• Title/Summary/Keyword: spectral mapping theorem

Search Result 10, Processing Time 0.018 seconds

A Note on the Spectral Mapping Theorem

  • Jung, Il Bong;Ko, Eungil;Pearcy, Carl
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.77-79
    • /
    • 2007
  • In this note we point out how a theorem of Gamelin and Garnett from function theory can be used to establish a spectral mapping theorem for an arbitrary contraction and an associated class of $H^{\infty}$-functions.

  • PDF

An alleviant technique for solving III-Conditioned Linear Systems Using Spectral Adaptive Mapping (스펙트럼 적응 사상을 이용한 선형시스템의 불량조건 완화기법)

  • Chun, Jae-Woong;Cho, Ki-Seon;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.110-112
    • /
    • 2003
  • This paper presents an alleviant technique for solving ill-conditioned linear systems using spectral adaptive mapping, which is based on spectral mapping theorem. The conventional approaches to solve the ill-conditioned linear systems are divided into reformulation and alleviant technique. So far, the alleviant technique is evaluated the most effective one. In this paper, an adaptive mapping of spectrum is adopted to alleviate the condition number of ill-conditioned linear systems. A shift constant, which is a dominant factor of the spectral adaptive mapping that are proposed, is assessed by the system spectrum. The proposed spectral adaptive mapping technique is tested to demonstrated the validation on several size Hilbert matrices and small scale power systems, which are provide the promising results.

  • PDF

Spectral mapping theorem and Weyl's theorem

  • Yang, Young-Oh;Lee, Jin-A
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.657-663
    • /
    • 1996
  • In this paper we give some conditions under which the Weyl spectrum of an operator satisfies the spectral mapping theorem for analytic functions. Also we show that Weyl's theorem holds for p(T) where T is an operator of M-power class (N) and p is a polynomial on a neighborhood of $\sigam(T)$. Finally we answer an old question of Oberai.

  • PDF

THE SPECTRAL CONTINUITY OF ESSENTIALLY HYPONORMAL OPERATORS

  • Kim, An-Hyun;Ryu, Eun-Jin
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.401-408
    • /
    • 2014
  • If A is a unital Banach algebra, then the spectrum can be viewed as a function ${\sigma}$ : 𝕬 ${\rightarrow}$ 𝕾, mapping each T ${\in}$ 𝕬 to its spectrum ${\sigma}(T)$, where 𝕾 is the set, equipped with the Hausdorff metric, of all compact subsets of $\mathbb{C}$. This paper is concerned with the continuity of the spectrum ${\sigma}$ via Browder's theorem. It is shown that ${\sigma}$ is continuous when ${\sigma}$ is restricted to the set of essentially hyponormal operators for which Browder's theorem holds, that is, the Weyl spectrum and the Browder spectrum coincide.

ON THE CLOSURE OF DOMINANT OPERATORS

  • Yang, Young-Oh
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.481-487
    • /
    • 1998
  • Let (equation omitted) denote the closure of the set (equation omitted) of dominant operators in the norm topology. We show that the Weyl spectrum of an operator T $\in$ (equation omitted) satisfies the spectral mapping theorem for analytic functions, which is an extension of [5, Theorem 1]. Also we show that an operator approximately equivalent to an operator of class (equation omitted) is of class (equation omitted).

  • PDF

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

WEYL'S TYPE THEOREMS FOR ALGEBRAICALLY (p, k)-QUASIHYPONORMAL OPERATORS

  • Rashid, Mohammad Hussein Mohammad;Noorani, Mohd Salmi Mohd
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.77-95
    • /
    • 2012
  • For a bounded linear operator T we prove the following assertions: (a) If T is algebraically (p, k)-quasihyponormal, then T is a-isoloid, polaroid, reguloid and a-polaroid. (b) If $T^*$ is algebraically (p, k)-quasihyponormal, then a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$, where $Hol({\sigma}(T))$ is the space of all functions that analytic in an open neighborhoods of ${\sigma}(T)$ of T. (c) If $T^*$ is algebraically (p, k)-quasihyponormal, then generalized a-Weyl's theorem holds for f(T) for every $f{\in}Hol({\sigma}T))$. (d) If T is a (p, k)-quasihyponormal operator, then the spectral mapping theorem holds for semi-B-essential approximate point spectrum $\sigma_{SBF_+^-}(T)$, and for left Drazin spectrum ${\sigma}_{lD}(T)$ for every $f{\in}Hol({\sigma}T))$.

CONTINUITY OF JORDAN *-HOMOMORPHISMS OF BANACH *-ALGEBRAS

  • Draghia, Dumitru D.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.187-191
    • /
    • 1993
  • In this note we prove the following result: Let A be a complex Banach *-algebra with continuous involution and let B be an $A^{*}$-algebra./T(A) = B. Then T is continuous (Theorem 2). From above theorem some others results of special interest and some well-known results follow. (Corollaries 3,4,5,6 and 7). We close this note with some generalizations and some remarks (Theorems 8.9.10 and question). Throughout this note we consider only complex algebras. Let A and B be complex algebras. A linear mapping T from A into B is called jordan homomorphism if T( $x^{1}$) = (Tx)$^{2}$ for all x in A. A linear mapping T : A .rarw. B is called spectrally-contractive mapping if .rho.(Tx).leq..rho.(x) for all x in A, where .rho.(x) denotes spectral radius of element x. Any homomorphism algebra is a spectrally-contractive mapping. If A and B are *-algebras, then a homomorphism T : A.rarw.B is called *-homomorphism if (Th)$^{*}$=Th for all self-adjoint element h in A. Recall that a Banach *-algebras is a complex Banach algebra with an involution *. An $A^{*}$-algebra A is a Banach *-algebra having anauxiliary norm vertical bar . vertical bar which satisfies $B^{*}$-condition vertical bar $x^{*}$x vertical bar = vertical bar x vertical ba $r^{2}$(x in A). A Banach *-algebra whose norm is an algebra $B^{*}$-norm is called $B^{*}$-algebra. The *-semi-simple Banach *-algebras and the semi-simple hermitian Banach *-algebras are $A^{*}$-algebras. Also, $A^{*}$-algebras include $B^{*}$-algebras ( $C^{*}$-algebras). Recall that a semi-prime algebra is an algebra without nilpotents two-sided ideals non-zero. The class of semi-prime algebras includes the class of semi-prime algebras and the class of prime algebras. For all concepts and basic facts about Banach algebras we refer to [2] and [8].].er to [2] and [8].].

  • PDF

ON WEIGHTED WEYL SPECTRUM, II

  • Arora Subhash Chander;Dharmarha Preeti
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.715-722
    • /
    • 2006
  • In this paper, we show that if T is a hyponormal operator on a non-separable Hilbert space H, then $Re\;{\omega}^0_{\alpha}(T)\;{\subset}\;{\omega}^0_{\alpha}(Re\;T)$, where ${\omega}^0_{\alpha}(T)$ is the weighted Weyl spectrum of weight a with ${\alpha}\;with\;{\aleph}_0{\leq}{\alpha}{\leq}h:=dim\;H$. We also give some conditions under which the product of two ${\alpha}-Weyl$ operators is ${\alpha}-Weyl$ and its converse implication holds, too. Finally, we show that the weighted Weyl spectrum of a hyponormal operator satisfies the spectral mapping theorem for analytic functions under certain conditions.