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DECAY RESULTS OF WEAK SOLUTIONS TO
THE NON-STATIONARY FRACTIONAL
NAVIER-STOKES EQUATIONS

ZHAOXIA LIu

ABSTRACT. The goal of this paper is to study decay properties of weak so-
lutions to Cauchy problem of the non-stationary fractional Navier-Stokes
equations. By using the Fourier splitting method, we give the time L2-
decay rate of weak solutions, which reveals that L2-decay is generally
determined by its linear generalized Stokes flow. In second part, we es-
tablish various decay results and the uniqueness of the two dimensional
fractional Navier-Stokes flows. In the end of this article, as an appendix,
the existence of global weak solutions is given by making use of Galerkin’
method, weak and strong compact convergence theorems.

1. Statement of the main results

We consider Cauchy problem of the n-dimensional generalized incompress-
ible Navier-Stokes equations:

ou+ A%u+ (u-V)u+Vp=0 in R x (0,00),
(L.1) V-u=0 in R™x (0, 00),
u(z,0) =a in R™,

where n > 2, u = (ui(z,t),uz(x,t),...,u,(x,t)) and p = p(z,t) denote un-
known velocity vector and the pressure, respectively, while a = a(x) is a given
initial velocity vector field satisfying V - @ = 0 in the sense of distribution.
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A= (=A)z, and A% = (—A)? (0 < 0 < 1), which is defined as follows:

A7p(8) = [€]7¢(E),
where v > 0, ¢(§) = [z, e ¥p(y)dy is the Fourier transform of ¢, i = \/—1.

Definition. Let a € LZ(R"), 0 < § < 1. A vector function u is called a weak
solution of (1.1) if u € L>(0, 00; L2(R™))N L2 ([0,00); H?(R™)) satisfies in the
sense of the distribution
d
a(u(t)a QO) + (AauaAggp) - (u & U, V(p) =0 for every o € H;(]R2)a
where u ® u = (u;u;j)nxn denotes the n x n matrix. Moreover,
lim [Ju(?) — al| L2 gn) = 0,

and the energy inequality holds for any ¢ > 0

t
(1.2) ()% @) +2/0 1A (P12 ey dr < llallZaen)-

The systematic theory on the classical Navier-Stokes equations (f = 1 in
(1.1)) origins from Leray’s pioneering work in 1934. In this paper [12], J. Leray
proposed one open problem whether the weak solution established by him tends
to zero in L%-norm as t — oo. About fifty years later, M. Schonbek [14-17]
attacked this problem and succeeded for the first time in showing the existence
of weak solutions with explicit decay rate. For further relevant topics, please
refer to [1-9] and the references therein.

There is abundant literature in studying properties of solutions to the gen-
eralized Navier-Stokes equations. In [13], J. L. Lions established the existence
of a global classical solution to 3D problem (1.1) with § > 2. However, for
the case 0 < %, the global well-posedness issue has not been resolved so far.
Additionally, the generalized Navier-Stokes equations also own scaling invari-
ance properties and energy estimate as in the classical Navier-Stokes system.
Indeed, if (u,p) is a solution to the n-dimensional generalized Navier-Stokes
equations, then for any A > 0, the scalings

uy(z,t) = )\2971,“()\% )‘QQt)a palz,t) = /\40721)()‘377 )‘2915)
also solves the generalized Navier-Stokes equations. Namely,
Ayux + ANPuy + (ur - V)ux+Vpr=0, V-uy=0.

The corresponding energy is

I(uy) = sup/ luy(x,t)|>dx + 2/ / |A%uy (x, t)|2dadt = N*0727" ] (u).
t>0 JRn 0 n

Obviously, I(uy) — +oo as A — 0 if # < 2. In this sense, it says that the

n-dimensional generalized Navier-Stokes equation is supercritical if § < "T"‘Q,
"T“, and subcritical with 6 > ”T"'Q. It has been proved that

when 0 > %, the three dimensional generalized Navier-Stokes system admits

critical for 6 =
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a global and unique regular solution (see [13,21] for instance). There are
also many important achievements on problem (1.1) and relevant viscous fluid
models, for examples, see [11], [22-24].

Recently, Q. Jiu and H. Yu [10] obtained L?-decay of solutions of problem
(1.1) with n = 3. In this article, we consider the general n-dimensional case,
here n > 2. Especially our results contain the two dimensional case, which is
more difficult and challenging to be treated than that of the three dimensional
case as in the classical Navier-Stokes system. L"(1 < r < oo)-decay properties
of weak solutions to problem (1.1) with n = 2 are established, see Theorem
1.2. Additionally, the time decay of ||Vu(t)| r2(r2) is also given. It should be
pointed out that it’s almost impossible to establish these decay properties in
3D case.

More precisely, our mains results are stated as follows:

Theorem 1.1. Let a € LY(R") N LZ(R™) (n > 2), 0 < 0 < 1. Then there
exists a weak solution u of problem (1.1), which satisfies for t > 0

lu()l|L2@ny < C(t+ 1)~ s,

and
1 nt2

u(t) — e al| poqmny < C(t + 1)~ —minta 55" =31,

where constant C' depends only on n, 0, ||a||2®n), |lallLr@n)-

Remark. The L?-decay of u with initial datum a coincides with that of the

6 6
corresponding fractional heat flow e=*A*" . Indeed, set uo(t) = e*"4. Then
up(t) satisfies the generalized heat equations:

Ao+ A%y =0 in R"x (0, 00),
up(z,0) = a in R".

Applying the Fourier transform to this linear equation yields for ¢t > 0
Deiio + €% = 0, 110 (€, 0) = a(&).
A simple calculation shows for ¢ > 0
o (&,1) = e a(g).
Furthermore Plancherel theorem means for ¢ > 0

o ()| L2y = (27) ™2 |[dio () || L2 rn)

=0 ([ e aPa)
([ et mpan)’

v on _ 20 % ~
t 49(/ e—2Inl dﬂ) ||aHL°°(]R")

< C’t_ﬁ Ha||L1(Rn).

[V

w3
&

=(2m)"2¢”

NE

< (2m)”
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As the following theorem shows, various time L"-decay rates can be obtained
for weak solutions to the two-dimensional problem (1.1). The crucial point is
that we can establish the decay estimate of ||[Vu(t)|[z22) by applying the
Fourier transform to the corresponding curl equation. However, the decay
property of the gradient u in L2-norm is unknown for n-dimensional problem
(1.1) with » > 3, this is why we only have the estimate of |lu(t)||z2(gn) for
n > 3. Now we state our two-dimensional decay results on problem (1.1) as
follows.

