• Title/Summary/Keyword: semicommutative ring

Search Result 13, Processing Time 0.025 seconds

Extensions of Strongly α-semicommutative Rings

  • Ayoub, Elshokry;Ali, Eltiyeb;Liu, ZhongKui
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.203-219
    • /
    • 2018
  • This paper is devoted to the study of strongly ${\alpha}-semicommutative$ rings, a generalization of strongly semicommutative and ${\alpha}-rigid$ rings. Although the n-by-n upper triangular matrix ring over any ring with identity is not strongly ${\bar{\alpha}}-semicommutative$ for $n{\geq}2$, we show that a special subring of the upper triangular matrix ring over a reduced ring is strongly ${\bar{\alpha}}-semicommutative$ under some additional conditions. Moreover, it is shown that if R is strongly ${\alpha}-semicommutative$ with ${\alpha}(1)=1$ and S is a domain, then the Dorroh extension D of R by S is strongly ${\bar{\alpha}}-semicommutative$.

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

SEMICOMMUTATIVE PROPERTY ON NILPOTENT PRODUCTS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1251-1267
    • /
    • 2014
  • The semicommutative property of rings was introduced initially by Bell, and has done important roles in noncommutative ring theory. This concept was generalized to one of nil-semicommutative by Chen. We first study some basic properties of nil-semicommutative rings. We next investigate the structure of Ore extensions when upper nilradicals are ${\sigma}$-rigid ${\delta}$-ideals, examining the nil-semicommutative ring property of Ore extensions and skew power series rings, where ${\sigma}$ is a ring endomorphism and ${\delta}$ is a ${\sigma}$-derivation.

Weakly Semicommutative Rings and Strongly Regular Rings

  • Wang, Long;Wei, Junchao
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • A ring R is called weakly semicommutative ring if for any a, $b{\in}R^*$ = R\{0} with ab = 0, there exists $n{\geq}1$ such that either an $a^n{\neq}0$ and $a^nRb=0$ or $b^n{\neq}0$ and $aRb^n=0$. In this paper, many properties of weakly semicommutative rings are introduced, some known results are extended. Especially, we show that a ring R is a strongly regular ring if and only if R is a left SF-ring and weakly semicommutative ring.

GENERALIZED SEMI COMMUTATIVE RINGS AND THEIR EXTENSIONS

  • Baser, Muhittin;Harmanci, Abdullah;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.285-297
    • /
    • 2008
  • For an endomorphism ${\alpha}$ of a ring R, the endomorphism ${\alpha}$ is called semicommutative if ab=0 implies $aR{\alpha}(b)$=0 for a ${\in}$ R. A ring R is called ${\alpha}$-semicommutative if there exists a semicommutative endomorphism ${\alpha}$ of R. In this paper, various results of semicommutative rings are extended to ${\alpha}$-semicommutative rings. In addition, we introduce the notion of an ${\alpha}$-skew power series Armendariz ring which is an extension of Armendariz property in a ring R by considering the polynomials in the skew power series ring $R[[x;\;{\alpha}]]$. We show that a number of interesting properties of a ring R transfer to its the skew power series ring $R[[x;\;{\alpha}]]$ and vice-versa such as the Baer property and the p.p.-property, when R is ${\alpha}$-skew power series Armendariz. Several known results relating to ${\alpha}$-rigid rings can be obtained as corollaries of our results.

On a Class of Semicommutative Rings

  • Ozen, Tahire;Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.283-291
    • /
    • 2011
  • In this paper, a generalization of the class of semicommutative rings is investigated. A ring R is called central semicommutative if for any a, b ${\in}$ R, ab = 0 implies arb is a central element of R for each r ${\in}$ R. We prove that some results on semicommutative rings can be extended to central semicommutative rings for this general settings.

ON RADICALLY-SYMMETRIC IDEALS

  • Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.339-348
    • /
    • 2011
  • A ring R is called symmetric, if abc = 0 implies acb = 0 for a, b, c ${\in}$ R. An ideal I of a ring R is called symmetric (resp. radically-symmetric) if R=I (resp. R/$\sqrt{I}$) is a symmetric ring. We first show that symmetric ideals and ideals which have the insertion of factors property are radically-symmetric. We next show that if R is a semicommutative ring, then $T_n$(R) and R[x]=($x^n$) are radically-symmetric, where ($x^n$) is the ideal of R[x] generated by $x^n$. Also we give some examples of radically-symmetric ideals which are not symmetric. Connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we show that if R is a symmetric (or semicommutative) (${\alpha}$, ${\delta}$)-compatible ring, then R[x; ${\alpha}$, ${\delta}$] is a radically-symmetric ring. As a corollary we obtain a generalization of [13].

STUDY OF THE ANNIHILATOR IDEAL GRAPH OF A SEMICOMMUTATIVE RING

  • Alibemani, Abolfazl;Hashemi, Ebrahim
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.415-427
    • /
    • 2019
  • Let R be an associative ring with nonzero identity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all nonzero proper left ideals and all nonzero proper right ideals of R, and two distinct vertices I and J are adjacent if $I{\cap}({\ell}_R(J){\cup}r_R(J)){\neq}0$ or $J{\cap}({\ell}_R(I){\cup}r_R(I)){\neq}0$, where ${\ell}_R(K)=\{b{\in}R|bK=0\}$ is the left annihilator of a nonempty subset $K{\subseteq}R$, and $r_R(K)=\{b{\in}R|Kb=0\}$ is the right annihilator of a nonempty subset $K{\subseteq}R$. In this paper, we assume that R is a semicommutative ring. We study the structure of ${\Gamma}_{Ann}(R)$. Also, we investigate the relations between the ring-theoretic properties of R and graph-theoretic properties of ${\Gamma}_{Ann}(R)$. Moreover, some combinatorial properties of ${\Gamma}_{Ann}(R)$, such as domination number and clique number, are studied.

REVERSIBILITY OVER PRIME RADICALS

  • Jung, Da Woon;Lee, Yang;Sung, Hyo Jin
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.279-288
    • /
    • 2014
  • The studies of reversible and 2-primal rings have done important roles in noncommutative ring theory. We in this note introduce the concept of quasi-reversible-over-prime-radical (simply, QRPR) as a generalization of the 2-primal ring property. A ring is called QRPR if ab = 0 for $a,b{\in}R$ implies that ab is contained in the prime radical. In this note we study the structure of QRPR rings and examine the QRPR property of several kinds of ring extensions which have roles in noncommutative ring theory.