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Abstract. This paper is devoted to the study of strongly α-semicommutative rings, a

generalization of strongly semicommutative and α-rigid rings. Although the n-by-n upper

triangular matrix ring over any ring with identity is not strongly ᾱ-semicommutative for

n ≥ 2, we show that a special subring of the upper triangular matrix ring over a reduced

ring is strongly ᾱ-semicommutative under some additional conditions. Moreover, it is

shown that if R is strongly α-semicommutative with α(1) = 1 and S is a domain, then the

Dorroh extension D of R by S is strongly ᾱ-semicommutative.

1. Introduction

Throughout this paper, R denotes an associative ring with identity and α de-
notes a nonzero and non-identity endomorphism, unless specified otherwise. A ring
R is called semicommutative, if for all a, b ∈ R, ab = 0 implies aRb = 0. This is
equivalent to the usual definition by [18, Lemma 1.2] or [8, Lemma 1]. Properties,
examples and counterexamples of semicommutative rings were given in Huh, Lee
and Smoktunowicz [8], Kim and Lee [10], Liu [13] and Yang [19]. One of general-
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izations of semicommutative rings was investigated by Liu and Zhao in [14].

Recall that an endomorphism α of a ring R is called rigid [11] if for a ∈ R,
aα(a) = 0 implies a = 0, and R is called an α-rigid ring [6] if there exists a
rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a
monomorphism, and α-rigid rings are reduced rings by [6, Proposition 5]. Due
to [1], an endomorphism α of a ring R is called semicommutative if whenever
ab = 0 for a, b ∈ R, aRα(b) = 0. A ring R is called α-semicommutative if there
exists a semicommutative endomorphism α of R. Gang and Ruijuan [5] called
a ring R strongly semicommutative, if whenever polynomials f(x), g(x) in R[x]
satisfy f(x)g(x) = 0, then f(x)R[x]g(x) = 0. In general the polynomial rings
over α-semicommutative rings need not be α-semicommutative. In this paper,
we consider the α-semicommutative rings over which polynomial rings are also α-
semicommutative and we call them strongly α-semicommutative rings, i.e., if α
is an endomorphism of R, then α is called strongly semicommutative if whenever
polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then f(x)R[x]α(g(x)) = 0. A
ring R is called strongly α-semicommutative if there exists a strongly semicom-
mutative endomorphism α of R. Clearly strongly α-semicommutative rings are α-
semicommutative but not conversely. If R is Armendariz, then these two concepts
coincide (see, Proposition 2.11). We characterize α-rigid rings by showing that a
ring R is α-rigid if and only if R is a reduced strongly α-semicommutative ring and
α is a monomorphism. It is also shown that a ring R is strongly α-semicommutative
if and only if the polynomial ring R[x] over R is strongly α-semicommutative. Some
extensions of α-semicommutative rings are considered.

2. Strongly α-semicommutative Rings

In this section we introduce the concept of a strongly α-semicommutative ring
and study its properties. Observe that the notion of strongly α-semicommutative
rings not only generalizes that of α-rigid rings, but also extends that of strongly
semicommutative rings. We start by the following definition.

Definition 2.1. An endomorphism α of a ring R is called strongly semicom-
mutative if whenever polynomials f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then
f(x)R[x]α(g(x)) = 0. A ring R is called strongly α-semicommutative if there exists
a strongly semicommutative endomorphism α of R.

It is clear that a ring R is strongly semicommutative, if R is strongly IR-
semicommutative, where IR is the identity endomorphism of R. It is easy to see
that every subring S with α(S) ⊆ S of a strongly α-semicommutative ring is also
strongly α-semicommutative. For any i ∈ I, let Ri be strongly αi-semicommutative
where αi is an endomorphism of Ri. Set W = Πi∈IRi. Define an endomorphism α
of W as following:

α(ai)i∈I = (αi(ai))i∈I .

Then it is easy to see that W is strongly α-semicommutative.
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Remark 2.2. Let R be a strongly α-semicommutative ring with f(x)g(x) = 0
for f(x), g(x) ∈ R[x]. Then f(x)R[x]α(g(x)) = 0 and, in particular, f(x)α(g(x)) =
0. Since R is strongly α-semicommutative, we get f(x)R[x]α2(g(x)) = 0. So, by
induction hypothesis, we obtain f(x)R[x]αk(g(x)) = 0 and f(x)αk(g(x)) = 0, for
any positive integer k.

The following example shows that there exists an endomorphism α of strongly
semicommutative ring R such that R is not strongly α-semicommutative.

Example 2.3. Let Z2 be the ring of integers modulo 2 and consider the ring
R = Z2

⊕
Z2, with the usual addition and multiplication. Then R is strongly

semicommutative, since R is a commutative reduced ring. Now, let α : R → R
be defined by α((a, b)) = (b, a). Then α is an automorphism of R. For f(x) =
(1, 0) + (1, 0)x and g(x) = (0, 1) + (0, 1)x, it is clear that f(x)g(x) = 0. But (0, 0) 6=
((1, 0) + (1, 0)x)(1, 1)x((1, 0) + (1, 0)x) ∈ f(x)R[x]α(g(x)). Thus R is not strongly
α-semicommutative.

Lemma 2.4. R is a reduced ring if and only if so is R[x].

Lemma 2.5. A ring R is α-rigid if and only if R[x] is α-rigid.

Theorem 2.6. A ring R is α-rigid if and only if R is a reduced strongly α-
semicommutative ring and α is a monomorphism.

