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Abstract. Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl

spectrum of A is the set σBw(A) of all λ ∈ C such that A−λI is not a B-Fredholm operator

of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani

showed that if A is a hyponormal operator, then A satisfies generalized Weyl’s theorem

σBw(A) = σ(A) \ E(A), and the B-Weyl spectrum σBw(A) of A satisfies the spectral

mapping theorem. In [51], H. Weyl proved that weyl’s theorem holds for hermitian op-

erators. Weyl’s theorem has been extended from hermitian operators to hyponormal and

Toeplitz operators [12], and to several classes of operators including semi-normal operators

([9], [10]). Recently W. Y. Lee [35] showed that Weyl’s theorem holds for algebraically

hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee’s results to al-

gebraically paranormal operators. In [19] the authors showed that Weyl’s theorem holds

for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized

Weyl’s theorem holds for A, then so does Weyl’s theorem. In this paper all the above re-

sults are generalized by proving that generalized Weyl’s theorem holds for the case where A

is an algebraically (p, k)-quasihyponormal or an algebarically paranormal operator which

includes all the above mentioned operators.

1. Introduction

Let B(H) and K(H) denote, respectively, the algebra of bounded linear oper-
ators and the ideal of compact operators acting on infinite dimensional separable
Hilbert space H. If A ∈ B(H) we shall write N(A) and R(T ) for the null space
and the range of A, respectively. Also, let α(A) := dimN(A), β(A) := dimN(A∗),
and let σ(A), σa(A) and π0(A) denote the spectrum, approximate point spectrum
and point spectrum of A, respectively. An operator A ∈ B(H) is called Fred-
holm if it has a closed range, finite dimensional null space, and its range has finite
co-dimension. The index of a Fredholm operator is given by

I(A) := α(A)− β(A).

A is called Weyl if it is of index zero, and Browder if it is Fredholm of finite
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ascent and descent, equivalently ([26], Theorem 7.9.3) if A is Fredholm and A − λ
is invertible for sufficiently small |λ| > 0, λ ∈ C. The essential spectrum σe(A), the
Weyl spectrum σw(A) and the Browder spectrum σb(A) of A are defined by

σe(A) = {λ ∈ C : A− λ is not Fredholm},

σw(A) = {λ ∈ C : A− λ is not Weyl},
σb(A) = {λ ∈ C : A− λ is not Browder},

respectively (see [25], [26]). Evidently

σe(A) ⊆ σw(A) ⊆ σb(A) = σe(A) ∪ accσ(A),

where we write accK for the accumulation points of K ⊆ C. If we write isoK =
K \ accK, then we let

π00(A) := {λ ∈ isoσA : 0 < α(A− λ) < ∞},

p00(A) := σ(A) \ σb(A).

We say that Weyl’s theorem holds for A if

σ(A) \ σw(A) = π00(A).

More generally, Berkani in [5] says that the generalized Weyl’s theorem holds
for A provided

σ(A) \ σBw(A) = E(A),

where E(A) and σBw(A) denote the isolated point of the spectrum which are eigen-
values (no restriction on multiplicity) and the set of complex numbers λ for which
A − λI fails to be Weyl, respectively. Let X be a Banach space. An operator
A ∈ B(X) is called B-Fredholm by Berkani [5] if there exists n ∈ N for which the
induced operator

An : An(X) → An(X)

is Fredholm in the usual sense, and B-Weyl if in addition An has index zero. Note
that, if the generalized Weyl’s theorem holds for A, then so does Weyl’s theorem
[5].

For any operator A in B(H) set, as usual, |A| = (A∗A)
1
2 and [A∗, A] =

A∗A−AA∗ = | A |2−| A∗ |2 (the self commutator of A), and consider the following
standard definitions: A is normal if A∗A = AA∗, hyponormal if A∗A − AA∗ ≥ 0,
p-hyponormal (0 < p ≤ 1) if (|A|2p − |A∗|2p) ≥ 0.