Theorem 1.2. Suppose a € LL(R?) N HY(R?), 0 < § < 1. Then problem
(1.1) admits a weak solution (u,p), which satisfies u € L°(0,00; H'(R?)) N
L% (0,00; HY*(R?)), Oyu, Vp € L}, (0,00, L2(R?)) and for every t >0
IVa(®)ll ) < C(t+1)7;
u(®)|rgey < CE+1)77079) 1 <7 < 0.
Furthermore, if 6 > %, then there exists t1 > 0 such that for t > t;

[u(t)l| oo g2y < C77,
and
[Vu(t)||prgey < Ct= 28~ 5079) ) 1 <p < o0,
where C' depends only on 0, ||a| g1 (r2), ||lal|z1(g2)-

Remark. In estimating the decay rates of ||u(t)||zor2), [|Vu(t)| L w2y (r # 2),
the Fourier splitting method does not work any longer, an alternative effec-
tive approach is to use Lemma 3.1, then a kind of integral appears inevitably:
fit (t — s)~20 f(s)ds. This is why the assumption of § > 3 has to be im-
p(2)sed on to avoid generating the strong singularity. It remains open whether
lu(t)|| oo (r2y < Cts, [Vu(t)]| w2y < Ct—z—5(1—3) (r#2)for0<6< %
and large time t.

Theorem 1.3. Suppose a € LL(R?)NH'(R?), 2 < 6 < 1. Then problem (1.1)
has at most one weak solution.

Remark. 1t follows from Theorems 1.2, 1.3 that the two dimensional problem
(1.1) admits the unique weak solution for % < 6 < 1, however, the uniqueness
is still open in the case of 0 < 0 < %

This paper is organized as follows. In Section 2, we consider the general
n-dimensional problem (1.1), and give the optimal time L2-decay of weak solu-
tions u in the sense that which coincides with L2-decay of the fractional Stokes
—tA*" 4 with the same initial data a (i.e., Theorem 1.1). Section 3 devotes
to dealing with the two-dimensional case of (1.1). We first collect some basic

flow: e

and known results regarding the Stokes semigroup {e‘“‘ze }i>0, which will be
applied in establishing 2D large time decay properties. A series of decay es-
timates [|u(t)||zr®2) (1 < r < 00) are presented, including the crucial decay
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property ||Vu(t)|[z2(r2y, which is based on the curl operator property and the
Fourier transform splitting method (i.e., Theorem 1.2). The uniqueness follows
from the application of Biot-Savart formula, Gronwall inequality and Fourier
transform. In the last section, for completeness of the reading, as an Appendix,
we prove the global existence of weak solutions to problem (1.1) with large ini-
tial data by using the Galerkin approximation, weak convergence method and
space-time strong compactness theorem.

Throughout this paper, C§°(R™) denotes the set of all C*°-real vector-valued
functions with compact support in R, #/(R") is the space of all tempered
distributions in R™, and

Coo(R") ={o=(¢1,...,¢n) € C°(R") : V- ¢ =0 in R"},
L2Z(R™) = the closure of C§%,(R") in L*(R"),
HJ(R") = the closure of Cg7, (R™) in H7(R"),
HY(R") = {u e L' (R") : [[ufl L2(gn) + |AVul| L2 @ny < 00}, 7> 0.
L™ (R™) represents the usual Lebesgue space of vector-valued functions. The

norm of L"(R") is denoted by |[u]|r@ny = ([fpn [u(z)|"dz)* if 1 < r < oo;
and [|ul|peern) = ess sup |u(z)|. By symbol C, it means a generic positive
TeR™

constant which may vary from line to line.

2. L2-decay of Navier-Stokes flows

In this section, we give the detailed proofs of Theorem 1.1. The main
method employed by us is the Fourier splitting method, which is founded by
M. E. Schonbek in a series of her work, see [14-17] for details. In the follow-
ing arguments, we concentrate on estimating the approximate solution u,, of
problem (1.1) with initial data a € L2(R"). The existence of u,, is estab-
lished by using Galerkin’s method in Proposition A in the Appendix. Recall
that the approximate solution u,, = > ", gx(t)ex(x) satisfies for every T' > 0:
um € C([0,T],C5%(R™) N C((0,T),C5% (R™)).  Moreover, it follows from
(A.2), (A.3) that there exists a scalar function py,(x,t) such that

Aty + AP, + (- VU + VP, =0 in R™ x (0, 00),
(2.1) V -ty =0 in R™x (0,00),
U (2,0) = am, in R”,

where a,, € C5%, (R") satisfies: |lam||p2@n) <llallz2@n), n}gnoo llam — allp2@n) =
0.

In order to obtain the desired decay results, we first need to establish a series
of a prior estimates on the approximate solution u,,. Then by making use of
weak and strong compact convergence theorems, we can reach our expected
aims. For simplicity of the statement in the proofs of our main results, we
always denote (u, p) by dropping the subscript m of (t,, ) in problem (2.1).
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Proof of Theorem 1.1. We prove Theorem 1.1 through the following four steps.
Step 1. Let a € L'(R™) N LZ(R"), n > 2.
The following estimates hold for £ € R, ¢t > 0

(2.2) (6, 0)] < llallzr ey + 2l €12,
and

t
(2.3) (€, £)] < lallprgam + 21€] / a(5)112 -

In fact, since V - u = 0, we have

(- V) 5t|—|Za uju u\—»Zzégu]

Zmu §t|<|§\/ u(a, 1) 2dz = [][u(t)]2 g,

Whence
(2.4) [(u - V)u(&, 1)) < JE[l[u(t)]|72 (gn)-
Note that

V- APu(g 1) = Y il a6 1) = |6V - u(6 1) =
j=1
By means of the equation in (2.1), we derive the pressure function p satisfies:
=D o0y (uruy),
k=1j=1

from which,

453 Zzgkfgukuj &)

k=1 j=1
Then
[€17[p(E, 1)) ZZ |Ex €51 1w ()| L2 @) [l () || L2 ey
Z [k lllun (B L2n))? < 1P (u() 172 (gn)-
This shows
(2.5) E1P(E )] < [€llult) 172 @ny-

Applying the Fourier transform in both sides of the first equation in (2.1), we
find for t > 0
i+ €25 + (u- V)u+ Vp =0,
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which is equivalent to
(@el€""t), + ((u- V)u+ Vp)elst = 0.
Integrating by parts on time ¢, we have for ¢t > 0

(26) e, 1) = e G — / o169 (4= V) + Vp) (&, 5)ds.

Observe that
3@l =| [ et < [ Jatlay

Recall the energy equality

¢
/ lu(z, t)|>dx + 2/ / \Nu(z,s)|*deds = / la(z)|*dz, Vt > 0.
n 0 n n
Combining (2.4), (2.5) and (2.6) yields for t > 0

t
a(€, 1) < la(€)] + 2\§|/0 e u(s) |32 gy s

t
€129 (4—s
< Jlalls ey + 20¢]lall3z ) / eI =) g

< llallzr ny + 2llallZe g €12,

and

t
.| < [a©)] + 21¢ / eI (=) () |2 gy s

t
< Ylallzs ey + 20€] / ()12 gy s,

which are (2.2), (2.3), respectively.

Step 2. n > 3, [[u(t)||r2rn) < C(1+1¢)"30, ¥Vt > 0.
Note that the following energy equality holds for ¢ > 0
d
dt Jgn

Using the Fourier transform, we get for ¢ > 0

d ~ ~
G | aeora 2 [ e opds o

Let f(t) be a continuous differentiable function for ¢ > 0, which satisfies: f(0) =
1, f'(t) > 0, Vt > 0. Together with (2.7), we have

28) 5 (10 [ aeoras)v2re | e ora=re | aeords

Set

lu(z, £)[2dz + 2/ IA%u(z, 1) 2dz = 0.
R’Vl

(2.7)

B(t) = {€ € R" : 2f()|¢]*" < f'()}-
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Then
(2.9) 2ﬂw/ €2 (e, t)Pde
.