Proof. (⇒) Let R be an α-rigid ring. Then R is reduced and α is a
monomorphism by [6, p.218]. Assume that f(x)g(x) = 0, for f(x), g(x) ∈
R[x]. Let h(x) be an arbitrary polynomial of R[x]. Then g(x)f(x) = 0 since
R[x] is reduced by Lemma 2.4. Thus f(x)h(x)α(g(x))α(f(x)h(x)α(g(x))) =
f(x)h(x)α(g(x)f(x))α(h(x))α2(g(x)) = 0. Since R is α-rigid, f(x)h(x)α(g(x)) = 0
by Lemma 2.5 so f(x)R[x]α(g(x)) = 0. Thus R is strongly α-semicommutative.

(⇐) Assume that f(x)α(f(x)) = 0 for f(x) ∈ R[x]. Since R is reduced and
strongly α-semicommutative, α(f(x))f(x) = 0 and so α(f(x))R[x]α(f(x)) = 0.
Hence α((f(x))2) = 0 and so f(x) = 0, since α is a monomorphism and R is
reduced. Therefore R is α-rigid. 2

The following examples show that the condition “R is reduced ring” and “α is
a monomorphism” in Theorem 2.6 cannot be dropped respectively.

Example 2.7. Let Z be the ring of integers. Consider R =

{(
a b
0 a

)
|a, b ∈ Z

}
.

Let α : R → R be an endomorphism defined by α

((
a b
0 a

))
=

(
a −b
0 a

)
.

Note that α is an automorphism. By [1, Example 2.5(1)] R is not reduced and
hence R is not α-rigid. Thus R[x] is not α-rigid by Lemma 2.5.

Let f(x)g(x) = 0 for f(x) =

(
f0(x) f1(x)

0 f0(x)

)
, g(x) =

(
g0(x) g1(x)

0 g0(x)

)
∈

R[x]. Then f0(x)g0(x) = 0 and f0(x)g1(x) + f1(x)g0(x) = 0. For h(x) =
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(
h0(x) h1(x)

0 h0(x)

)
∈ R[x], we have

(
f0(x) f1(x)

0 f0(x)

)(
h0(x) h1(x)

0 h0(x)

)
α

((
g0(x) g1(x)

0 g0(x)

))
=

(
f0(x)h0(x)g0(x) −f0(x)h0(x)g1(x) + f0(x)h1(x)g0(x) + f1(x)h0(x)g0(x)

0 f0(x)h0(x)g0(x)

)
.

Since f0(x)g0(x) = 0, f0(x) = 0 or g0(x) = 0. If f0(x) = 0 then f1(x)g0(x) = 0. So
f(x)R[x]α(g(x)) = 0. If g0(x) = 0 then f0(x)g1(x) = 0. Again f(x)R[x]α(g(x)) = 0.
Thus R is strongly α-semicommutative.

Example 2.8. Let F be a field and R = F [x] the polynomial ring over F. Define
α : R[x]→ R[x] by α(f(x)) = f(0) where f(x) ∈ R[x]. Then R[x] is a commutative
domain (and so reduced) and α is not a monomorphism. If f(x)g(x) = 0 for
f(x), g(x) ∈ R[x] then f(x) = 0 or g(x) = 0, and so f(x) = 0 or α(g(x)) = 0. Hence
f(x)R[x]α(g(x)) = 0, and thus R is strongly α-semicommutative. Note that R is
not α-rigid, since xα(x) = 0 for 0 6= x ∈ R.

Observe that if R is a domain then R is both strongly semicommutative and
strongly α-semicommutative for any endomorphism α of R. Example 2.7 also shows
that there exists a strongly α-semicommutative ring R which is not a domain.
According to Cohn [4], a ring R is called reversible if ab = 0 implies ba = 0 for
a, b ∈ R. Baser and et al. [2] called a ring R right (respectively, left) α-reversible
if there exists a right (respectively, left) reversible endomorphism α of R. A ring is
α-reversible if it is both left and right α-reversible.

Lemma 2.9.([16, Proposition 3]) A reduced α-reversible ring is α-semicommutative.

Proposition 2.10. Let R be a reduced and α-reversible ring. Then R is strongly
α-semicommutative.

Proof. Let f(x) = Σn
i=0aix

i, g(x) = Σm
j=0bjx

j ∈ R[x] be such that f(x)g(x) =

0 = Σn+m
s=0 Σi+j=saibjx

s. Since every reduced ring is an Armendariz ring, we ob-
tain aibj = 0. Then α(bj)ai = 0 (by α-reversibility). Now for arbitrary el-
ement h(x) = Σr

k=0ckx
k ∈ R[x], we have α(bj)aick = 0 for each i, j, k, so

aickα(bj) = 0 (by reducibility). Hence, f(x)h(x)α(g(x)) = 0. Therefore R is
strongly α-semicommutative. 2

Rege and Chhawchharia [17] called a ring R an Armendariz ring if whenever
polynomials f(x) = a0+a1x+· · ·+amxm, g(x) = b0+b1x+· · ·+bnxn ∈ R[x] satisfy
f(x)g(x) = 0, then aibj = 0 for each i and j. Hong et al. [7] called a ring R α-
Armendariz if whenever f(x) = a0+a1x+ · · ·+amxm, g(x) = b0+b1x+ · · ·+bnxn ∈
R[x;α] satisfy f(x)g(x) = 0, then aibj = 0 for each i and j.

