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THE SPECTRAL CONTINUITY OF ESSENTIALLY

HYPONORMAL OPERATORS

An-Hyun Kim and Eun-Jin Ryu

Abstract. If A is a unital Banach algebra, then the spectrum can be
viewed as a function σ : A → S, mapping each T ∈ A to its spectrum
σ(T ), where S is the set, equipped with the Hausdorff metric, of all
compact subsets of C. This paper is concerned with the continuity of the
spectrum σ via Browder’s theorem. It is shown that σ is continuous when
σ is restricted to the set of essentially hyponormal operators for which
Browder’s theorem holds, that is, the Weyl spectrum and the Browder
spectrum coincide.

1. Introduction

Let H be an infinite dimensional separable complex Hilbert space and B(H)
be the algebra of bounded linear operators acting onH. If T ∈ B(H) write σ(T )
and σp(T ) for the spectrum and the set of eigenvalues of T , respectively. Let S
denote the set, equipped with the Hausdorff metric, of all compact subsets of C.
If A is a unital Banach algebra, then the spectrum can be viewed as a function
σ : A → S, mapping each T ∈ A to its spectrum σ(T ). It is known that
the function σ is upper semicontinuous and that in noncommutative algebras,
σ does have points of discontinuity. J. Newburgh [17] gave the fundamental
results on spectral continuity in general Banach algebras. J. Conway and B.
Morrel [7] have undertaken a detailed study of spectral continuity in the case
where the Banach algebra is B(H). It seems to be interesting and challenging to
identify classes C of operators for which σ becomes continuous when restricted
to C. The first result of this study is: σ is continuous on the set of normal
operators. On the other hand, Newburgh’s argument uses the fact that the
inverses of normal resolvents are normaloid (cf. see Solution 105 of [10]) and
this argument is extended to the set of hyponormal operators because the
inverses of hyponormal resolvents are also hyponormal and hence normaloid.
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In [15], it was shown that σ is continuous when restricted to the set of p-
hyponormal operators. In [9] and [14], the continuity of σ was explored when
σ is restricted to certain subsets of Toeplitz operators. In [4], it was shown
that σ is discontinuous on the entire manifold of Toeplitz operators. Also in
[16], the first author and E. Kwon have considered the continuity of σ when
restricted to the set of essentially p-hyponormal operators. The following is
still challengeable:

Problem. Find subsets C of B(H) for which the spectrum σ, a set-valued
function, is continuous when restricted to C.

In this paper we show that the spectrum σ is continuous when restricted
to the set of essentially hyponormal operators for which Browder’s theorem
holds. This set includes all commuting compact perturbations of hyponormal
operators.

If {Tn} is a sequence of elements in a unital Banach algebra A, then
lim infn σ(Tn) is the set of all limit points of convergent sequences of the form
{λn}, where λn ∈ σ(Tn) for each n. Because the set of invertible elements in A

forms an open set, we can see that lim infn σ(Tn) ⊆ σ(T ) whenever the sequence
of elements Tn converges to T in A. Thus proving the spectral continuity is to
show equality in this relation.

If T ∈ B(H) write N(T ) for the null space of T ; R(T ) for the range of T ;
α(T ) for the nullity of T , i.e., α(T ) := dimN(T ); β(T ) for the deficiency of

T , i.e., β(T ) := dimR(T )
⊥
. If S is a compact subset of C, write isoS for

the isolated points of S; accS for the accumulation points of S; ∂S for the
topological boundary of S. We recall ([11]) that an operator T ∈ B(H) is
called upper semi-Fredholm if it has closed range with finite dimensional null
space, and lower semi-Fredholm if it has closed range with its range of finite
co-dimension. If T is either upper or lower semi-Fredholm we call it semi-

Fredholm, and Fredholm if it is both. The index of a semi-Fredholm operator
T is given by the equality ind(T ) = α(T ) − β(T ). If T ∈ B(H), the left-[the
right-] essential spectrum σ+

e (T ) [σ
−
e (T )] of T is the set of all complex numbers

λ such that T − λ is not upper semi-Fredholm [lower semi-Fredholm], and the
essential spectrum σe(T ) is the union of σ+

e (T ) and σ−
e (T ). Those Fredholm

operators that have index zero are called Weyl operators. The Weyl spectrum,
denoted ω(T ) of T ∈ B(H) is the set of all complex numbers λ for which T −λ
is not Weyl.

2. The main result

In this section we prove the main theorem. To do so we need preliminary
notions and results.