=w@/|wmgwﬁwmv'mwmmmf
B(t) B(t)e
2 [ e o

=) [ e ora—rw [ e o
¢
Inserting (2. 9) into (2.8), together with (2.2), (2.3), we find for ¢ > 0

(2.10) / (e, 1)2de)
SfULwMﬁWE

A
—90N2 e
(t)</( ]»jg (lall g ey + 2lallZs gy =) 21 drdS,,

coro((He (%),

and

2

(2.11) Tz /|u§t|d§

< f a(&,t)|2de
()/( (€, 1)l

/ / |a||L1(R" +27"/ ||u(s HLQ(R”)ds r"drds,

jol=

<200) [ [ (1o + 40 [ i),
|w|=1

<or@( [ rtars [T [l )

<cr(ar +A“+2t/ Ju() 2 s )

< or 0D + i ED)H [ juto) e i),

20 _ f'(t)
where A% = TiOE

Integrating on ¢ in (2.10), (2.11), respectively, we get for ¢ > 0
(2.12) F@) | lage,n)Pde < / [a(€)|*dé + Cmin{L1(t), I(t)},
Rﬂ, RTL
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where
f’ (s) ki f'(s) 52—
(2.13) / (s ( o) f(s)) )ds,
/S)
(2.14) I / f'(s s) / [Ju(r ||L2(]R")dr>
Take f(t) = (t+1)* in (2. 13), (2.14), respectlvely Then for ¢t >0
! — f/(t) -1
t)=alt+ 1)1, =at+1
o =at+net L8 e
and
(2.15)
t
t) < c/ (s+1)* (s +1)7% 4 (s + 1) "% *2]ds
0
<C((t+1)*7% + (t+1) ?), where a>max{n n+2 -2},

20
(2.16)

t s
220 [0 (4 D+ (54 1) [ a0y ) ds
0 0

t s
< C’/ (s+1)* 172 (14 (s + 1)~ot! / ||u(r)||i2(Rn)dr)ds.
0 0

Inserting (2.15) into (2.12), using Plancherel theorem, we find for ¢ > 0

2.17 )2de = (2m)™" a(&,t)2d
L N I LGOI
1 2 CIL(t)
< 7 L, e+ S
<CO((t+1)7% + (¢ +1)" 5 +2),
Applying (2.17) to (2.16), we get for any ¢ > 0

(2.18) Ix(t) < C/t(s + l)aflfﬁ
0

< (1 (8+1>‘%“/ ((r+1)7% + (r 4+ 1)7 5 +2) ar ) ds
0

t
< C/ (s+ 1) 18 (14 (s+ 1) 5 )ds
0

< Ct+1)* 2.

Here we require n > 3 to guarantee the integral in (2.18) is finite:

/ (r+ 1275 2 dr < / (r+ 1> 5 dr < oc.
0 0
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Inserting (2.18) into (2.12), together with Plancherel theorem, we conclude
fort >0

2 b )| CLy ()
(2.19) . lu(z,t)| d:z:<f / la(x)|dx + 0
<C((t+1)" >+ (t+1)"20)

<O(t+1)"20.

Step 3. n =2, |lu(t)||z2r2) < C(1 + )20, Vi > 0.
Let a € L*(R?) N L2(R?). We write (2.12) in the two dimensional case as
follows:

(2.20) 0 / e, e < / la(e)Pdg + €I,
where
50 = [ FO(EE +5(EED [ 1u)lsqenr)a
(a) Take f(t) = [log(e + )], t > 0. Then

f'(t)
ft)

71(6) = 2Mioa(e + 013 e+, T2 = X+ 1) log(e + 1))

Whence
(2.21)

< /tf’(s>
<C/ [log(e+s)]o "

e+s

- C/ ([log(e—i—s)}"1 N [log(e-ﬁ-s)]%_l)ds

- (e+s)ito (e+s)~1+3

j ¥ allh ey ) s

Phes]
g
9

( (e+5)log(e+5)]77 + s2[(e+35) log(e—I—s)]_%)ds

t
<C+ C[log(e+t)]%71/ (e+5)' "7 ds < Cllog(e+t)]7 7L, t >0,
0

where C' depends only on 6, |al|z2rz).
Inserting (2.21) into (2.20), we get for ¢ > 0

e22) [ luwoPde = en [ e opa

3

< Cllog(e + t) 7?/ [a(¢)|2d¢ + Cllog(e +t)] 170

m

< Cllog(e +1)]717%, t > 0.
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(b) Set f(t) = (1+1t)7, t > 0. Then

/ 2 2 ')
H=2(1+t)7 1, =21+t
F=ganitt F =20+
From (2.22), we have for ¢ > 0
<C/ (145)7 1+s) 7+ s(1+s) %/ [lu(r ||L2(R2dr)

gc/ (1+s)%-1+/ ||u(r)||§2<R2)dr)ds
0

go(1+t%+0t/ a1 gy

<C(l+ t)% + C’t/ ||u(r)|\%2(R2)[log(e + r)]fl*%dr.
0
Combining with (2.20), we conclude for ¢ > 0

(223)  (L+)7|[u(t)|Fopey < (L +1)77 g la(z)|?dz + C(1 + )"0 .J(¢)

t
<O C [ uls) e onloge + )1 s,
0
Set
g(t) = (L +1)7 [u®)l|72 ey, h(t) =C(A+1)"7[log(e+1)] 7177
Then it follows from (2.23) that for ¢ > 0

gty <C+ /0 o(s)h(s)ds.

Applying Gronwall inequality yields for ¢ > 0

¢
g(t) < Cexp (/ h(s)ds).
0
Namely,
(1+ t)%||u(t)||%2(R2) < Cexp (C/ (1+t)"%[log(e th)]*l*%dt) <C, t>0.
0
Whence
lu()l2@ey < C(1 +4)72, ¢ > 0.

Step 4. [[u(t) — uo(t)||p2rn) < C(t+ 1)~ 10 —min{g5. 56" =3} > 2 for ¢ > 0.
In this last step, we give the proof of the second part of Theorem 1.1. That
is, we establish the decay rates of ||(u —uo)(t)||z2(rn) as t — 0o, where ug(t) =
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e, a € L2(R™). Set D(t) = u(t) — ug(t). Then D satisfies in the sense of
distribution

WD —A’D+ (u-V)u+Vr=0 in R"x (0,00),
(2.24) V-D=0 in R” x (0,00),
D(z,0)=0 in R".