Proposition 2.11. Let R be an Armendariz ring. If R is α-semicommutative, then
R is strongly α-semicommutative.

Proof. Suppose that f(x) = Σn
i=0aix

i, g(x) = Σm
j=0bjx

j ∈ R[x] satisfy f(x)g(x) = 0.
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Then, sinceR is Armendariz, each aibj is zero, additionallyR is α-semicommutative,
therefore aickα(bj) = 0 for any element ck in R for all i, j, k. Now it is easy to check
that f(x)h(x)α(g(x)) = 0 for any h(x) = Σr

k=0ckx
k ∈ R[x]. 2

Lemma 2.12.([10, Proposition 3.1(2)]) If R is a reversible α-Armendariz ring,
then R is α-semicommutative.

Liu and Yang [20] called a ring R strongly reversible, if whenever polynomials
f(x), g(x) ∈ R[x] satisfy f(x)g(x) = 0, then g(x)f(x) = 0.

Proposition 2.13. If R is a strongly reversible α-Armendariz ring, then R is
strongly α-semicommutative.

Proof. Let f(x)g(x) = 0, for f(x), g(x) ∈ R[x]. Then g(x)f(x) = 0 since R is
strongly reversible. By [7, Proposition 1.3(1)], we obtain α(g(x))f(x) = 0, and
so α(g(x))f(x)h(x) = 0 for all h(x) ∈ R[x]. Hence, f(x)h(x)α(g(x)) = 0 for all
h(x) ∈ R[x] since R is strongly reversible and f(x)R[x]α(g(x)) = 0. Therefore, R
is strongly α-semicommutative. 2

Recall that an element u of a ring R is right regular if ur = 0 implies r = 0 for
r ∈ R. Similarly, left regular elements can be defined. An element is regular if it is
both left and right regular (and hence not a zero divisor).

Proposition 2.14. Let ∆ be a multiplicatively closed subset of a ring R consisting
of central regular elements. Then R is strongly α-semicommutative if and only if
so is ∆−1R.

Proof. It is enough to show that the necessity. Suppose that R is strongly
α-semicommutative. Let F (x)G(x) = 0, for F (x) = u−1f(x) and G(x) =
v−1g(x) ∈ (∆−1R)[x] where u, v are regular and f(x), g(x) ∈ R[x]. Since ∆
is contained in the center of R we have 0 = F (x)G(x) = u−1f(x)v−1g(x) =
(u−1v−1)f(x)g(x) = (uv)−1f(x)g(x) and so f(x)g(x) = 0. Since R is strongly
α-semicommutative, f(x)R[x]α(g(x)) = 0 and f(x)(s−1R)[x]α(g(x)) = 0 for any
regular element s. This implies F (x)(∆−1R)[x]α(G(x)) = 0. Therefore ∆−1R is
strongly α-semicommutative. 2

The ring of Laurent polynomials in x with coefficients in a ring R, denoted
by R[x;x−1], consists of all formal sums

∑n
i=kmix

i with obvious addition and
multiplication, where mi ∈ R and k, n are (possibly negative) integers.

Corollary 2.15. Let R be a ring with α(1) = 1. Then R[x] is strongly α-
semicommutative if and only if R[x;x−1] is strongly α-semicommutative.

Corollary 2.16. Let R be an Armendariz ring. Then the following are equivalent:

(1) R is α-semicommutative.

(2) R is strongly α-semicommutative.

(3) R[x;x−1] is strongly α-semicommutative.
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Proposition 2.17. Let R be a ring, e a central idempotent of R, with α(e) = e.
Then the following statements are equivalent:

(1) R is strongly α-semicommutative rings.

(2) eR and (1− e)R are strongly α-semicommutative rings.

Proof. (1)⇔(2) This is straightforward since subrings and finite direct products of
strongly α-semicommutative rings are strongly α-semicommutative. 2

We denote by Mn(R) and Tn(R) the n×n matrix ring and n×n upper triangular
matrix ring over R, respectively.

Given a ring R and a bimodule RMR, the trivial extension of R by M is the
ring T (R,M) = R

⊕
M with the usual addition and the following multiplication

(r1,m1)(r2,m2) = (r1r2, r1m2+m1r2). This is isomorphic to the ring of all matrices(
r m
0 r

)
, where r ∈ R,m ∈M and the usual matrix operations are used.

For an endomorphism α of a ring R and the trivial extension T (R,R) of R,

ᾱ : T (R,R) → T (R,R) defined by ᾱ

((
a b
0 a

))
=

(
α(a) α(b)

0 α(a)

)
is an endo-

morphism of T (R,R). Since T (R, 0) is isomorphic to R, we can identify the restric-
tion of ᾱ by T (R, 0) to α. Notice that the trivial extension of a α-semicommutative
ring is not ᾱ-semicommutative by [1, Example 2.9]. Now, we may ask whether
the trivial extension T (R,R) is strongly ᾱ-semicommutative if R is strongly α-
semicommutative. But the following example erases the possibility.

