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ON THE CLOSURE OF DOMINANT OPERATORS
YOUNGOH YANG

ABSTRACT. Let ©~ denote the closure of the set ® of dominant
operators in the norm topology. We show that the Weyl spectrum
of an operator T € D~ satisfies the spectral mapping theorem for
analytic functions, which is an extension of [5, Theorem 1]. Also we
show that an operator approximately equivalent to an operator of
class ©®~ is of class ©~.

1. Introduction

Throughout this paper H will denote an infinite dimensional Hilbert
space and B(H) the space of all bounded linear operators on H. If
T € B(H), we write o(T') for the spectrum of T. An operator T’ € B(H)
is said to be Fredholm if its range ran T is closed and both the null spaces
ker T and ker T* are finite dimensional. T € B(H) is said to be sem:-
Fredholm if its range ran T is closed and either ker T or ker T™ is finite
dimensional. The indez of a semi-Fredholm operator T, denoted by (T),
is defined by

i(T) = dimker T — dimker T*.

The essential spectrum of T, denoted by c.(T), is defined by

0e(T) = {\ € C: T — Al is not Fredholm}.

A Fredholm operator of index zero is called Weyl. The Weyl spectrum
of T, denoted by w(T), is defined by

w(T)={A e C: T — A is not Weyl}.
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It was shown ([1]) that w(T) is a nonempty compact subset of o(T’), and
that w(T) satisfies the one-way spectral mapping theorem for analytic
functions: if f is analytic on a neighborhood of o(T') then

(1) w(f(T)) € f(w(T)).

The inclusion (1) may be proper(see [1, Example 3.3]). If T is nor-
mal then o.(T) and w(T) coincide. Thus if T is normal since f(T) is
also normal, it follows that w(T’) satisfies the spectral mapping theorem
for analytic functions. W. Y. Lee and S. H. Lee ([5]) showed that the
Weyl spectrum of a hyponormal operator satisfies the spectral mapping
theorem for analytic functions.

An operator T € B(H) is said to be dominant if for every z € o(T)
there exists M, > 0 such that

(2) (T = 2)(T — 2)* < My(T = 2)*(T - 2)

In this case, if sup,¢, 7y M. = M < o0, T is said to be M —hyponormal.
If M =1, T is hyponormal. Evidently,

T is hyponormal = T is M —hyponormal => T is dominant.

Let © denote the class of dominant operators in B(H) and D~ denote
the closure of ® in the norm topology. First note that ® # D~ (unlike
the classes of normal or hyponormal operators). For example, let {e;}52,
be an orthonormal basis for H. Define T,, € B(H) as follows

The; = n(l_j)€j+1 for j,n=1,2,---.

It is easy to see that each T,, € ‘D, since each one is quasi-nilpotent.
Note that T, — T in norm where
ej41 forj=1

®) Tej:{o for j # 1

and T is certainly not in D [8]. We also note that T is not Fredholm
since ker T and ker T™ are infinite dimensional.

In this paper we show that the Weyl spectrum of an operator T' € ©~
satisfies the spectral mapping theorem for analytic functions, which is
an improvement of [5, Theorem 1]. Also we show that an operator
approximately equivalent to an operator of class ®~ is of class ©~.
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2. Spectral mapping theorem

The operator T in (3) is in ©~ and ker T € ker T*. Also ®~ # B(H),
as can be seen by the following result.

LEMMA 2.1. ([8]) If T is Fredholm and in ®~, then i(T) < 0.

PROOF. First assume that S is Fredholm and S € ©. Since ran S C
ran S*, it follows that ker S* D ker S and thus #(S) < 0. Now let
T € D~ be Fredholm. For ||T — S|| sufficiently small, S is Fredholm and
i(S) = #(T), which completes the proof. O

REMARK. It is possible for the product of non-Weyl operators to be
Weyl. For example, consider the unilateral shift U on l;. Then U and
U* are Fredholm operators of index —1 and 1 respectively and so U
and U* are not Weyl operators. But UU* is Fredholm and ¢(UU*) =
i(U) +i(U*) = =1 + 1 = 0 by the index product theorem. Thus UU* is
Weyl.

THEOREM 2.2. Let S and T be operators in B(H). Suppose the

indices of S and T are either both nonnegative or both nonpositive.
Then

(4) S, T Weyl <= ST Weyl

PRrROOF. If S, T are Weyl, then S, T are Fredholm and i(S) = i(T) =
0. By [2], ST is Fredholm and by the index product theorem, ¢(ST) =
i(S) + #(T) = 0. Hence ST is Weyl.

Conversely, suppose that ST is Weyl and each index is nonpositive.
Then ST is Fredholm and i(ST) = 0. Since ker S* C ker(ST)* and
#(S) < 0, dimker S < dimker S* < dimker(ST)* < oo, and so ker S
and ker S* are finite dimensional. Also ran S is closed. Thus S is
Fredholm. By [7, Theorem 5.3.5], S and T are Fredholm. Since each
index is nonpositive and 0 = #(ST) = ¢(S) + i(T), i(S) = «(T) = 0.
Hence S and T are Weyl.