The energy equality for problem (2.24) is written as follows: For all ¢t > 0
d
DOy + 2IA° DO ) 2 / [ V) D), )z = 0.
Using Plancherel theorem yields for ¢ > 0

(225) 5 [ 1D0Pdcr2 [ 6D 0Pd 2" (- V)u- DlGa.tjda=o,

n

and then
26) (o) [ IDe.oRa) +200) [ 1D 0 e
—g(0) [ IDE0Pde— 220790 [ [(w- Vyu- Dla. 0

R n

where the function g(¢) is a continuous differentiable function for ¢ > 0, which
satisfies: g(0) =0, ¢'(t) > 0, V¢t > 0.
By the Fourier splitting method, we get for ¢ > 0

e 2 [ 1€PIDE P
— 29(t) / €21 Be, 1) 2de + 24(1) / P91 Be, 1) e
B(t) B(t)©
20 [ 1D 0P

=g [ 1DE0PE g [ 1D oras

where B(t) = {€ € R" : 29(1)[¢[** < ¢/(1)}.
Inserting (2.27) into (2.26), we conclude for ¢ > 0

) (o0 [ 1D oPa)

<g'() /B@) Iﬁ(f,t)l2d§—2(2ﬂ)”g(t)/ [(u- V)u- Dl(z,t)dx.

n

Observe that the pressure function 7 in (2.24) satisfies

n n
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from which,

(2.29) €M7 (&, O] < [Elut)l|72n)-
Combining (2.4) and (2.29) yields for ¢ > 0
(2.30) (- D)€, )] + [E]IF(E, )] < 20e]lju()]32 )

Applying the Fourier transform in both sides of the first equation in (2.24),
get for t > 0

Dy + €D + (u- V)u+ Vi =0.
Whence,
(De'glzet)t + ((u-V)u+ Vw)e'ﬂzet =0,
and then for ¢ > 0

(2.31) D(Et) = — /0 1) ((u- V)u+ V) (& s)ds.

Inserting (2.30) into (2.31) yields for ¢ > 0

N b e, t
(2.32) |D(e.1)] < 2l¢] / eI =) ()] |2 gy s < 2I] / ()12 oy

Recall we have proved that for n > 2 and s > 0
[u(s)lL2@ny < C(1+s)" 4.
Note that 0 < 6 < 1 < § for n > 2. Together with (2.29), we find for ¢ > 0

t
~ 16120 (t—s
(2.33) D&, 1)) < 2I¢] / €17 =) ()| 2 g

t

<clel [ (145 s
0

< Clel.

Note that ug(t) = " a, and for ¢ > 0

1
. _ 26 _ 20 2
li€5e 14 L2 gy < (/ €[22l df)
RTL

1
— (/ |n|2€—2\n\29dn) 2

=t
Whence for t > 0
1950 (t)] L1y = ||i€;e = al| L1 )

. — 20/\
= ||ij€ tI¢] CLHLl(R”)
. — 20 ~
< i€ | L2y 1@l L2 ey

_nt2
< Ct™ e Ha||L2(R")~

649
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Then for ¢t > 0
(2.34) | [(u-V)u- D)(x,t)dz| = ‘/ (u- V)u - ug)(w,t)dx|

= en) [ Z[@@omt)dﬂ

< Z 1810 (¢) | 2 iy

j=1
< O |Ju(t) |22 e

(“J u)(t )”LOO(R")

(R™)
<Ot (144)"% <Ot
From (2.28), (2.33) and (2.34), we obtain for ¢t > 0
d ) 2
(235) (o0 [ 1bepa)
A
< Cg'(t) r?r"~tdrdS,, + Cg(t)tf%
|w|=1J0
'(t) nt2 3n+2
< / g ( 26 — =0
<C(gWEE)™ +obr ),

20 _ 9’ (1)
where A<Y = 290"

Integrating on ¢ in (2.35), we get for ¢t > 0

@360 [ pnPs = en [ DEoks < ci,

where
Lot gls) a2
2. J(t) = —= ! 20 T4 )ds.
(237 0= =5 [ (G +g(e)a 5 )as
Take g(t) = ¢* in (2.34), where « > 0 is sufficiently large. Then
/ t)
(1) = atet, LW _ g
g'(t) )
Therefore,
t
(2.38) J(t) < Ct‘”‘/ (sa—l—%z + sO‘_SZ;rQ)dS
0
<O (1075 4ot
< C(t‘ﬁ 4+t 3n+2)
From (2.36)-(2.38), we derive for ¢t > 0
1Dy < O 4175 441 7755)
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Note that
D@2 @y < w2 ey + [wo(t)]lL2@n)
<C(L+t)" % 4+ (2m) 5 e 17 4| f2 m)
<O+ [lal[z2gn)), V> 0.
Whence

D) L2@n) < Ot + 1)~ s min{ze 5 31 e > 0,

Applying the standard weak convergence theorem to the estimates on the ap-
proximate solution v = u,, in the above Step 1 to Step 3, we finish the proof
of Theorem 1.1. O

3. Decay rates of the 2D Navier-Stokes flows

In this section, we first recall some useful known results on the linear frac-
tional heat equation in R?, which can be found in [20]. Namely,

Lemma 3.1. Let 1 <r < qg < o0, 0 < 8 < 1. Then for any t > 0, the
operators e~ and Ve~ are bounded operators from L"(R?) to L4(R2).
Furthermore, we have for any f € L"(R?),
_1A20 _1le1_ 1
e Fllnagey < Ct 8D fll or(r2),

and

where C' is a constant depending on 0, v and q only.

Proof of Theorem 1.2. It follows from (A.2), (A.3) in Appendix that there ex-
ists a classical approximate solution (u,p) = (Um,Pm) to the following problem
with initial data a = a,,.

ou+Au+ (u-Vu+Vp=0, V-u=0, u0)=a.

Step 1. ||Vu(t)||r2@e) < C(t +1)77, Yt > 0.
Let w(x,t) = Oauy —01ug denote the vorticity of the two-dimensional velocity
field u = (u1,u2). A direct calculation shows

(3.1) Ow + A0+ (u-V)w =0,
(3.2) w(z,0) = hay — Oraz, a = (ay,az) € H(R?).
The energy equality arising from (3.1) can be written as follows: For ¢t > 0
d
a”w(t)niz(mz) + 2|\A9W(t)||%2(R2) =0,

and then

d ~ 2 20|~ 2 _
(33 G |t nra+ [ ek -o
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Using (3.3) yields for each t > 0
(3.4) S0 [ e ora) 20w [ lelate 0P
dt R2 R2
—_ g -~ 2d
£ [ B

where the function f(¢) is a continuous differentiable function for ¢ > 0, which
satisfies: f(0) =1, f'(t) > 0, vt > 0.
Observe that for t > 0

(5) 210) [ 1ePate 0Pde 2 270) [ e late s
R2 B(t)e
> f(t o(&,t)|%d
2rw [ e opa
_ / ~ 2d _ ! ~ 2d
ro [ B npa-ro [ peorde
where B(t) = {€ € B2 : 2/ (1)|¢[* < J'(1)}.
Inserting (3.5) into (3.4), we obtain for ¢t > 0

d ~ 2 ’ ~ 2
(36) G0 [ eore) <o | e ora

The fact of V- u = 0 yields for ¢t > 0

2

(- V)w(&,0) = 3 0, (u@)(6,0) = D i (E, 1),

=1
and then

(3.7) [(u- V)w(&, 1) < [¢] /Rz u(z, t)]|w(z, t)|dx
< [Elllu(®)ll L2 @) lw(t) ]| 22 m2)-
Applying the Fourier transform to the equation (3.1), we find for ¢t > 0
G+ €28 + (u- Vw =0,

and

t —_—
(3.8) W, t) = e_lglwt@(f, 0) — / e_lglze(t_s)(u -Vw(E, s)ds.
0

Recall the proved result for any 7 > 0
lu(r) 222y < C(L+7)7 5.
Since

IG(€,0)] = [Daa1 (€)—Bras(€)| = |i€adi (€)—i&1a@(€)] < [€]|a(€)] < 2[¢][lall 11 (g2,



