ON THE CLOSURE OF DOMINANT OPERATORS

YOUNGOH YANG

ABSTRACT. Let \mathfrak{D}^- denote the closure of the set \mathfrak{D} of dominant operators in the norm topology. We show that the Weyl spectrum of an operator $T \in \mathfrak{D}^-$ satisfies the spectral mapping theorem for analytic functions, which is an extension of [5, Theorem 1]. Also we show that an operator approximately equivalent to an operator of class \mathfrak{D}^- is of class \mathfrak{D}^- .

1. Introduction

Throughout this paper H will denote an infinite dimensional Hilbert space and B(H) the space of all bounded linear operators on H. If $T \in B(H)$, we write $\sigma(T)$ for the spectrum of T. An operator $T \in B(H)$ is said to be Fredholm if its range ran T is closed and both the null spaces ker T and ker T^* are finite dimensional. $T \in B(H)$ is said to be semi-Fredholm if its range ran T is closed and either ker T or ker T^* is finite dimensional. The index of a semi-Fredholm operator T, denoted by i(T), is defined by

$$i(T) = \dim \ker T - \dim \ker T^*$$
.

The essential spectrum of T, denoted by $\sigma_e(T)$, is defined by

$$\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Fredholm} \}.$$

A Fredholm operator of index zero is called Weyl. The Weyl spectrum of T, denoted by $\omega(T)$, is defined by

$$\omega(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl}\}.$$

Received August 30, 1997. Revised April 6, 1998.

¹⁹⁹¹ Mathematics Subject Classification: 47A10, 47A53, 47B20.

Key words and phrases: Fredholm, Weyl, dominant, approximately equivalent.

It was shown ([1]) that w(T) is a nonempty compact subset of $\sigma(T)$, and that $\omega(T)$ satisfies the one-way spectral mapping theorem for analytic functions: if f is analytic on a neighborhood of $\sigma(T)$ then

(1)
$$\omega(f(T)) \subseteq f(\omega(T)).$$

The inclusion (1) may be proper(see [1, Example 3.3]). If T is normal then $\sigma_e(T)$ and $\omega(T)$ coincide. Thus if T is normal since f(T) is also normal, it follows that $\omega(T)$ satisfies the spectral mapping theorem for analytic functions. W. Y. Lee and S. H. Lee ([5]) showed that the Weyl spectrum of a hyponormal operator satisfies the spectral mapping theorem for analytic functions.

An operator $T \in B(H)$ is said to be dominant if for every $z \in \sigma(T)$ there exists $M_z > 0$ such that

(2)
$$(T-z)(T-z)^* \le M_z(T-z)^*(T-z)$$

In this case, if $\sup_{z \in \sigma(T)} M_z = M < \infty$, T is said to be M-hyponormal. If M = 1, T is hyponormal. Evidently,

T is hyponormal $\Longrightarrow T$ is M-hyponormal $\Longrightarrow T$ is dominant.

Let \mathfrak{D} denote the class of dominant operators in B(H) and \mathfrak{D}^- denote the closure of \mathfrak{D} in the norm topology. First note that $\mathfrak{D} \neq \mathfrak{D}^-$ (unlike the classes of normal or hyponormal operators). For example, let $\{e_j\}_{j=1}^{\infty}$ be an orthonormal basis for H. Define $T_n \in B(H)$ as follows

$$T_n e_j = n^{(1-j)} e_{j+1}$$
 for $j, n = 1, 2, \cdots$.

It is easy to see that each $T_n \in \mathfrak{D}$, since each one is quasi-nilpotent. Note that $T_n \to T$ in norm where

(3)
$$Te_{j} = \begin{cases} e_{j+1} & \text{for } j = 1\\ 0 & \text{for } j \neq 1 \end{cases}$$

and T is certainly not in \mathfrak{D} [8]. We also note that T is not Fredholm since ker T and ker T^* are infinite dimensional.

In this paper we show that the Weyl spectrum of an operator $T \in \mathfrak{D}^-$ satisfies the spectral mapping theorem for analytic functions, which is an improvement of [5, Theorem 1]. Also we show that an operator approximately equivalent to an operator of class \mathfrak{D}^- is of class \mathfrak{D}^- .

2. Spectral mapping theorem

The operator T in (3) is in \mathfrak{D}^- and $\ker T \nsubseteq \ker T^*$. Also $\mathfrak{D}^- \neq B(H)$, as can be seen by the following result.

LEMMA 2.1. ([8]) If T is Fredholm and in \mathfrak{D}^- , then $i(T) \leq 0$.