Suppose that ST is Weyl and each index is nonnegative. By the
similar argument, S and T are Weyl. O

From Lemma 2.1 and Theorem 2.2, we have the following result.
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COROLLARY 2.3. IfS and T are operators in ®~, then
S, T Weyl < ST Weyl.

The following result is an improvement of [5, Theorem 1], since The-
orem 1 in [5] holds even though the “commuting ” condition is dropped.

COROLLARY 2.4. If S and T are hyponormal operators, then
S, T Weyl < ST Weyl

The following theorem is an improvement of [5, Theorem 1].

THEOREM 2.5. IfT is in ©~ and f is analytic on a neighborhood of
a(T), then w(f(T)) = f(w(T)).

PROOF. Suppose that p is any polynomial. Let
p(T) — Al = aO(T - /JqI) s (T - p,nI).

Since T is an operator in D7, T — p,;I are commuting operators in D~
for each ¢ =1,2,--- | n. It thus follows from Corollary 2.3 that

A ¢ w(p(T)) <> p(T) — M is Weyl
< ao(T — piI) - (T — pnI) is Weyl
&= T — p;I is Weyl foreach i =1,2,--- ,n
> pu; ¢ w(T) foreachi=1,2,---,n
<= A ¢ p(w(T))
which says that w(p(T)) = p(w(T)).

Next suppose r is any rational function with no poles in o(7"). Write
r = p/q, where p and g are polynomials and ¢ has no zeros in ¢(T). Then

r(T) = A = (p — Ag)(T)(g(T)) ™"
By the first argument,

(p — Aq)(T) Weyl <= p — Aq has no zeros in w(T).
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Thus we have
A ¢ w(r(T)) < (p— Aq)(T) is Weyl
<= p — Aq has no zeros in w(T)
<= ((p— M) (@))g(z)™" # 0 for any z € w(T)
= Aér(w(l)

which says that w(r(T)) = r(w(T)). If f is analytic on a neighborhood
of o(T), then by Runge’s theorem([2]), there is a sequence {r,(t)} of
rational functions with no poles in o(T) such that {r,} converges to f
uniformly on a neighborhood of ¢(T). Since each r,(7T") commutes with

£(T), by [8]
f() =limr,(w(T)) = limw(ra(T)) = w(f(T)). O

COROLLARY 2.6. If T is dominant and f is analytic on a neighbor-
hood of a(T), then w(f(T)) = f(w(T)).

COROLLARY 2.7. ([5]) If T is hyponormal and f is analytic on a
neighborhood of o(T), then w(f(T)) = f(w(T))-

DEFINITION 2.8. An operator T' € B(H) is called analytic if there

exists a nonzero analytic function f on an open neighborhood §2 of ¢(T")
such that f(T) = 0.

As a natural extension of algebraicity, Halmos([3], Problem 97) in-
troduced the concept of analyticity (only for a quasinilpotent operator).
Evidently, we have

(5) T is algebraic = T is analytic. ~

However the converse of (5) is not true in general: for example, consider
a Riesz operator whose spectrum is infinite.

Analyticity guarantees the existence of an isolated point of Weyl spec-
trumof T € ®~.

THEOREM 2.9. If T € ©~ is analytic, then w(T) has an isolated
point.
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PROOF. Suppose that T € ®~ is analytic. Then there exists a
nonzero analytic function f on an open neighborhood Q of o(T) such
that f(T) = 0. By Theorem 2.5, f(w(T)) = w(f(T)) = w(0) = {0},
and so all values of w(T') are zeros of f. Thus if all values of w(T') are
accumulation points of w(T'), then it follows from the Identity Theorem
in the elementary complex analysis that f = 0 on w(T), which leads a
contradiction. O

LEMMA 2.10. An operator unitarily equivalent to a dominant oper-
ator is dominant.

PROOF. Suppose that S = U*TU, T dominant and U unitary. Since
T is dominant, for any z € o(T) there exists a constant M, > 0 such
that ||(T — 2)*z|| < M,||(T - 2)z|| for any = € H. Since (T) = o(S) by
[3, Problem 75], for any z € H and any z € o(S),

I(S - 2)*ll = [U*(T* - HUs] = |(T" - 2)Ual|
< MJ|(T = 2)Us|| = M,[[U*(T - 2)Ua]|
= M,|(S - 2)al.

Thus S = U*TU is dominant. |

Two operators S, T are said to be approximately equivalent if there
exists a sequence {Uy,} of unitary operators such that |UxTU, -S| — 0.

THEOREM 2.11. An operator approximately equivalent to an opera-
tor of class ®~ is of class ©®~.

PROOF. Suppose that P = U*QU, where Q is of class ®~ and U is
unitary. Then there exists a sequence {Q,} of dominant operators such
that @, — Q. Let P, = U*Q,U. Then by Lemma 2.10, P, is dominant.
Since P = U*QU =1limU*Q,U = lim P,, P is of class ©~.

Finally suppose that T is of class ©~ and T is approximately equiva-
lent to S. Then there exists a sequence {U,} of unitary operators such
that (UrTU, — S|| — 0. By the first argument, U3TU,, € D~ for each
n. Since D~ is closed, S € D~. d

COROLLARY 2.12. An operator unitarily equivalent to an operator
of class ®~ is of class D .
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