DECAY RESULTS OF WEAK SOLUTIONS 653

inserting (3.7) into (3.8) yields for t > 0
t
(3.9) ()] < e TR, 0)] + \€|/O lu(7)l 22 ®2) |l (T) || L2 (R2)dT
t
< 2fellallaqee) + CIel [ (14+7)H )l adr
Combmlng (3.6) and (3.9), we deduce for t >0

(3.10) — j/ @&, 1) t|2d£
< Cf’(t)( [, e / grae( [ 1+ 77 et ey )
gcqu((f%“) ( )5</‘1+4- éuw@ﬂh%R%m)2)
(3.1

f(t)
Integrating on time ¢ on both sides in 0) yields for ¢t > 0

~ 2 1 2
(3.11) Aﬁ%t de < R?AJEO )2de + C22

L(t)
f@)’

where

012) 2= [ () + (F) ([ 04078 bt Jan

Using the energy equahty fort >0

t
(122 (g2) + 2/0 1A%w(8) |72 2y ds = (0172 g2y

and taking f(s) = (14 s)® in (3.12) for large number o > 0, we have for ¢t > 0

(3.13) L(t)<C /0 t<1+s>a*1((1+s>*% +(1+5) 7 /0 (r)Har) s

C(1+t)*+2% it 0> 1,
SCA+1) T+ CL+0)**log(1+ 1) if 6=1,
C(1+1t)°7 if 9<1
C(1+t)*+2—% if >1
< CA+1)* Mlog(l+)]? if 6=3,
C(1+1)7 if <1

From (3.11) and (3.13), we get for t > 0

C(1+1)2 7% if 6>1
lw(®)Z2@ey < 4 C(L+1) *log(l+)]* if =1,
if 6<3.
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Then a direct calculation shows
(3.14) / (14 7)™ [lo(r)|| 2 gey dr < oo
0

By the choice of f(s) = (1 + s)® for large number « > 0, it follows from
(3.12), (3.14) that for ¢ > 0

(3.15)

2

L(1)
= O/ (1+8)* 1<(1+S) d +(1+S)_g(/000(14-7')_219||w(7‘)||L2(R2)d7—>2)d5

<C/ (14s)” a=1-3ds

< C(141)°77.

Combining (3.11) and (3.15), we obtain for ¢ > 0

(3.16) w72 ey < CO+6)"(1+ L) < C(1+1)75.
On the other hand, since dyu; + dous = 0, we get for t > 0

(3.17)

||w(t)H2L2(R2) = /}R2 |0ouy — Oyug|*dx
= / (‘82U1|2 + |81’U,2|2)d.’17 — 2/ Oau101uadx
R2 R2
= / (\82u1|2 + |61’U,2|2)d.’11 — 2/ O1u10ouqsdx
R2 R2

:/ (\82u1|2—|—|81u2|2)dx—|—/ |81u1|2dx—|—/ 1Oz P da
R2 R2 R2
= [[Vu(t) 72 g2y
Combining (3.16) and (3.17) yields for ¢t > 0
IVa(t)l 2@ < CL+)74.

Step 2. |lu(t)||zrme) < C(1+1t)7% 7(1-9) Wt >0,1<r < .
By the interpolation inequality, together with the result of Step 1, we have
foreach 2 <r <oo,t >0

2 1—2
(3.18) lu(®)llzr @) < C\Iu(t)l\£2(Rz)IIW(t)IILz(ERQ
<O+t 2 700 = 01+ )79,

Now we treat the case of r = 1. Let 1 < r < o0, it is known that P = P, is
the bounded projection from L” to the closed subspace L. of L" consisting of
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all the solenoidal vector fields, not bounded for » = 1 any more. In fact, using
the Fourier transform, the projection P can be represented as follows:

£R¢&, 2
- )f 5 )
7
where I denotes the unit n x n matrix, £ ® £ = (§;&k)nxn-
By the inverse Fourier transform, we find (Pf); = > 1_,(6;s+R;Ri fi) (j =
1,2,...,n). This shows that the projection P contains the Riesz operators
R; (j=1,2,...,n), which is defined by

Pf(&)=(I

_ i€ .

R;f(§) = ﬁf(ﬁ), i=v-1
The situation becomes complicated and challenging because using Lemma 3.1
will inevitably produces the crucial term ||P(u - V)ul|p1. In order to overcome
this difficulty, we use the Hardy space H! to replace L'. We first recall the
definition of the Hardy space H!(R").

A function f € L'(R") belongs to the Hardy space H!(R") if sup |G,  f| €
s>0

L'(R™), where the symbol * denotes the convolution with respect to the space
le|?

variable, G is the Gaussian kernel for s > 0: G4(z) = (4ns)"2e 1 € Z(R"),
which denotes Schwartz space of rapidly decreasing smooth functions in R™.
H!(R™) is a Banach space, the norm of f € H!(R") is defined by

1fll202 ) = Nl sup|Gs  flll 2 ),

and the injection H!*(R™) C L'(R") is continuous. Importantly, P is bounded
on H'(R™).

To proceed, we additionally need an important inequality due to [8], which
can be used to treat effectively the convection term (u - V)u on Hardy space
Hl(Rn).

Let n > 2, u € L2(R") and Vo € L?(R"). Then (u-V)v € H'(R"), and we
have the estimate
(3.19) [(w - Vvl gy < Cllull2 @) [[VOllL2@n),

with C' independent of u and v.
Using (3.19) yields for every u € L2(R?) and Vv € L?*(R?)

(3.20) |P(w- V)vllLimzy < |[P(u- V)vlla (w2
< Oll(u- V)vlna e
< CllullL2@2) Vol 2 r2) -
Note that

(3.21) u(t) = e g — /Ot e_(t_s)Aw[P(u -V)u](s)ds, t > 0.
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Using Lemma 3.1, Theorem 1.1, the result of Step 1, (3.20) and (3.21), we
have for ¢t > 0

(3.22)

t
] 20
)z qee) < e~ all s e + / e 8% [P (s )] (3)]| 1 ey s
0
t
< Cllall i) + C / 1P[(u - V)u)(3)]] 1 oy ds
t
< Cllal| g1 ge) +c/ ()| 2 (g2 || V2u(5) | p2 reyds
0

t
< Cllall o ey + c/ (145)Hds < C.
0
It follows from Theorem 1.1 and (3.22) that for 1 <r <2 and ¢t >0

2_1 2_2 _le_1
(323)  ul®)llzme) < )55 ey lu(t) [3adeey < €1+ 5707,

By (3.18), (3.22) and (3.23), we complete the proof of Step 2.
Step 3. Let 6 > % Then there exists a tg > 0 such that for ¢ > tg,

w(t)|| ey < 8, || Vu(t) || prgey < Ct 2973078 1 <r < o0,
(R?) (R2)