Hyponormal elements in a C
∗-algebra. In a unital C∗-algebra A, an

element x ∈ A is called normal if x∗x = xx∗ and is called hyponormal if
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x∗x ≥ xx∗. If A = B(H), then it is familiar that every hyponormal element
x ∈ A satisfies:

1. x− λ is hyponormal for all λ ∈ C;
2. x−1 is hyponormal if x is invertible;
3. x is normaloid, i.e., ||x|| = rA(x), where rA(x) = supλ∈σA(x) |λ| (called

the spectral radius of x with respect to A), where σA(x) of x is defined
by the set of all complex numbers λ for which x− λ has no inverse in
A.

These properties are also enjoyed for hyponormal elements in a unital C∗-
algebra.

Lemma 2.1. Let A be a unital C∗-algebra. If x ∈ A is hyponormal, then

(x− λ)−1 is normaloid for λ /∈ σ(x).

Proof. Suppose x is hyponormal. Evidently, x−λ is hyponormal. If in addition
x is invertible, then we can see that x−1 is also hyponormal by using the fact
that if a, b ∈ A, 0 ≤ a ≤ b, and a is invertible, then b is invertible and b−1 ≤ a−1.
Thus it suffices to show that if x is hyponormal, then it is normaloid. By the
Gelfand-Naimark representation theorem there exists a Hilbert space K and
an isometric ∗-representation ϕ : A → B(K). Since every ∗-homomorphism
preserves positivity it follows that ϕ(x) is also a hyponormal operator in B(K).
Thus we have

||x|| = ||ϕ(x)|| = rL(K)(ϕ(x)) = rϕ(A)(ϕ(x)) = rA(x),

where the third equality follows from the spectral permanence for C∗-algebras
and the last equality comes from the observation that ϕ : A → ϕ(A) is an
isometric isomorphism. This proves the lemma. �

Let K(H) denote the ideal of compact operators on H and let π denote the
canonical map of B(H) onto the Calkin algebra B(H)/K(H), which is a unital
C∗-algebra. From the classical Fredholm theory we have σe(T ) = σ(π(T )). An
operator T ∈ B(H) is called essentially hyponormal [essentially normal ] if π(T )
is hyponormal [normal] in B(H)/K(H). We write

EH(H) := {T ∈ B(H) : T is essentially hyponormal}.

We then have:

Corollary 2.2. If T ∈ EH(H), then
(
π(T −λ)

)−1
is normaloid in B(H)/K(H)

for λ /∈ σe(T ).

Proof. Immediate from Lemma 2.1. �

Browder’s theorem. H. Weyl [20] examined the spectra of all compact
perturbations A + K of a single hermitian operator A and discovered that
λ ∈ σ(A+K) for every compact operator K if and only if λ is not an isolated
eigenvalue of finite multiplicity in σ(A). Today this result is known as Weyl’s
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theorem, and it has been extended from hermitian operators A to hyponormal
operators and to Toeplitz operators by L. Coburn [6], to seminormal operators
by S. Berberian [1], and to abundant classes of operators by many authors. On
the other hand, Weyl’s theorem is expressed as follows:

σ(T ) \ ω(T ) = π00(T ),

where

π00(T ) := {λ ∈ isoσ(T ) : 0 < dimN(T − λ) <∞}.

On the other hand, an operator T ∈ B(H) is called Browder if T is Fredholm
“of finite ascent and descent”: equivalently, if T is Fredholm and T − λ is
invertible for sufficiently small |λ| 6= 0 in C (cf. [11]). The Browder spectrum
σb(T ) of T is defined by

σb(T ) = {λ ∈ C : T − λ is not Browder}.

Evidently,

ω(T ) ⊆ σb(T ) = σe(T ) ∪ accσ(T ).

If we write

P00(T ) := σ(T ) \ σb(T )

for the Riesz points of σ(T ), then we say [12] that Browder’s theorem holds for

T if

σ(T ) \ ω(T ) = P00(T ).

Evidently Weyl’s theorem implies Browder’s theorem. The following state-
ments are equivalent (cf. [12, Theorem 2]):

1. Browder’s theorem holds for T ;
2. σ(T ) = ω(T ) ∪ π00(T );
3. ω(T ) = σb(T ).

By comparison with Weyl’s theorem, Browder’s theorem holds for quasinilpo-
tent operators, compact operators and algebraic operators ([12, Theorem 9]).
We write

BT(H) := {T ∈ B(H) : Browder’s theorem holds for T}.

