'OS[OS(vt,)] and its approximation
'QS[°OS(vt,)], for the case of vp, = 1.0 sec.

C. Simulation Results

To investigate the effects of selection for the various
view-time periods, the simulations are done for the
following four cases.

1) case 1: vp, = 0.5 sec,i = 1,2,
2) case 2: vp, = 1.0sec,i = 1,2,...
3) case 3: vp, = 1.5 sec,i = 1,2,...
4) case 4: vp, = 2.0 sec,i = 1.2,..

The number of view-time periods(NVP), the robot
motion time period T, and the number of applications of
LAS(NLAS)for collision-free motion planning are shown
in Table 1. It is found that they are dependent on the view-
time period. The robot motion time period T, is calculated
by multiplying the view-time period with the NVP required
for collision-free motion.

Fig. 4 shows the JS paths and trajectories for the
cases. Figs. 5 and 6 show the collision-free motions in CS
for the case 1 and 4, respectively.

From these results, we summarize the effects of the
view-time period on the planned motion as the followings.

It

I

1) The robot motion time period becomes shorter as the
view-time period becomes longer.

2) The computational burden for motion planning becomes
less significant as the view-time period becomes longer.

3) The smoothness of the robot motion increases as the
view-time period becomes shorter. That is, the shorter
view-time period produces smoother and less



roundabout path and trajectory.

Thus, there are tradeoffs among the computation time, the
robot motion time period, and the smoothness of the robot
motion.

VI. CONCLUSIONS

View-time is introduced to solve the time-varying

obstacle avoidance problem. The view-time based motion
planning method has the following characteristics.

1)
2)

3)

4)

D
2)
3)

4)

1l

A

—_—

13]

4
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i
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It is applicable to the various collision-free robot
motion planning problems with time-varying obstacles.
In a view-time vt, it uses the method of stationary
obstacle avoidance scheme.

The number of computations for motion planning, the
motion time period T,, and the amount of excessive
roundabout motion are dependent on the view-time
period vp.

It is impossible to reduce simultaneously the number of
computations for motion planning, the motion time
period T_, and the amount of excessive roundabout
motion. To determine the optimal view-time period vp,,
it is necessary to take account of the tradeoffs among
these three factors.

The subjects for further investigation are as follows.

Research on the varying view-time period to adapt the
view-time period to the change of obstacle motion.
Improvement of the view-time based motion planning
method for real-time application.

Efficient method to compute the JS obstacle

}0S[€0S(vt,)] from the swept volume “OS(vt).
Trajectory planning method satisfying the dynamic
constraint as well as the smoothness constraint.
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Figures
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[2] Plan the trajectory "M(t),
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free path, for all te& vt;.
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(1) Find r, using the
{31-1: The collision-free path *r view-time look

and the trajectory in vt ahead scheme” .
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END

Fig. 1. Flow diagram of the motion planning algorithm.
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