A is said to be p-quasihyponormal if A∗((A∗A)p − (AA∗)p)A ≥ 0 (0 < p ≤ 1),
(p, k)-quasihyponormal if A∗k((A∗A)p − (AA∗)p)Ak ≥ 0 (0 < p ≤ 1, k ∈ N), if
p = 1, k=1 and p = k = 1, then A is k-quasihyponormal, p-quasihyponormal and
quasihyponormal respectively. A is said to be normaloid if ‖A‖ = r(A) (the spectral
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radius of A). Let (pH), (HN), Q(p), (Q(p, k)) and (NL) denote the classes con-
sisting of hyponormal, p-hyponormal, p-quasihyponormal, (p, k)-quasihyponormal,
and normaloid operators. These classes are related by proper inclusion:

(HN) ⊂ (pH) ⊂ (Q(p)) ⊂ (Q(p, k)) ⊂ (NL)

(see [35]). Then a (p, k)-quasihyponormal operator is an extension of hyponormal,
p-hyponormal, p-quasihyponormal and k- quasihyponormal. A 1-hyponormal oper-
ator is called hyponormal operator, which has been studied by many authors and it
is known that hyponormal operators have many intersting properties similar to those
of normal operators (see [52]). A. Aluthge, B. C. Gupta, A. C. Arora and P. Arora
introduced p-hyponormal, p-quasihyponormal and k-quasihyponormal operators,
rapectively (see [2], [3], [15]), and now it is known that these operators have many
interesting properties (see [16], [36], [45], [49]). It is obvious that p-hyponormal
operators are q-hyponormal for 0 < q ≤ p by Lowner-Heinz’s inequality (see [28],
[38]). But (p, 1)-quasihyponormal operators are not always (q, 1)-quasihyponormal
operators for 0 < q ≤ p (see [50]). Also, it is obvious that (p, k)-quasihyponormal
operators are (p, k + 1)-quasihyponormal.

A is said to be algebraically (p, k)-quasihyponormal if there exists a nonconstant
complex polynomial p such p(A) is (p, k)-quasihyponormal.

An operator A ∈ B(H) is said to be paranormal if

||Ax||2 ≤ ||A2x||||x||
for all x ∈ H. We say that A is algebraically paranormal if there exists a nonconstant
complex polynomial p such that p(A) is paranormol. In general

hyponormal ⊂ p− hyponormal ⊂ paranormal ⊂ Algebarically paranormal.

A is said to be log-hyponormal if A is invertible and satisfies the following
equality

log(A∗A) ≥ log(AA∗).

It is known that invertible p-hyponormal operators are log-hyponormal operators
but the converse is not true [46]. However it is very interesting that we may re-
gards log-hyponormal operators as 0-hyponormal operators [46], [47]. The idea
of log-hyponormal operator is due to Ando [1] and the first paper in which log-
hyponormality appeared is [23]. See [2], [46], [47], [49] for properties of log-
hyponormal operators.

We say that an operator A ∈ B(H) belongs to the class A if |A2| ≥ |A|2. Class
A was first introduced by Furuta-Ito-Yamazaki [29] as a subclass of paranormal
operators which includes the classes of p-hyponormal and log-hyponormal operators.
The following theorem is one of the results associated with a class A operator.

Theorem 1.1 ([29]).

(1) Every log-hyponormal operator is a class A operator.
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(2) Every class A operator is a paranormal operator.

Recently in [6] Berkani showed that if A is a hyponormal operator, then A sat-
isfies generalized Weyl’s theorem σBw(A) = σ(A)\E(A), and the B-Weyl spectrum
σBw(A) of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that
weyl’s theorem holds for hermitian operators. Weyl’s theorem has been extended
from hermitian operators to hyponormal and Toeplitz operators [12], and to several
classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee
[35] showed that Weyl’s theorem holds for algebraically hyponormal operators. R.
Curto and Y. M. Han [14] have extended Lee’s results to algebraically paranormal
operators. In [19] the authors showed that Weyl’s theorem holds for algebraically
p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl’s
theorem holds for A, then so does Weyl’s theorem.

In this paper all the above results are generalized by proving that generalized
Weyl’s theorem holds for the case where A is an algebraically (p, k)-quasihyponormal
or an algebarically paranormal operator which includes all the above mentioned
operators.

2. Main results

Before proving the following lemma, we need a notation and a definition.
We say that A ∈ B(H) has the single valued extension property (SVEP) if for

every open set U ⊆ C the only analytic function f : U → H which satisfies the
equation (A− λ)f(λ) = 0 is the constant function f ≡ 0.