Example 2.18. Consider the strongly α-semicommutative ring R =

{(
a b
0 a

)
|

a, b ∈ Z
}

with an endomorphism α defined by α

((
a b
0 a

))
=

(
a −b
0 a

)
in

Example 2.7. For

A =


(

0 1
0 0

) (
−1 1
0 −1

)
(

0 0
0 0

) (
0 1
0 0

)
 , B =


(

0 1
0 0

) (
1 1
0 1

)
(

0 0
0 0

) (
0 1
0 0

)
 ∈ T (R,R)

we have AB = 0. However, for

C =


(

1 0
0 1

) (
0 0
0 0

)
(

0 0
0 0

) (
1 0
0 1

)
 ∈ T (R,R),

we obtain

0 6=


(

0 0
0 0

) (
0 2
0 0

)
(

0 0
0 0

) (
0 0
0 0

)
 = ACᾱ(B) ∈ AT (R,R)ᾱ(B).
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Thus, T (R,R) is not strongly ᾱ-semicommutative.

It was shown in [1, Proposition 2.10], that if R is a reduced α-semicommutative
ring, then T (R,R) is an ᾱ-semicommutative. Here we have the following results.

Proposition 2.19. Let R be a reduced ring. If R is α-semicommutative, then
T (R,R) is strongly ᾱ-semicommutative.

Proof. Let f(x) = (f0(x), f1(x)), g(x) = (g0(x), g1(x)) ∈ T (R,R)[x] with
f(x)g(x) = 0. We shall prove f(x)T (R,R)[x]α(g(x)) = 0. Now we have

f0(x)g0(x) = 0,(2.1)

f0(x)g1(x) + f1(x)g0(x) = 0.(2.2)

Since R is reduced, R[x] is reduced. Therefore, (2.1) implies g0(x)f0(x) = 0. Multi-
plying (2.2) on the left side by g0(x) we get f1(x)g0(x) = 0, and so f0(x)g1(x) = 0.
Let f(x) = Σn

i=0(ai, bi)x
i, g(x) = Σm

j=0(a′j , b
′
j)x

j , where f0(x) = Σn
i=0aix

i, f1(x) =

Σn
i=0bix

i, g0(x) = Σm
j=0a

′
jx

j and g1(x) = Σm
j=0b

′
jx

j . Since every reduced ring is
an Armendariz ring, we obtain that aia

′
j = 0, aib

′
j = 0, bia

′
j = 0 for all i, j by the

preceding results. With these facts and the fact that R is α-semicommutative, we
have aickα(a′j) = 0, aickα(b′j) = 0, aidkα(b′j) = 0, bickα(a′j) = 0, for any elements

ck, dk. Thus, f(x)h(x)α(g(x)) = 0, for any arbitrary h(x) = Σr
k=0(ck, dk)xk ∈ R[x].

This implies that T (R,R) is strongly ᾱ-semicommutative. 2

The trivial extension T (R,R) of a ring R is extended to

S3(R) =


 a b c

0 a d
0 0 a

 |a, b, c, d ∈ R


and an endomorphism α of a ring R is also extended to the endomorphism ᾱ of
S3(R) defined by ᾱ((aij)) = (ᾱ(aij)). There exists a reduced ring R such that S3(R)
is not strongly ᾱ-semicommutative by the following example.

Example 2.20. We consider the commutative reduced ring R = Z2

⊕
Z2, and

the automorphism α of R defined by α((a, b)) = (b, a), in Example 2.3. Then

S3(R) is not strongly ᾱ-semicommutative. For A =

 (1, 0) (0, 0) (0, 0)
(0, 0) (1, 0) (0, 0)
(0, 0) (0, 0) (1, 0)

 ,

B =

 (0, 1) (0, 0) (0, 0)
(0, 0) (0, 1) (0, 0)
(0, 0) (0, 0) (0, 1)

 ∈ S3(R), then AB = 0, but AAᾱ(B) = A 6= 0.

Thus AS3(R)ᾱ(B) 6= 0, and therefore S3(R) is not strongly ᾱ-semicommutative.

However, we obtain that S3(R) is strongly ᾱ-semicommutative for a reduced α-
semicommutative ring R by the similar method to the proof of Proposition 2.19 as
follows:
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Proposition 2.21. Let R be a reduced ring. If R is α-semicommutative, then

S3(R) =


 a b c

0 a d
0 0 a

 | a, b, c, d ∈ R


is strongly ᾱ-semicommutative.

Proof. For  a1 b1 c1
0 a1 d1
0 0 a1

 ,

 a2 b2 c2
0 a2 d2
0 0 a2

 ∈ S3(R),

we can denote their addition and multiplication by

(a1, b1, c1, d1) + (a2, b2, c2, d2) = (a1 + a2, b1 + b2, c1 + c2, d1 + d2),

(a1, b1, c1, d1)(a2, b2, c2, d2) = (a1a2, a1b2 + b1a2, a1c2 + b1d2 + c1a2, a1d2 + d1a2),

respectively. So every polynomial in S3[x] can be expressed in the form of
(f0, f1, f2, f3) for some fi

,s in R[x]. Let f(x) = (f0(x), f1(x), f2(x), f3(x)), g(x) =
(g0(x), g1(x), g2(x), g3(x)) ∈ S3[x] with f(x)g(x) = 0. Then f(x)g(x) = (f0(x)g0(x),
f0(x)g1(x)+f1(x)g0(x), f0(x)g2(x)+f1(x)g3(x)+f2(x)g0(x), f0(x)g3(x)+f3(x)g0(x)),
we shall prove f(x)S3(R)[x]α(g(x)) = 0. So we have the following system of equa-
tions:

f0(x)g0(x) = 0,(2.3)

f0(x)g1(x) + f1(x)g0(x) = 0,(2.4)

f0(x)g2(x) + f1(x)g3(x) + f2(x)g0(x) = 0,(2.5)

f0(x)g3(x) + f3(x)g0(x) = 0.(2.6)