From Lemma 3.1, Theorem 1.1, the result of Step 1 and (3.20), we conclude
fort >0

(3.24)

t
_ 206 —(t—s 20
[u(t)l| Lo @2y < e a||L°°(R2)+/O le™ AP (- V)ul(s)| oo m2) ds
%
< Ct7#al| i gey + C / (t = 5) "0 [|P[(u- V)ul(s)|| 1 (g2 ds
0

+ CL (t — )" 20| P[(u- V)u](s)||p2(re)ds

o+

2
<0t b 0rd [ o)z 969 onds
0
t
€ [ (= 5 (o)) | Tl sy
2
1 1 o 3
< Ct75+0t75/ (1+s) 26ds
0
1 t 1 1 1
—I-Csup[s?Hu(s)HLoo(Rz)]/ (t—s) s ¥ (1+5) Hds

o> L t
6>§ 2

< Ct™7 + Co sup[s7 ||u(s) | poo (ma) 1720 (1 + 1) 77,

t
S>§
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where 1 — % > 0 for 6 > %, and Cy is independent of ¢, u.
The estimate (3.24) implies for any ¢ > 0

(3.25) £ [|u(t)]| Lo (z2) < C + Cot' ™% sup[s?[[u(s)| L (r2)].
s>%

It follows from (3.25) that for any ¢ > to (determined later)
1 -3 1
£ [u(t) | e ry < C + Coty™ P sup [ Ju(s) | ez
s>t§
Furthermore,
1 1-3 1
(3.26) tsutp[te lu(t)||Loo(r2)] < C 4+ Coty sup (59 [|lu(s) || Loo (r2)]-
0 s>
On the other hand, from (3.25), we have for %0 <t <ty
1 3 _1,1-2 1
£ u®ll o mz) < C + Co2B 10 sup b Ju(s) o ),
s>70
from which,
1 3 _1,1-2 1
(327)  sup [t [u(t)l1mqee)] < C -+ Co23 71457 sup [s9 u(s) = o) -
to>t>0 s>H
Combining (3.26) and (3.27), we conclude
1 3 _ 1—3 1
(3.28) sup [¢7[|u(t) | oo (r2)] < 2C+Co(14220 )ty 2 sup [s7|u(s)|| Lo z2)).

>4 5>

Take to > 1 in (3.28), such that Cy(1 +22%’1)t(1)7% <
(3.28) that

%. Then it follows from

sup [t7 [|u(t)|| e r2y) < 4C,
t>10

which implies that for any ¢t > ¢
_1
lut)|| Lo r2y < Ct™ 7.
Similar to the proof of (3.24), we have for t > 0

t
) 0
IVu(®)|| 2 g2y < [|Ve ™ al| 11 z2) +/ Ve N [P V)ul(s)]| 11 (z2)ds
0

t
< O allaqae) + C [ (=9 7H Pl V)ad(s)uxends

2
Lot / ()] 2 gy [ V3) | 2y s

|~

IN

Ct =

|

¢
+ C sup [Hu(s)”Lz(Rz)||Vu(s)||L2(R2)][ (t—s)"20ds

L<s<t :
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< Ot +Ct—%/ (145) %ds+C(t+1) 2t "2
0

Let 1 < r < co. Then for t > 2t
[Vu®)| L 2)

t
< Ve ™ al| L @2y + / Ve 92 [P(u- V)u] (5)| e gy ds
0

1

. 3
< Ctma 107D al| ey + C / (t =)0 00| Pl(u- V)u](s)]| 1 se)ds
0

t

+C [ (t— )72 || Pl(u- V)ul(s)| 1 (r2)ds

—

ol

t

< Ct-%-%“-%um-%-%(l-%)/ [u(8) || 22 g2y [ Veu(s)|| L2 2y ds
0
t
_ 1
e / (= )73 [fus) | o o [ V() | o s
2
<orH 0D Lo d 0D [T das
0
t
+C sup[s2e+5(1=7) |vu(s)||LT(R2)]f%*%<1*%>/ (t—s)"2ds
>4 t
<Otz s1-9) 4 Csup[sTlﬁ'%(l_%)||Vu(s)||LT(R2)]t1_2%_%_%(1_%).
s>%

Similar to the proof of (3.28), we get for ¢ > t; > 2t

1 -3 1 1

sup [t20°5 070 [ Vu(t)]| 2] < O+ Crty 2 sup [s3075 02| Vu(s) | ez ).

> s>
3

Whence there exists t1 > 2ty such that Clt} 20 < %, and then

IVu(t) | ey < Ct 2070700 vt > ¢y
Step 4. u € L2 (0,00, H*Y(R?)), dyu, Vp € L}, (0,00, L*(R?)).
Note that the solution u = (u1, us) satisfies the following Biot-Savart formula
1zt
N vAR -1, _
where V4t = (0, —01), 2+ = (22, —71), w = Oouy — Oruy, * denotes the

convolution operator.
Using Fourier transform property, we have
1 zt

~amfaf

u(§) (©)w (&)
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Whence
Aru() = [¢"a(¢) = 5 - @IEPa(E) = 5 (OA(E).
From which,
o 1 at 9
ANu= o Tl * (Aw).

By means of Calderon-Zygmund inequality (see [18]), we get

T T
/0 ||VA9u(s)||2LT(R2)ds < C/o ||A9w(s)\|%r(R2)ds, 1<r<oo.

In particular,

T T
(3.20) / IV A%u(3)| |2 oy ds < C / 1A%w(5) 2 g ds
< Cllw(0)I72 g2y < ClIValZ2(re)-

Using the Sobolev imbedding theorem: H'T?(R2) < C%(R?) for every 0 < 6 <
1, together with (3.29), we find for each 0 < T < 00

(3.30)

T T
/0 () 2.0 sy 5 < € / () 2o gy 9

T
e / (11(5) |2 gy 5 + [V A?0(5) |22 g,
< C(Tl|al2 @ + IValZ @) < CO+T) a3 g,

Furthermore,
(3.31)

T 1, T 1
1 Vs < ([ 16 uayds) ([ 190 aqray)
< C(1+VT)|all3 g2)-
Note that the pressure p of (1.1) satisfies
—Ap = div((u- V)u).

T

Combining (3.31), we get

T T
(3.32) / ||Vp(s)||L2(R2)d8 < C/ I (w - V)UHLZ(Rz)dS
0 0

< C(L+VT)lal} @2)-
Whence, from (3.30)-(3.32), we conclude

T
[ 1000 s ey
0
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IN

T
/0 (A% u(®)l| 2 ey + [1(w - V)ullz2e) + (VD) | 22 (r2) )t

A

T
_CAHW%WWMWW+CU+JWW@WQ

T
SOA 1L+ €Y ey de + C(1+ V)l 2 g,

T
< C/ ||u(t)||H1+0(R2)dt+C(1+\/T)||GH%_II(R2).
0

From the above arguments in Step 1 to Step 4, through a standard weak
convergence and compact argument on the approximate solution v = u,,, we
complete the proof of Theorem 1.2. O

Now we give the proof of the uniqueness of solutions of (1.1) by using Sobolev
inequality, interpolation inequality and Gronwall inequality.

