Browse > Article
http://dx.doi.org/10.4134/BKMS.2006.43.4.715

ON WEIGHTED WEYL SPECTRUM, II  

Arora Subhash Chander (DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELHI)
Dharmarha Preeti (DEPARTMENT OF MATHEMATICS, HANS RAJ COLLEGE (UNIVERSITY OF DELHI))
Publication Information
Bulletin of the Korean Mathematical Society / v.43, no.4, 2006 , pp. 715-722 More about this Journal
Abstract
In this paper, we show that if T is a hyponormal operator on a non-separable Hilbert space H, then $Re\;{\omega}^0_{\alpha}(T)\;{\subset}\;{\omega}^0_{\alpha}(Re\;T)$, where ${\omega}^0_{\alpha}(T)$ is the weighted Weyl spectrum of weight a with ${\alpha}\;with\;{\aleph}_0{\leq}{\alpha}{\leq}h:=dim\;H$. We also give some conditions under which the product of two ${\alpha}-Weyl$ operators is ${\alpha}-Weyl$ and its converse implication holds, too. Finally, we show that the weighted Weyl spectrum of a hyponormal operator satisfies the spectral mapping theorem for analytic functions under certain conditions.
Keywords
weighted spectrum; weighted Weyl spectrum; ${\alpha}-Weyl$ operator;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61-64   DOI
2 J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176   DOI
3 S. C. Arora and P. Arora, On operators satisfying Re $\sigma_{\alpha}$(T) = $\sigma_{\alpha}$(Re T), J. Indian Math. Soc. 48 (1984), no. 1-4, 201-204
4 S. R. Caradus, W. E. Pfaffenberger, and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974
5 J. B. Conway, Subnormal operators, Pitman, Boston, 1981
6 P. Dharmarha, Weighted Weyl spectrum, Preprint
7 G. Edgar, J. Ernest, and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971), no. 1, 61-80   DOI
8 S. K. Berberian, Conditions on an operator implying Re $\sigma_{\alpha}$(T) = $\sigma_{\alpha}$(Re T), Trans. Amer. Math. Soc. 154 (1971), 267-272   DOI   ScienceOn
9 K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212