The setBT(H) has something to do with the invariant subspace problem, which
is the open question whether every operator in B(H) has nontrivial invariant
subspace. If ω(T ) 6= σb(T ), then there exists a complex number λ such that
T − λ is Weyl but not invertible, so that λ is an eigenvalue for T ; therefore T
has a nontrivial invariant subspace. Thus the operators that remain to show
in the invariant subspace problem are included in BT(H). Recently, many
authors have considered BT(H) and gave interesting spectral properties via
BT(H). In this paper we provide a connection between the spectral property
and BT(H).

We now have:
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Theorem 2.3. The restriction of σ to EH(H) is continuous at each point of

BT(H).

Proof. If T ∈ B(H), write me(T ) for the essential minimum modulus of T (cf.

[2], [3], [13]): i.e., me(T ) = inf σe(|T |), where |T | denotes (T ∗T )
1
2 . It is known

from [2, Theorem 2] that

(1) me(T ) > 0 ⇐⇒ T is upper semi-Fredholm.

On the other hand, the essential minimum modulus can be viewed as a function
me : B(H) → R, mapping each operator T to its essential minimum modulus
me(T ). Then we can see that me is continuous: indeed, if Tn converges to T ,
then |Tn| converges to |T | ([15, Lemma 1]) and limσe(|Tn|) = limσ(π(|Tn|)) =
σ(π(|T |)) = σe(|T |) because σ is continuous on the set of all normal elements in
a unital C∗-algebra ([17, Corollary 2]), which implies that limme(Tn) = me(T ).
We now claim that

(2) T ∈ EH(H) =⇒ me(T − λ) = dist (λ, σe(T )) for λ /∈ σe(T ).

To prove (2) suppose T ∈ EH(H) and 0 /∈ σe(T ). Then by Corollary 2.2,
π(T )−1 is normaloid. Note that

σ(π(T )−1) = {µ−1 : µ ∈ σ(π(T ))} = {µ−1 : µ ∈ σe(T )}.

Since π(x
1
2 ) =

(
π(x)

) 1
2 for every positive element x in B(H)/K(H), we have

that me(T ) = inf σ(|π(T )|). We thus argue that if B(H)/K(H) is regarded as
a C∗-subalgebra of B(K) for a Hilbert space K, then

me(T ) = inf σ(|π(T )|)

= inf {||π(T )x|| : ||x|| = 1, x ∈ K}

=
1

||π(T )−1||
=

1

maxλ∈σ(π(T )−1) |λ|

= min
λ∈σe(T )

|λ|

= dist(0, σe(T )).

Applying this result with T − λ in place of T proves (2).
Now suppose that Tn ∈ EH(H) for n ∈ Z+, and T ∈ BT(H) are such that

Tn converges to T . Since lim infn σ(Tn) ⊆ σ(T ), it suffices to show that σ(T ) ⊆
lim infn σ(Tn). If λ ∈ isoσ(T ), then by an argument of Newburgh [17, lemma
3], for every neighborhood N (λ) of λ there exists an N ∈ Z+ such that n > N
implies σ(Tn)∩N (λ) 6= ∅, which says that λ ∈ lim infn σ(Tn). We now suppose
λ ∈ accσ(T ). We assume to the contrary that λ /∈ lim infn σ(Tn). Then there
exists a neighborhood N (λ) of λ such that does not intersect infinitely many
σ(Tn). Thus we can choose a subsequence {Tnk

}k of {Tn}n such that for some
ǫ > 0,

dist(λ, σ(Tnk
)) > ǫ for all k ∈ Z+.
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Since evidently, dist(λ, σ(Tnk
)) ≤ dist(λ, σe(Tnk

)) it follows from (2) that
me(Tnk

− λ) > ǫ for all k ∈ Z+. Since me is continuous we have that
me(T − λ) ≥ ǫ which by (1), implies that T − λ is upper semi-Fredholm.
Therefore by index continuity we have that

ind(T − λ) = lim
k→∞

ind(Tnk
− λ) = 0,

which implies that T−λ is Weyl. Therefore λ /∈ ω(T ). But since by assumption
Browder’s theorem holds for T it follows that λ /∈ σb(T ), which implies λ ∈
isoσ(T ) because λ ∈ σ(T ). This contradicts our assumption λ ∈ accσ(T ).
This completes the proof. �

Example 2.4. (a) It is known ([12, Theorem 10]) that if T is reduced by its
finite-dimensional eigenspaces, then Browder’s theorem holds for T . Thus by
Theorem 2.3 we can see that the restriction of σ to the set of all essentially
hyponormal operators which are reduced by their finite-dimensional eigenspaces
is continuous.