Use the fact that R[x] is reduced. From Eq. (2.3), we get g0(x)f0(x) = 0.
If we multiply Eq. (2.4), on the right side by g0(x), then 0 = (f0(x)g1(x) +
f1(x)g0(x))g0(x) = f1(x)g20(x), and so f1(x)g0(x) = 0 and f0(x)g1(x) = 0. Similarly,
from Eq. (2.6), we have f3(x)g0(x) = 0, and f0(x)g3(x) = 0. Also, in Eq. (2.5),
0 = (f0(x)g2(x)+f1(x)g3(x)+f2(x)g0(x))g0(x) = f2(x)g20(x) implies f2(x)g0(x) = 0
and

f0(x)g2(x) + f1(x)g3(x) = 0.(2.7)

Multiplying (2.7) on left side by f0(x) gives 0 = f0(x)(f0(x)g2(x)+f1(x)g3(x)) =
f20 (x)g2(x), and so f0(x)g2(x) = 0 hence f1(x)g3(x) = 0. Let

f(x) =

n∑
i=0

 ai bi ci
0 ai di
0 0 ai

xi, g(x) =

m∑
j=0

 a′j b′j c′j
0 a′j d′j
0 0 a′j

xj
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and h(x) =
∑r

k=0

 a′′k b′′k c′′k
0 a′′k d′′k
0 0 a′′k

xk ∈ S3(R),

where f0(x) = Σn
i=0aix

i, f1(x) = Σn
i=0bix

i, f2(x) = Σn
i=0cix

i, f3(x) = Σn
i=0dix

i, g0(x)
= Σm

j=0a
′
jx

j , g1(x) = Σm
j=0b

′
jx

j , g2(x) = Σm
j=0c

′
jx

j , g3(x) = Σm
j=0d

′
jx

j . Since every
reduced ring is an Armendariz ring, we obtain that aia

′
j = 0, aib

′
j = 0, bia

′
j =

0, aic
′
j = 0, bid

′
j = 0, cia

′
j = 0, aid

′
j = 0, dia

′
j = 0, for all i, j by the preceding

results. With these facts and the fact that R is α-semicommutative ring, we
have aia

′′
kα(a′j) = 0, aia

′′
kα(b′j) = 0, bia

′′
kα(a′j) = 0, bia

′′
kα(d′j) = 0, aia

′′
kα(c′j) =

0, aib
′′
kα(d′j) = 0, bia

′′
kα(d′j) = 0, aic

′′
kα(a′j) = 0, bid

′′
kα(a′j) = 0, cia

′′
kα(a′j) =

0, aia
′′
kα(d′j) = 0, aid

′′
kα(a′j) = 0, dia

′′
kα(a′j) = 0. Consequently, we get the equa-

tion:

f(x)h(x)α(g(x)) = (f0(x), f1(x), f2(x), f3(x))S3(R)[x]α((g0(x), g1(x), g2(x), g3(x))

= (f0(x)S3(R)[x]α(g0(x)), f0(x)S3(R)[x]α(g1(x)) + f1(x)S3(R)[x]α(g0(x)),

f0(x)S3(R)[x]α(g2(x)) + f1(x)S3(R)[x]α(g3(x)) + f2(x)S3(R)[x]α(g0(x)),

f0(x)S3(R)[x]α(g3(x)) + f3(x)S3(R)[x]α(g0(x))) = 0.

Therefore S3(R) is strongly ᾱ-semicommutative. 2

Let R be a ring. Define a subring Sn of the n-by-n full matrix ring Mn(R) over
R as follows:

Sn(R) =




a a12 a13 · · · a1n
0 a a23 · · · a2n
0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a

 | a, aij ∈ R

.

For an α-rigid ring R and n ≥ 2, by Proposition 2.21, we may suspect that
Sn(R) may be strongly ᾱ-semicommutative ring for n ≥ 4. But the possibility is
eliminated by the next example.

Example 2.22. Let R be an α-rigid and

S4 =




a a12 a13 a14
0 a a23 a24
0 0 a a34
0 0 0 a

 | a, aij ∈ R
 .

Note that if R is an α-rigid ring, then α(e) = e, for e2 = e ∈ R by [6, Proposition

5]. In particular α(1) = 1. For A =


0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , B =


0 0 0 0
0 0 0 1
0 0 0 1
0 0 0 0

 ∈
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S4(R), we obtain AB = 0. But we have 0 6=


0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 = ACᾱ(B) ∈

S4(R), for C =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ∈ S4(R). Thus ACᾱ(B) 6= 0 and so S4(R) is not

strongly ᾱ-semicommutative. Similarly, it can be proved that Sn(R) is not strongly
ᾱ-semicommutative for n ≥ 5.

Let R be a ring and let

Vn(R) =


S =



a1 a2 a3 · · · an−2 a b
0 a1 a2 · · · an−3 an−2 c
0 0 a1 · · · an−4 an−3 an−2
...

...
...

. . .
...

...
...

0 0 0 · · · a1 a2 a3
0 0 0 · · · 0 a1 a2
0 0 0 · · · 0 0 a1


| ai, a, b, c ∈ R


.

Note that if a = c, then the matrix S is called an upper triangular Toeplitz
matrix over R, see [15].