Proof of Theorem 1.5. Let u € L>(0,00; HY(R?)) N L2, (0, 00; H'T9(R?)) be
the solution of (1.1), which is given in Theorem 1.2. Assume

v € L*=(0, 00; L*(R?)) N L},.(0, 00; HY(R?))

is another solution of (1.1) with the same initial data a. Set w = v — u. Then
w satisfies in the sense of distributions

Orw + A w + (w - Vw4 (u - V)w + (w - V)u+ Vr =0, w(0) = 0.

In the above equations on the weak solution w, taking u as the cut-off
function. Then for every t > 0

t t
(3.33) [lw(t)l|72 (@) + 2/0 [A%w(s)|7 2 g2 ) ds +/O /R (w - V)u - wdzds = 0.
Using Sobolev inequality and interpolation inequality, we have for % <f<1

(3.34) £l arey < ||fHL2(R2)Hf”L1 5 &)

2-1 11
< Ol I IN ks ¥ € HO(RD).
It has been verified that the solution u obtained in Theorem 1.2 satisfies
sup HVU(t)HLz(Rz) S ||VCLHL2(R2).
>0

Using (3.34) yields for ¢t > 0
(3.35)

t
‘/ / w - V)u - wdzxds| < sup||Vu(5)||Lz(R2)/ ||w(s)||2L4(Rz)ds
RZ

2(1-1
||Va||L2(1R2)/ [lw(s ||L2 Rz) ||A0 ()”ng(Rz))ds

IN
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t t
< /0 ||A9w(s)||2d5+0/0 Hw(s)”%z(Rg)ds.

Inserting (3.35) into (3.33) yields for ¢ > 0

t
()2 ey < C / e (3)]12 g .

Note that w(0) = 0. Using the Gronwall inequality yields w(t) = 0. That is,
U= 0. O

Appendix

In this section, by using Galerkin method, weak and compact convergence
theorems, we establish the global existence of weak solutions to problem (1.1).

Proposition A. Let a € L2(R™) (n > 2) and 0 < @ < 1. Then problem (1.1)
admits a weak solution.
Proof. We prove Proposition A in four steps.

Step 1. Existence of approximate solutions.

Since HY(R™) is separable and Cg% (R™) is dense in HZ(R™), a sequence of
elements ey, €z,...,€m,... can be selected in C§%, (R™), which is free, linearly
independent and complete in H?(R™).

For each integer m, and every 0 < T} < oo, define the approximate solution
U, of (1.1) as follows:

(A1) Uy, = Zgim(t)ei, t € (0,T1),
i=1

where u,, satisfies for j =1,2,...,
(A.2) (U () €5) + (A%um (), A%;) + b(um (t), um(t), ¢5) = 0,

where (-, -) denotes the inner product of L?(IR™); the trilinear form of b is defined

as follows:
b(u,v,e) = — Z / U VO eedx.

k=1
The initial condition is given as follows:

(A3) Um(o) = Qm,

where a,, is the orthogonal projection in L2(R™) of a onto the space spanned
by e1,es,...,¢en. That is,
a = Gm + aﬁl,

N 1
am € span {e1,ea,...,em 2, a,, € span {e1,ea,...,em 12

This implies ||am| z2@®n) < ||al|L2@n) and lim ||am — al|p2@n) = 0.
m—o0
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The equations (A.2) form a nonlinear differential system for the functions

9im;y - -5 Gmm'
(A4) Z(euej)g:m(t) + Z(AeehAGej)ginL(t)
=1 =1
+ Z b(eisee,€)gim(t)gem(t) =0, j=1,2,....m
i=1
Set
A:((ei,ej))me, D:((AGGhAeej))me, Bj:(b(ei,eg,ej))me7 IS S
Bl glnL(t) G;(t) ( )
B g2m (t) G (t) G(t)
B=| |, aw=|"" , GT(H)BG(1) = ,
By, Imm(t)/ s GT(t)BnG(1)]

where GT'(t) denotes the transpose of G(t):

GT(t) = (glm(t)792m(t)a s 7gmm(t))
Then (A.4) can be written as follows:
AG'(t) + DG(t) + GT (t)BG(t) =

Now we show the matrix A is positive, that is, A > 0. In fact, for any X =

(.’E17.’172,. .. wrm)T 7& 07 Y = (y17y27 cee 7ym)T 7é 0. Set o = ZZ;l Trek, 6 =
> oreq yrer. Then a = B if and only if X =Y due to the linear independence
of ey, ea,...,€em. Moreover, a # 0 for X # 0. Additionally,

m m
B) = (Z xkek,Zyje] Z zry;(er, ) = XTAY.

k=1 j=1 k,j=1
In particular,

XTAX = (a,a) >0 forany X #0,
which implies A > 0.

Inverting the nonsingular matrix A, we write the above differential system

in the usual form

(A.5) G'(t)+ AT'DG(t) + A"'GT()BG(t) =0, t€[0,T1].

On the other hand, it follows from (A.1) and (A.3) that a,, = > gim(0)e;,
which implies for j =1,2,..

(a, 6]) (amvej)"_(a#z’ej) am>€J Zgzm el7e] Zgzm ewe]

Whence the initial condition for the nonhnear differential system (A.5) is given
as follows:

(A.6) G0) =¢
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where €= (C1m, Coms - - - > Cmm) L, and (Cim, C2m, - - - » Cmm) is the unique root of
the following linear algebraic system:

Z)\ ei,ej) =(a,e5), j=12,....m

ODE theory tells us that problem (A.5), (A.6) admits a unique solution G €

C[0,tn] N CY0, ), where t,, is the maximum survival time for the existence

of solution G(t), that is, t,, = sup{t; sup |G(s)| < oco}. Since A > 0, there
0<s<t

exist d, > 0, k = 1,2,...,m, and an m x m orthogonal matrix Q: Q7Q =
QQT = IL,,xm, such that
d 0 0
0 do 0
A=Q" . Q
0 0 dm

Note that

Hum ”L2 R™) Z gzm g]m ezaej)

i,j=1

di 0 0
0 dy --- 0

—awTAGH =lewI" | . T . QG
0 0 d,

= di[QG(t)] Z[QG( I}

k=1 =1

= do[QG(1)]"[QG(D)] = do Y _[gr ()],
k=1

where dy = min{dy,ds,...,dn} > 0.
Combining with the a priori estimate obtained in Step 2: |[upm (t)||z2@n) <
llallz2®n), we conclude that

m

: 2 —1y,112

tl_lftr}n Z[Qk(t)] <d, ||a’||L2(]R”)7
k=1

which implies ¢, = T7. For the simplicity of writing, in the next arguments,

we replace 17 by T
Step 2. The approximate energy equality.

Multiplying (A.2) by g;m (t) and add these equations for j = 1,...,m, we
get

d
(A7) %Hum(t)”%%]]{") + 2/ A% (£)]| 72 gy = O
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Integrating (A.7) from 0 to ¢ yields

t
[t ()17 2 ey +2/0 1A%t (5)[1 72y 45 < llaml|72(gny < llallF2gny-

From the above estimate, we obtain

T

(A.8) sup ||Um(t)||2L2(Rn) + 2/ HAHUM(S)HQL?(R")dS < ||a||2L2(R")'
0<t<T 0

Step 3. Estimate of fractional derivatives.