(b) The restriction of σ to the set of all compact perturbations of hyponormal
operators need not to be continuous. For example, if on ℓ2 ⊕ ℓ2

Tn =

(
U 1

n
(I − UU∗)

0 U∗

)

and T =

(
U 0
0 U∗

)

,

where U is the unilateral shift on ℓ2, then we have that T and Tn, for n ∈ Z+,
are compact perturbations of a hyponormal operator (in fact, rank-one pertur-

bations of the unitary operator
(
U I−UU∗

0 U∗

)
) and Tn converges to T , whereas

σ(Tn) is the unit circle for all n and σ(T ) is the unit disk. Note that T is
essentially hyponormal, but Browder’s theorem fails for T . If we denote H(H)
for the set of all hyponormal operators on H and let

H(H) ⊎ K(H) := {T +K : T ∈ H(H), K ∈ K(H) and TK = KT }

for a sort of “commuting sum” of H(H) and K(H) in B(H), then Browder’s
theorem holds for all operators in H(H)⊎K(H) (cf. [12, Theorem 11]). There-
fore by Theorem 2.3, we can conclude that the restriction of σ to H(H)⊎K(H)
is continuous.

(c) We claim that if T ∈ B(H) is totally of finite ascent, in the sense that

ascent(T − λ) <∞ for any λ ∈ C,

then Browder’s theorem holds for T . Indeed, writing T in place of T−λ enables
us to reduce the discussion to λ = 0. Suppose T is Weyl. We want to show
that 0 ∈ isoσ(T ). The finite ascent condition says that for some n ∈ N, the
operator T n has ascent = 1. Thus we can write

T n =

(
0 0
0 (T n)∧

)

:

(
P−1(0)
P (H)

)

−→

(
P−1(0)
P (H)

)

,

where P is a projection with P−1(0) = T−1(0) and T n(P (H)) = T n(H). Then
(T n)∧ is bounded below. But since (T n)∧ is also Weyl, it follows that (T n)∧
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is onto, and hence (T n)∧ is invertible. Thus T n − λ is invertible for a nonzero
sufficient small |λ|. Thus 0 ∈ isoσ(T n), so that 0 ∈ isoσ(T ). This shows that
Browder’s theorem holds for T . Therefore, by Theorem 2.3, we can see that
that the restriction of σ to the set of all essentially hyponormal operators which
are totally of finite ascent is continuous.

(d) The Toeplitz operator Tϕ with symbol ϕ ∈ L∞(T) on the Hardy space
H2(T) of the unit circle T is defined by

Tϕg := P (ϕg) (g ∈ H2(T)),

where P denotes the orthogonal projection from L2(T) onto H2(T). It was
known ([6]) that every Toeplitz operator obeys Weyl’s theorem, and hence
Browder’s theorem it follows from again Theorem 2.3 that the restriction of σ
to the set of all essentially hyponormal Toeplitz operators is continuous.

(e) An examination of the proof of Theorem 2.3 shows that if we write

M(H) := {T ∈ B(H) : me(T − λ) = dist (λ, σe(T )) for λ /∈ σe(T )},

then the restriction of σ to M(H) is continuous at each point of BT(H). In
particular EH(H) ⊆ M(H).

(f) The following are the basic properties of Toeplitz operators:

1. Every Toeplitz operator has connected spectrum ([21]);

2. σp(Tϕ)∩ σp(Tϕ) = ∅ for every non-constant Toeplitz operator Tϕ ([6]);
3. σ(Tϕ) = ω(Tϕ) (by (2)).

The properties for Toeplitz operators which we require in the below are de-
scribed in [5], [8], and [18]. Let Tw denote the set of all Toeplitz opera-
tors with symbols in w ⊆ L∞(T). Write C(T) for all continuous complex-
valued functions on T and H∞(T) := L∞(T) ∩ H2(T). Then the subspace
H∞ + C(T) is a closed subalgebra of L∞(T). If ϕ ∈ H∞ + C(T), then

TψTϕ − Tψϕ ∈ K(H2) for any ψ ∈ L∞(T), so that σe(|Tϕ|) =
(
σe(T|ϕ|2)

) 1
2 =

[ess inf |ϕ|, ess sup |ϕ|], which implies that me(Tϕ) = ess inf |ϕ|. By (1),
σ+
e (Tϕ) = {λ ∈ C : me(Tϕ−λ) = 0} = ess-ran(ϕ), which implies that if

0 /∈ σe(Tϕ) then me(Tϕ) = ess inf |ϕ| = dist (0, σ+
e (Tϕ)) = dist (0, σe(Tϕ)),

and therefore we can determine

(3) TH∞+C(T) ⊆ M(H2).

This together with (e) above recaptures [14, Theorem 10].
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