We proved in Proposition 2.21 and Example 2.22 that when R is a reduced ring
and R is an α-semicommutative ring, then S3(R) is strongly ᾱ-semicommutative,
but Sn(R) is not strongly ᾱ-semicommutative for n ≥ 4. In the next theorem we
will show that a special subring Vn(R) of Tn(R) for any positive integer n ≥ 2 is
strongly ᾱ-semicommutative, where R is a reduced and α-semicommutativethe ring.

Theorem 2.23. Let R be a reduced ring. If R is α-semicommutative, then Vn(R)
is strongly ᾱ-semicommutative.

Proof. Suppose that



a1 a2 a3 · · · an−2 a1,n−1 a1n
0 a1 a2 · · · an−3 an−2 a2n
0 0 a1 · · · an−4 an−3 an−2

...
...

...
. . .

...
...

...
0 0 0 · · · a1 a2 a3
0 0 0 · · · 0 a1 a2
0 0 0 · · · 0 0 a1


,



b1 b2 b3 · · · bn−2 b1,n−1 b1n
0 b1 b2 · · · bn−3 bn−2 b2n
0 0 b1 · · · bn−4 bn−3 bn−2

...
...

...
. . .

...
...

...
0 0 0 · · · b1 b2 b3
0 0 0 · · · 0 b1 b2
0 0 0 · · · 0 0 b1


are in Vn(R). So every polynomial in Vn(R)[x] can be expressed in the form of

(f1, f2, · · · , fn−2, f1,n−1, f1n, f2n) for some fi
,s in R[x]. Let f(x) = (f0(x), f1(x),

· · · , f2n(x)), g(x) = (g0(x), g1(x), · · · , g2n(x)) ∈ Vn(R)[x] with f(x)g(x) = 0. We
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shall prove f(x)Vn(R)[x]α(g(x)) = 0. Now we have the following system of equa-
tions:

f1(x)g1(x) = 0,(2.8)

f1(x)g2(x) + f2(x)g1(x) = 0,(2.9)

f1(x)g3(x) + f2(x)g2(x) + f3(x)g1(x) = 0,

...

f1(x)gn−2(x) + f2(x)gn−3(x) + · · ·+ fn−2(x)g1(x) = 0,

f1(x)g1,n−1(x) + f2(x)gn−2(x) + · · ·+ fn−2(x)g2(x) + f1,n−1(x)g1(x) = 0,(2.10)

f1(x)g1n(x) + f2(x)g2n(x) + · · ·+ f1,n−1(x)g2(x) + f1n(x)g1(x) = 0,(2.11)

f1(x)g2n(x) + f2(x)gn−2(x) + · · ·+ fn−2(x)g2(x) + f2n(x)g1(x) = 0.(2.12)

Use the fact that R[x] is reduced. From Eq. (2.8), we get g1(x)f1(x) = 0.
If we multiply Eq. (2.9) on the right side by f1(x), then f1(x)g2(x)f1(x) +
f2(x)g1(x)f1(x) = 0. Thus f1(x)g2(x)f1(x) = 0 and hence f1(x)g2(x) = 0.
From Eq. (2.9) it follows that f2(x)g1(x) = 0. Continuing in this man-
ner, we can show that fi(x)gj(x) = 0 when i + j = 2, . . . , n − 1. Hence
gj(x)fi(x) = 0. Multiplying Eq. (2.10) on the right side by f1(x), we ob-
tain 0 = f1(x)g1,n−1(x)f1(x) + f2(x)gn−2(x)f1(x) + · · · + fn−2(x)g2(x)f1(x) +
f1,n−1(x)g1(x)f1(x) = f1(x)g1,n−1(x)f1(x). Thus f1(x)g1,n−1(x) = 0. Hence

f2(x)gn−2(x) + · · ·+ fn−2(x)g2(x) + f1,n−1(x)g1(x) = 0,(2.13)

Multiplying Eq. (2.13) on the right side by f2(x), we obtain

0 = f2(x)gn−2(x)f2(x) + · · ·+ fn−2(x)g2(x)f2(x) + f1,n−1(x)g1(x)f2(x)
= f2(x)gn−2(x)f2(x).

Thus f2(x)gn−2(x) = 0. Continuing in this manner, we can show that
fi(x)gj(x) = 0 when i + j = n and f1(x)g1,n−1(x) = 0, f1,n−1(x)g1(x) = 0. Simi-
larly, from Eq. (2.12), it follows that f1(x)g2n(x) = 0 and f2n(x)g1(x) = 0. Now
multiplying Eq. (2.11) on the right side by f1(x), we have

0 = f1(x)g1n(x)f1(x)+f2(x)g2n(x)f1(x)+f3(x)gn−2(x)f1(x)+· · ·+fn−2(x)g3(x)
f1(x)+f1,n−1(x)g2(x)f1(x)+f1n(x)g1(x)f1(x) = f1(x)g1n(x)f1(x). Thus f1(x)g1n(x)
= 0. Hence

f2(x)g2n(x) + f3(x)gn−2(x) + · · ·+ f1,n−1(x)g2(x) + f1n(x)g1(x) = 0,(2.14)

If we multiply Eq. (2.14) on the right side by f2(x), then 0 = f2(x)g2n(x)f2(x) +
f3(x)gn−2(x)f2(x)+· · ·+f1,n−1(x)g2(x)f2(x)+f1n(x)g1(x)f2(x) = f2(x)g2n(x)f2(x).
Thus f2(x)g2n(x) = 0. Continuing in this manner, we can show that fi(x)gj(x) = 0
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when i+ j = n+ 1, f1,n−1(x)g2(x) = 0 and f1n(x)g1(x) = 0. Let

f(x) =

n∑
i=0



ai1 ai2 ai3 · · · ain−2 ai1,n−1 ai1n
0 ai1 ai2 · · · ain−3 ain−2 ai2n
0 0 ai1 · · · ain−4 ain−3 ain−2
...