Lemma 2.1 ([48]). Let A ∈ B(H) be a (p, k)-quasihyponormal. If λ ∈ σp(A) and
λ 6= {0}, then λ ∈ σp(A∗).

Lemma 2.2. Let A ∈ B(H) be a (p, k)-quasihyponormal operator. Then A has
SVEP.

Proof. If A is (p, k)-quasihyponormal, then it follows from ([48], Theorem 4) that

||Akx||2 ≤ ||Ak−1x||||Ak+1x||,
for all unit vector x ∈ H. If x ∈ Ak+1, then

||Akx||2 ≤ ||Ak−1x||||Ak+1x|| = 0

and x ∈ N(Ak). Since the non-zero eigenvalues of a (p, k)-quasihyponormal operator
are normal eigenvalues of A by Lemma 2.1. If 0 6= λ ∈ σp(A) and (A− λ)k+1x = 0,
then

(A− λ)(A− λ)kx = 0 = (A− λ)∗(A− λ)kx

and
||(A− λ)kx||2 = ((A− λ)∗(A− λ)kx, (A− λ)k−1x) = 0.

Hence, if A is (p, k)-quasihyponormal, then asc(A− λ) ≤ k.
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For λ = 0, let Ak+1x = 0 for x ∈ H. Now using the Holder-McCarthy inequality
[41] we get

||Akx||2 =
〈|A|2Ak−1x,Ak−1x

〉 ≤
〈
|A|2(p+1)Ak−1x,Ak−1x

〉 1
p+1 ||Ak−1x|| 2p

p+1

=
〈|A∗|2pAkx,Akx

〉 1
p+1 ||Ak−1x|| 2p

p+1 ≤ 〈|A|2pAkx,Akx
〉 1

p+1 ||Ak−1x|| 2p
p+1

≤ 〈|A|2Akx,Akx
〉 p

p+1 ||Ak|| 2(1−p)
p+1 ||Ak−1x|| 2p

p+1 = 0.

Therefore asc(A) ≤ k and asc(A− λ) ≤ k. Since operators with finite ascent have
SVEP [32], A has SVEP at all λ ∈ C. Therefore f(A) has SVEP. Which achieves
the proof. ¤

Before proving the following lemma, we need some notations and definitions.
Let r(A) and W (A) denote the spectral radius and the numerical range of A,

respectively. It is well known that r(A) ≤ ||A|| and that W (A) is convex with
convex hull convσ(A) ⊆ W (A). A is said convexoid if convσ(A) = W (A).

Lemma 2.3. Let A be a (p, k)-quasihyponormal operator and λ ∈ C. If σ(A) = {λ},
then A = λ.

Proof. We consider two cases:
Case 1 (λ = 0). Since A is (p, k)-quasihyponormal, A is normaloid [35]. There-

fore A = 0.

Case 2 (λ 6= 0). Here A is invertible, and since A is (p, k)-quasihyponormal,
A−1 is also (p, k)-quasihyponormal ([36], Lemma 3). Therefore A−1 is normaloid.
On the other hand, σ(A−1) = { 1

λ}. Hence ||A||||A−1|| = |λ|| 1λ | = 1. It follows from
([40], Lemma 3) that A is convexoid. Hence W (A) = {λ} and A = λ. ¤

It is shown in [14] that a quasinilpotent algebraically paranormal operator A
is nilpotent. By the same way we prove that this result remains hold for a (p, k)-
quasihyponormal operator A.

Lemma 2.4. Let A be a quasinilpotent algebraically (p, k)-quasihyponormal opera-
tor. Then A is nilpotent.

Proof. Assume that p(A) is (p, k)-quasihyponormal for some nonconstant polyno-
mial p. Since σ(p(A)) = p(σ(A)), the operator p(A)− p(0) is quasinilpotent. Thus
Lemma 2.3 would imply that

cAm(A− λ1) · · · (A− λn) ≡ p(A)− p(0) = 0,

where m ≥ 1. Since A− λi is invertible for every λ 6= 0, we must have Am = 0. ¤

Lemma 2.5. Let A be an algebraically (p, k)-quasihyponormal operator. Then A
is isoloid.