PROOF. First assume that S is Fredholm and $S \in \mathfrak{D}$. Since ran $S \subseteq \text{ran } S^*$, it follows that ker $S^* \supseteq \text{ker } S$ and thus $i(S) \le 0$. Now let $T \in \mathfrak{D}^-$ be Fredholm. For ||T - S|| sufficiently small, S is Fredholm and i(S) = i(T), which completes the proof.

REMARK. It is possible for the product of non-Weyl operators to be Weyl. For example, consider the unilateral shift U on l_2 . Then U and U^* are Fredholm operators of index -1 and 1 respectively and so U and U^* are not Weyl operators. But UU^* is Fredholm and $i(UU^*) = i(U) + i(U^*) = -1 + 1 = 0$ by the index product theorem. Thus UU^* is Weyl.

THEOREM 2.2. Let S and T be operators in B(H). Suppose the indices of S and T are either both nonnegative or both nonpositive. Then

$$(4) S,T Weyl \iff ST Weyl.$$

PROOF. If S, T are Weyl, then S, T are Fredholm and i(S) = i(T) = 0. By [2], ST is Fredholm and by the index product theorem, i(ST) = i(S) + i(T) = 0. Hence ST is Weyl.

Conversely, suppose that ST is Weyl and each index is nonpositive. Then ST is Fredholm and i(ST)=0. Since $\ker S^*\subseteq \ker(ST)^*$ and $i(S)\le 0$, $\dim \ker S\le \dim \ker S^*\le \dim \ker(ST)^*<\infty$, and so $\ker S$ and $\ker S^*$ are finite dimensional. Also ran S is closed. Thus S is Fredholm. By [7, Theorem 5.3.5], S and T are Fredholm. Since each index is nonpositive and $0=i(ST)=i(S)+i(T),\ i(S)=i(T)=0$. Hence S and T are Weyl.

Suppose that ST is Weyl and each index is nonnegative. By the similar argument, S and T are Weyl.

From Lemma 2.1 and Theorem 2.2, we have the following result.

COROLLARY 2.3. If S and T are operators in \mathfrak{D}^- , then

$$S, T$$
 Weyl \iff ST Weyl.

The following result is an improvement of [5, Theorem 1], since Theorem 1 in [5] holds even though the "commuting" condition is dropped.

COROLLARY 2.4. If S and T are hyponormal operators, then

$$S, T$$
 Weyl \iff ST Weyl.

The following theorem is an improvement of [5, Theorem 1].

THEOREM 2.5. If T is in \mathfrak{D}^- and f is analytic on a neighborhood of $\sigma(T)$, then $\omega(f(T)) = f(\omega(T))$.

PROOF. Suppose that p is any polynomial. Let

$$p(T) - \lambda I = a_0(T - \mu_1 I) \cdots (T - \mu_n I).$$

Since T is an operator in \mathfrak{D}^- , $T - \mu_i I$ are commuting operators in \mathfrak{D}^- for each $i = 1, 2, \dots, n$. It thus follows from Corollary 2.3 that

$$\lambda \notin \omega(p(T)) \iff p(T) - \lambda I \text{ is Weyl}$$

$$\iff a_0(T - \mu_1 I) \cdots (T - \mu_n I) \text{ is Weyl}$$

$$\iff T - \mu_i I \text{ is Weyl for each } i = 1, 2, \cdots, n$$

$$\iff \mu_i \notin \omega(T) \text{ for each } i = 1, 2, \cdots, n$$

$$\iff \lambda \notin p(\omega(T))$$

which says that $\omega(p(T)) = p(\omega(T))$.

Next suppose r is any rational function with no poles in $\sigma(T)$. Write r = p/q, where p and q are polynomials and q has no zeros in $\sigma(T)$. Then

$$r(T) - \lambda I = (p - \lambda q)(T)(q(T))^{-1}.$$

By the first argument,

$$(p - \lambda q)(T)$$
 Weyl $\iff p - \lambda q$ has no zeros in $\omega(T)$.

Thus we have

$$\lambda \notin \omega(r(T)) \iff (p - \lambda q)(T) \text{ is Weyl}$$
 $\iff p - \lambda q \text{ has no zeros in } \omega(T)$
 $\iff ((p - \lambda q)(x))q(x)^{-1} \neq 0 \text{ for any } x \in \omega(T)$
 $\iff \lambda \notin r(\omega(T))$

which says that $\omega(r(T)) = r(\omega(T))$. If f is analytic on a neighborhood of $\sigma(T)$, then by Runge's theorem([2]), there is a sequence $\{r_n(t)\}$ of rational functions with no poles in $\sigma(T)$ such that $\{r_n\}$ converges to f uniformly on a neighborhood of $\sigma(T)$. Since each $r_n(T)$ commutes with f(T), by [8]

$$f(\omega(T)) = \lim r_n(\omega(T)) = \lim \omega(r_n(T)) = \omega(f(T)).$$

COROLLARY 2.6. If T is dominant and f is analytic on a neighborhood of $\sigma(T)$, then $\omega(f(T)) = f(\omega(T))$.