...
...

. . .
...

...
...

0 0 0 · · · ai1 ai2 ai3
0 0 0 · · · 0 ai1 ai2
0 0 0 · · · 0 0 ai1


xi,

g(x) =

m∑
j=0



bj1 bj2 bj3 · · · bjn−2 bj1,n−1 bj1n
0 bj1 bj2 · · · bjn−3 bjn−2 bj2n
0 0 bj1 · · · bjn−4 bjn−3 bjn−2
...

...
...

. . .
...

...
...

0 0 0 · · · bj1 bj2 bj3
0 0 0 · · · 0 bj1 bj2
0 0 0 · · · 0 0 bj1


xj

and h(x) =
∑r

k=0



ck1 ck2 ck3 · · · ckn−2 ck1,n−1 ck1n
0 ck1 ck2 · · · ckn−3 ckn−2 ck2n
0 0 ck1 · · · ckn−4 ckn−3 ckn−2
...

...
...

. . .
...

...
...

0 0 0 · · · ck1 ck2 ck3
0 0 0 · · · 0 ck1 ck2
0 0 0 · · · 0 0 ck1


xk ∈ Vn(R)[x],

where f1(x) = Σn
i=0a

i
1x

i, f2(x) = Σn
i=0a

i
2x

i, · · · , fn−2(x) = Σn
i=0a

i
n−2x

i,
f1,n−1(x) = Σn

i=0a
i
1,n−1x

i, f1n(x) = Σn
i=0a

i
1nx

i, f2n(x) = Σn
i=0a

i
2nx

i, g1(x) =

Σm
j=0b

j
1x

j , g2(x) = Σm
j=0b

j
2x

j , · · · , gn−2(x) = Σm
j=0b

j
n−2x

j , g1,n−1(x) = Σm
j=0b

j
1,n−1x

j ,

g1n(x) = Σm
j=0b

j
1nx

j , g2n(x) = Σm
j=0b

j
2nx

j . Since every reduced ring is an Ar-

mendariz ring, we obtain that ai1b
j
1 = 0, ai1b

j
2 = 0, ai2b

j
1 = 0, ai1b

j
3 = 0, ai2b

j
2 =

0, ai3b
j
1 = 0, · · · , ai1b

j
n−2 = 0, ai2b

j
n−3 = 0, · · · , ain−2b

j
1 = 0, ai1b

j
1,n−1 = 0, ai2b

j
n−2 =

0, · · · , ain−2b
j
2 = 0, ai1,n−1b

j
1 = 0, ai1b

j
1n = 0, ai2b

j
2n = 0, ai3b

j
n−1 = 0, · · · , ain−2b

j
3 =

0, ai1,n−1b
j
2 = 0, ai1nb

j
1 = 0, ai1b

j
2n = 0, ai2b

j
n−2 = 0, · · · , ain−2b

j
2 = 0, ai2nb

j
1 = 0

for all i, j by the preceding results. With these facts and the fact that R is α-
semicommutative ring, we have ai1c

k
1α(bj1) = 0, ai1c

k
1α(bj2) = 0, ai1c

k
2α(bj1) = 0,

ai2c
k
1α(bj1) = 0, ai1c

k
1α(bj3) = 0, ai1c

k
2α(bj2) = 0, ai2c

k
1α(bj2) = 0, ai1c

k
2α(bj1) =

0, ai2c
k
2α(bj1) = 0, ai3c

k
1α(bj1) = 0, · · · , ai1ck2nα(bj1) = 0, ai2c

k
n−2α(bj1) = 0, · · · ,

ain−2c
k
2α(bj1) = 0, ai2nc

k
1α(bj1) = 0.

Therefore Vn(R) is strongly ᾱ-semicommutative. 2

The next result can be proved by using the technique used in the proof of [3,
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Proposition 2.6]. A ring is called Abelian if every idempotent is central. Reduced
rings are clearly Abelian.

Proposition 2.24. Let R be a strongly α-semicommutative ring. Then

(1) α(1) = 1, where 1 is the identity of R, if and only if α(e) = e for any
e2 = e ∈ R.

(2) If α(1) = 1, then R is Abelian.

Let R be an algebra over a commutative ring S. Recall that the Dorroh extension
of R by S is the ring D = R×S with operations (r1, s1)+(r2, s2) = (r1+r2, s1+s2)
and (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2), where ri ∈ R and si ∈ S. For an
endomorphism α of R, the S-endomorphism ᾱ of D defined by ᾱ(r, s) = (α(r), s) is
an S-algebra homomorphism.

Proposition 2.25. If R is a strongly α-semicommutative ring with α(1) = 1 and S
is a domain, then the Dorroh extension D of R by S is strongly ᾱ-semicommutative.