558 Salah Mecheri

Proof. Let λ ∈ isoσ(A) and let

P :=
1

2πi

∫

∂D

(µ−A)−1dµ

be the associated Riesz idempotent, where D is a closed disk centered at λ which
contains no other points of σ(A). We can then represent A as the direct sum

A =
[

A1 0
0 A2

]
, where σ(A1) = {λ} and σ(A2) = σ(A) \ {λ}.

Since A is algebraically (p, k)-quasihyponormal, p(A) is (p, k)-quasihyponormal for
some nonconstant polynomial p. Since σ(A1) = λ, we must have

σ(p(A1)) = p(σ(A1)) = {p(λ)}.

Therefore p(A1) − p(λ) is quasinilpotent. Since p(A1) is (p, k)-quasihyponormal,
it follows from Lemma 2.3 that p(A1) − p(λ) = 0. Put q(z) := p(z) − p(λ).
Then q(A1) = 0, so A1 is algebraically (p, k)-quasihyponormal . Since A1 − λ
is quasinilpotent and algebraically (p, k)-quasihyponormal , it follows from Lemma
2.4 that A1 − λ is nilpotent. Therefore λ ∈ π0(A1), and hence λ ∈ π0(A). This
shows that A is isoloid. ¤

Theorem 2.6. Let A be an algebraically (p, k)-quasihyponormal operator. Then
generalized Weyl’s theorem holds for A.

Proof. Assume that λ ∈ σ(A) \ σBw(A). Then A− λI is B-Weyl and not invertible.
We claim that λ ∈ ∂σ(A). Assume to the contrary that λ is an interior point of
σ(A). Then there exists a neigborhood U of λ such that dim(A − µ) > 0 for all
µ ∈ U . It follows from ([21], Theorem 10) that A does not have SVEP. On the other
hand, since p(A) is (p, k)-quasihyponormal for nonconstant polynomial p, it follows
from Lemma 2.2 that p(A) has SVEP. Hence by ([33], Theorem 3.3.9), A has SVEP,
a contradiction. Therefore λ ∈ ∂σ(A). Conversely, assume that λ ∈ E(A), then λ
is isolated in σ(A). From ([31], Theorem 7.1) we have X = M ⊕N , where M,N are
closed subspaces of X, U = (A−λI)|M is an invertible operator and V = (A−λI)|N
is a quasinilpotent operator. Since A is algebraically (p, k)-quasihyponormal, V is
also algebraically (p, k)-quasihyponormal, from Lemma 2.4 V is nilpotent. There-
fore A − λI is Drazin invertible ([44], Proposition 6) and ([39], Corollary 2.2). By
([7], Lemma 4.1) A− λI is a B-Fredholm operator of index 0. ¤

Theorem 2.7. Let A be an algebraically paranormal operator. Then generalized
Weyl’s theorem holds for A.

Proof. Since a paranormal operator has SVEP ([18], Lemma 3.1) and a quasinilpo-
tent algebraically paranormal operator A is nilpotent [14]. Hence the proof can be
completed by the same way as the above proof. ¤

As consequences of the previous theorems, we obtain
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Corollary 2.7.

(1) Every algebraically class A operator satisfies generalized Weyl’s theorem. In
particular Weyl’s theorem holds for an algebarically class A operator.

(2) Every algebraically log-hyponormal operator satisfies generalized Weyl’s the-
orem. In particular Weyl’s theorem holds for algebraically log-hyponormal
operators.

(3) Every algebraically p-hyponormal operator satisfies generalized Weyl’s theo-
rem. In particular Weyl’s theorem holds for algebarically p-hyponormal oper-
ators.

(4) Every algebraically p-quasihyponormal operator satisfies generalized Weyl’s
theorem. In particular generalized Weyl’s theorem holds for a p-quasihyponormal
operators.

(5) Every algebraically k-quasihyponormal operator satisfies generalized Weyl’s
theorem. In particular generalized Weyl’s theorem holds for an algebraically
k-quasihyponormal operators.

Before proving the following lemma and theorem we need some notations and
definitions

Let

σBF (A) = {λ ∈ C : A− λI is not a B− Fredholm operator}

be the B-Fredholm spectrum of T and ρBF (A) = C \ σBF (A) the B-resolvent set of
A

Definition 2.8. Let A ∈ B(H) we will say that A is of stable index if for each
λ, µ ∈ ρBF (A), ind(A− λI), ind(A− µI) have the same sign index.