COROLLARY 2.7. ([5]) If T is hyponormal and f is analytic on a neighborhood of $\sigma(T)$, then $\omega(f(T)) = f(\omega(T))$.

DEFINITION 2.8. An operator $T \in B(H)$ is called *analytic* if there exists a nonzero analytic function f on an open neighborhood Ω of $\sigma(T)$ such that f(T) = 0.

As a natural extension of algebraicity, Halmos([3], Problem 97) introduced the concept of analyticity (only for a quasinilpotent operator). Evidently, we have

(5)
$$T$$
 is algebraic $\implies T$ is analytic.

However the converse of (5) is not true in general: for example, consider a Riesz operator whose spectrum is infinite.

Analyticity guarantees the existence of an isolated point of Weyl spectrum of $T \in \mathfrak{D}^-$.

THEOREM 2.9. If $T \in \mathfrak{D}^-$ is analytic, then $\omega(T)$ has an isolated point.

PROOF. Suppose that $T \in \mathfrak{D}^-$ is analytic. Then there exists a nonzero analytic function f on an open neighborhood Ω of $\sigma(T)$ such that f(T) = 0. By Theorem 2.5, $f(\omega(T)) = \omega(f(T)) = \omega(0) = \{0\}$, and so all values of $\omega(T)$ are zeros of f. Thus if all values of $\omega(T)$ are accumulation points of $\omega(T)$, then it follows from the Identity Theorem in the elementary complex analysis that $f \equiv 0$ on $\omega(T)$, which leads a contradiction.

LEMMA 2.10. An operator unitarily equivalent to a dominant operator is dominant.

PROOF. Suppose that $S = U^*TU$, T dominant and U unitary. Since T is dominant, for any $z \in \sigma(T)$ there exists a constant $M_z > 0$ such that $||(T-z)^*x|| \leq M_z||(T-z)x||$ for any $x \in H$. Since $\sigma(T) = \sigma(S)$ by [3, Problem 75], for any $x \in H$ and any $z \in \sigma(S)$,

$$||(S-z)^*x|| = ||U^*(T^* - \bar{z})Ux|| = ||(T^* - \bar{z})Ux||$$

$$\leq M_z||(T-z)Ux|| = M_z||U^*(T-z)Ux||$$

$$= M_z||(S-z)x||.$$

Thus $S = U^*TU$ is dominant.

Two operators S, T are said to be approximately equivalent if there exists a sequence $\{U_n\}$ of unitary operators such that $\|U_n^*TU_n - S\| \to 0$.

THEOREM 2.11. An operator approximately equivalent to an operator of class \mathfrak{D}^- is of class \mathfrak{D}^- .

PROOF. Suppose that $P = U^*QU$, where Q is of class \mathfrak{D}^- and U is unitary. Then there exists a sequence $\{Q_n\}$ of dominant operators such that $Q_n \to Q$. Let $P_n = U^*Q_nU$. Then by Lemma 2.10, P_n is dominant. Since $P = U^*QU = \lim U^*Q_nU = \lim P_n$, P is of class \mathfrak{D}^- .

Finally suppose that T is of class \mathfrak{D}^- and T is approximately equivalent to S. Then there exists a sequence $\{U_n\}$ of unitary operators such that $\|U_n^*TU_n - S\| \to 0$. By the first argument, $U_n^*TU_n \in \mathfrak{D}^-$ for each n. Since \mathfrak{D}^- is closed, $S \in \mathfrak{D}^-$.

COROLLARY 2.12. An operator unitarily equivalent to an operator of class \mathfrak{D}^- is of class \mathfrak{D}^- .

References

- [1] S. K. Berberian, The Weyl's spectrum of an operator, Indiana Univ. Math. J. 20 (1970), no. 6, 529-544.
- [2] J. B. Conway, The Theory of Subnormal Operators, Amer. Math. Soc., Providence, 1991.
- [3] P. R. Halmos, Hilbert Space Problem Book, Springer-Verlag, New York, 1984.
- [4] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988.
- [5] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1995), 61-64.
- [6] K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212.
- [7] M. Schechter, Principles of Functional Analysis, Academic press, Inc., New York, 1971.
- [8] J. G. Stampfli and B. L. Wadhwa, On dominant operators, Monatsh. Math. 84 (1977), 143-153.
- [9] B. L. Wadhwa, M-hyponormal operators, Duke Math. J. 41 (1974), no. 3, 655-660.

Department of Mathematics Cheju National University Cheju 690-756, Korea

E-mail: yangyo@cheju.cheju.ac.kr