Suppose i, is a function from R to H?(R™), which is equal to u,, on [0, 7],
and 0 outside of [0,7]. The Fourier transform on ¢ of 4, is denoted by .
Namely,

A~ +m .
U (2, 1) :/ e iy, (z, 8)ds.

Now we prove that there exists a number v > 0 such that

+oo
(A.9) /_ 72 o (7)ot < C

o0

In order to prove (A.9), we note that (A.2) can be written as

(A]'O) i(amﬂej) = <f~mvej> + (amaej)(so - (um(T)aej)dTa .7 = 1327 ceey

dt
where g, d7 denote Dirac functions at 0 and 7T, respectively, and
fm = _Azeum - (um : V)Um,
(A.11) P = fm on [0, T7,
™71 0  outside of [0,77.

Applying the Fourier transform to both sides of (A.10) yields for 7 > 0
(A.12) iT(&mv ej) = <fma ej) + (am, €;) — (um(T), e;) exp(—iT'T),
where fm denotes the Fourier transforms of f,,,.

Set

~ | gjm on [0, 77,
9im =90 outside of [0,T].

Multiply §jm(the Fourier transform of §;,,), and sum on j from 1 to m, in both
sides of (A.12). We have for 7 > 0

(A13) il (7132 = (Fon (1), ian (7)) + (@, i (7)) = (i (T), i (7)) exp(~iT'7).
It follows from (A.8) that for 7 >0

||Um(0)||L2(1Rn) + ||um(T)HL2(R") < 2HOL||L2(Rn),
and

(A.14) (@, g (7)) = (U (T, U (7)) exp(—iT'T)|
<l (0) ] 2@y + ot (T 22 (i) [ (7) ] 2
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< 2|lall 2@ i (7) | L2 ) -

Since V - u,, = 0, and then for 7 > 0

/n[(um VU, - U (2, T)dz = 0.
Whence,
(A.15) Fon()s (7)) = A% (7) 22y 7> 0.

From (A.8), (A.13)-(A.15), we obtain

l ~
| 10} (0 i

— @m)! / 102 i (7)1 2 oy A7

= @0 [ el (D)

< @ [ 1A (e + 2020 alliaen) [ (7)o
= [ im0l d7+\f lallzzeoy | lim(D)lzagad
- / |A9u,,z<f>||iQ<Rn>dr+\fwnanmw) [ ey
2 2
< (14742l gny-

1
Namely, 07 @,, € L?(R*, L>(R™)). Moreover,

1 / 2
(A.16) ||87?umHL2(]R1’L2(]Rn)) <4/1 +T\/;|a||L2(Rn).

Step 4. Existence of weak solutions.

Using (A.8) and (A.16), together with the weak convergence theorem and the
compact embedding theory (see [19]), we infer that there exists a vector function
u € L>=(0,T; L2(R™)) N L?(0,T; HY(R™)), such that (selecting a subsequence
if necessary)

Uy — u weakly in L2(0,T; H(R")),
(A.17) Um — u weakly in L (0,T; L2(R")),
Uy, — u strongly in L2(0,T; LE . (R™)).
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Let ¢ € C§°[0,T), multiply both sides of (A.2) by ¢(¢), and integrate by
parts. This leads to the equation

(A1) = [ OO+ [ 00,60

T
+Abwmmwumqwmﬁ=wmqwm»
Recall the definition of b:

b(umaum, Z / / um i um k@ wydxdt

i,k=1

=— Z/ / U ) Oswidadt.

ik=1 uPp’wk

For simplicity, write e; = w for e; € G5, (R™) (j = 1,2,...). Then by (A.8),
we find

‘/T[bmm’“m’ww(t))dt— /T b(u, u, wqp(t))dt’
= ‘ Z/ / )i (Um )k Qiwip (t dxdt’

i,k=1
+‘ Z/ /ul U, — U)Ojwih(t dxdt‘
i,k=1

n
< Jum —U||L2(0,T;L2(Q))||Um||L2(o,T;L2(Rn))||¢||C([0,T]) Z ||6iwk||C(lR")
i,k=1

=+ ||Um - UHLQ(O,T;L%Q))||U||L2(0,T;L2(Rn))||¢HC([0,T]) Z ”aiwkHC(]R")
ik=1
1
<272 ||al| L2 ey l|um — ull 20,7522 ) 19 o, I VWl o @ny,

where ) = supp w is a compact set in R™.
Whence, using (A.17), we conclude for each e; € C5%,(R"), ¥ € C§°[0,T')

T T
(A.19) W}E}noo ; b (t), um (1), e59(t))dt :/0 bu(t), u(t), e (t))dt
Applying (A.17), (A.19) to (A.18) yields as m — oo
- ' u(t), vy’ ' fu Oy
(A.20) | @i [ atun.voar

T
+/zmmwmwwmw:wwmm
0
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where v = €1, e, .. .; by linearity this equation (A.20) holds for v = any finite
linear combination of e;, and by a continuity argument, (A.20) is still true for
any v € C5%, (R™).

In particular, taking ¢ € C§°(0,7T) in (A.20), we find u satisfies in the sense
of distribution:

d
(A2) 5 (u(t),v) + (A%u(t), A%) + b(u(t), u(t), v) = 0, Vv € OG5, (RY)
Note that u € L*(0,T; L2(R")), A°u € L%(R™ x (0,T)). This yields for each
v E Ogj,(R”)
|(A%u(t), A%)] < [|A%u(t)]| L2y [IA%0]| L2y € L2(0,T),
and
plutt)ule) o)l =| = 3 [ wwdods

ik=1

n

< Z 1050 [l ¢ (rm)

i,k=1
Together with (A.21), we conclude

u(t)|[f2 @y € L0, 7).

d (u(t),v) € L*(0,T) for every v € C5%, (R™).

dt
Since |(u(t),v)| < [lu(t)||L2®n)llv]|L2@®n) € L*(0,T), we conclude
(A.22) (u(t),v) € WH2(0,T) < C3([0,T]), Vo € C& (R™).

Multiplying the both sides of (A.21) by ¢ € C§°[0,T), and integrating by parts,
we get

T T
(A.23) — /O (u(t), vy (t))dt + /0 (A%u(t), (t)A%v)dt

[ bt a0, vo0)a = w0),000).
Combining (A.20) and (A.23), we conclude
(u(0) — a,v)p(0) =0, Vi € C5°([0,7)).
Take ¢ in C§°[0,T'), such that 1(0) # 0. Then
(u(0) —a,v) =0, Vv e C5, (R").

Since u(0), a € L2(R"), we infer u(0) = a a.e. in R™.
It follows from (A.8) and (A.17) that for each t > 0

() Z2@ny < Hm|fum ()72 @ny < Tt (@172 @) < llalZzgn)-

Whence,

lallZa ey = w0z < %IIU(t)Iliz(m < i u(®) |22 n) < llalliz en),
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and then
(A:24) tim [[u() |2 er) = llall ).

On the other hand, it follows from (A.22) that u is weakly continuous from
[0,00) into L?(R™). Together with (A.24), we conclude that u(t) — a in L? as
t—0. g
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