Lemma 2.9. Let A ∈ B(H) be paranormal or (p, k)-quasihyponormal. Then A is
of stable index.

Proof. We consider the case where A is paranormal. If A is a paranormal operator,
then

||Ax||2 ≤ ||A2x||
for each unit vecto x ∈ H. This implies that N(A) = N(A2). Moreover, if A is also
a B-Fredholm operator, then there exists an integer n such that R(An) is closed
and such that

An : R(An) → R(An)

is a Fredholm operator. We have

ind(A) = ind(An) = dimN(A)∩R(An)−dimR(An)/R(An+1) = −dimR(An)/R(An+1).

Hence ind(A) ≤ 0.
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Further, if λ ∈ ρBF (A), then A − λI is a B-Fredholm operator, and A − λI is
also paranormal. B y the same way as above, we have ind(A− λI) ≤ 0. Therefore
A is of stable index.

For the case in which A is a (p, k)-quasihyponormal operator. It is konwn [48]
that if A is a (p, k)-quasihyponormal operator, then

||Akx|| ≤ ||Ak−1x||||Ak+1x||,

for every unit vector x ∈ H. The rest of the proof is the same as above. ¤

Theorem 2.10. Let A be an algebraically (p, k)-quasihyponormal operator. Then
generalized Weyl’s theorem holds for f(A) for every function f analytic on a neigh-
borhood of σ(A).

Proof. Assume that A be an algebraically (p, k)-quasihyponormal operator. We
prove that f(σBw(A)) = σBw(f(A)) for every function f analytic on a neighbor-
hood of σ(A). Let f be an analytic function on a neighborhood of σ(A). Since
σBw(f(A)) ⊆ f(σBw(A)) with no restrection on A, it is sufficient to prove that
f(σBw(A)) ⊆ σBw(f(A)). Assume that λ 6∈ σBw(f(A)). Then f(A)− λ is B-Weyl
and

f(A)− λ = c(A− α1I)(A− α2I) · · · (A− αnI)g(A), (2.1)

where c, α1, α2, · · ·αn ∈ C and g(A) is invertible. Since f(A)− λI is a B-Fredholm
operator, from ([5], Theorem 3.4) it follows that for each i, 1 ≤ i ≤ n, A − αiI
is a B-Fredholm operator. Moreover, since ind(f(A) − λI) = 0 and A is of stable
sign index by Lemma 2.6, from ([7], Theorem, 3.2) we have for each i, 1 ≤ i ≤ n,
ind(A− αiI) = 0. So for each i, 1 ≤ i ≤ n, αi 6∈ σBw(A). If λ ∈ f(σBw(A)), there
exists α ∈ σBw(A) such that λ = f(α). Hence

0 = f(α)− λ = (α− α1) · · · (α− αn)g(α).

This implies that α ∈ {α1, · · · , αn}. Hence there exists i, 1 ≤ i ≤ n, such that
αi ∈ σBw(A), contradiction. Hence λ 6∈ f(σBw(A)). It is known ([6], Lemma 2.9)
that if A is isoloid then

f(σ(A) \ E(A)) = σ(f(A)) \ E(f(A))

for every analytic function on a neighborhood of σ(A). Since A is isoloid by Lemma
2.4 and generalized Weyl’s theorem holds for A,

σ(f(A)) \ E(f(A)) = f(σ(A)) \ E(A)) = f(σBw(A)) = σBw(f(A))

by ([6], Theorem 2.10). Which achieves the proof. ¤

Theorem 2.11. Let A be an algebraically paranormal operator. Then generalized
Weyl’s theorem holds for f(A) for every function f analytic on a neighborhood of
σ(A).
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Proof. Since an algebarically paranormal operator is isoloid [14] and it is of stable
index by Lemma 2.6, the proof is the same as the proof of the above theorem. ¤

As consequences of the above theorems, we obtain

Lemma 2.12. Let A ∈ B(H). Then the generalized Weyl’s theorem holds for f(A)
for every analytic function f in a neighborhood of σ(A) under either of the following
hypothesis

(1) A is algebraically class A operator.

(2) A is an algebraically log-hyponormal operator.

(3) A is an algebraically p-hyponormal operator.

(4) A is an algebraically quasihyponormal operator.

(5) A is an algebraically p-quasihyponormal operator.

(6) A is an algebraically k-quasihyponormal operator.
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