Proof. We apply the method in the proof of [3, Proposition 2.8.] Let f(x) =
(f1(x), f2(x)), g(x) = (g1(x), g2(x)) ∈ D(x) with (f1(x), f2(x))(g1(x), g2(x)) =
0. Then f1(x)g1(x) + f2(x)g2(x) + g2(x)f1(x) = 0 and f2(x)g2(x) = 0. Since
S is a domain, we have f2(x) = 0 or g2(x) = 0. If f2(x) = 0, then
0 = f1(x)g1(x) + f2(x)g2(x) + g2(x)f1(x) = f1(x)g1(x) + g2(x)f1(x) and so
f1(x)(g1(x) + g2(x)) = 0. Since R is strongly α-semicommutative with α(1) = 1,
0 = f1(x)tα(g1(x) + g2(x)) = f1(x)tα(g1(x)) + f1(x)tg2(x)), for all t ∈ R. This
yields (f1(x), f2(x))(r, s)ᾱ(g1(x), g1(x)) = (f1(x)r + sf1(x))α(g1(x)) + (f1(x)r +
sf1(x)g2(x), 0) = 0 for any (r, s) ∈ D, and hence (f1(x), f2(x))Dᾱ(g1(x), g2(x)) = 0.
Now let g2(x) = 0. Then (f1(x) + f2(x))g1(x) = 0, and so 0 = (f1(x) +
f2(x))Rα(g1(x)) = 0. We similarly obtain (f1(x), f2(x))Dᾱ(g1(x), g2(x)) = 0, and
thus the Dorroh extension D is strongly ᾱ-semicommutative. 2

Corollary 2.26.([17, Proposition 3.17(2)]) Let R be an algebra over a commutative
domain S, and D be the Dorroh extension of R by S. Then R is strongly semicom-
mutative if and only if D is strongly semicommutative.

Note that the condition α(1) = 1 in Proposition 2.25 cannot be dropped by the
next example.

Example 2.27. Let R = Z2

⊕
Z2, and let α : R→ R defined by α((a, b)) = (0, b).

Consider the Dorroh extension D of R by the ring of integers Z2. We clearly have
((1, 0), 0)((1, 0),−1) = 0, but ((1, 0), 0)((1, 0), 0)ᾱ((1, 0),−1) = ((1, 0),−1) 6= 0 in
D. Thus D is not strongly ᾱ-semicommutative.

For an ideal I of R, if α(I) ⊆ I, then ᾱ : R/I → R/I defined by ᾱ(a + I) =
α(a) + I is an endomorphism of the factor ring R/I.

There exists a non-identity automorphism α of a ringR such thatR/I is strongly
ᾱ-semicommutative and I is strongly α-semicommutative for any nonzero proper
ideal I of R, but R is not strongly α-semicommutative by the next example.
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Example 2.28. Let F be a field. Consider the ring R =

(
F F
0 F

)
and an

endomorphism α of R defined by α

((
a b
0 c

))
=

(
a −b
0 c

)
. Then R is not

strongly α-semicommutative. In fact, for A =

(
1 1
0 0

)
, B =

(
0 −1
0 1

)
∈ R,

we have AB = 0, but 0 6= A

(
1 −1
0 1

)
α(B) ∈ ARα(B). Note that for the only

nonzero proper ideals of R

I =

(
F F
0 0

)
, J =

(
0 F
0 F

)
,K =

(
0 F
0 0

)
,

it can be easily checked that they are strongly α-semicommutative. Since R/I ∼= F
and R/J ∼= F,R/I and R/J are also strongly ᾱ-semicommutative. Finally, the
factor ring R/K is reduced and ᾱ is an identity map on R/K. Thus, R/K is also
strongly ᾱ-semicommutative.

Proposition 2.29. Let R be a ring with an endomorphism α, and I an ideal of
R with α(I) ⊆ I. Suppose that R/I is a strongly ᾱ-semicommutative ring. If I is
α-rigid as a ring without identity, then R is strongly α-semicommutative.

Proof. Let f(x)g(x) = 0 with f(x), g(x) ∈ R[x]. Then we have f(x)Rα(g(x)) ⊆ I[x]
and α(g(x))Iα(f(x)) = 0, since α(g(x))Iα(f(x)) ⊆ I[x], (α((g(x)Iα(f(x)))2 = 0
and I[x] is reduced. Thus, (f(x)Rα(g(x))I)2 = f(x)Rα(g(x))If(x)Rα(g(x))I = 0
and so f(x)Rα(g(x))I = 0, thus f(x)Rα(g(x))α(f(x)Rα(g(x))) ⊆ f(x)Rα(g(x))I =
0 since f(x)Rα(g(x)) ⊆ I[x] and α(I) ⊆ I. Then f(x)Rα(g(x)) = 0 as I is α-rigid.
Therefore, R is strongly α-semicommutative. 2

Theorem 2.30. Let α be an endomorphism of a ring R. Then R is strongly α-
semicommutative if and only if R[x] is strongly α-semicommutative.

Proof. (⇐) The converse is obvious since R is a subring of R[x].
(⇒) Assume that R is strongly α-semicommutative. Let f(y), g(y) ∈ R[x][y]

such that f(y)g(y) = 0. Let

f(y) = f0 + f1y + · · ·+ fmy
m, g(y) = g0 + g1y + · · ·+ gny

n,

and
h(y) = h0 + h1y + · · ·+ hry

r ∈ R[x][y].

We also let fi = ai0 + ai1x + · · · + aiwx
iw , gj = bj0 + bj1x + · · · + bjvx

jv , hk =
ck0 + ck1x + · · · + ckux

ku ∈ R[x] for each 0 ≤ i ≤ m, 0 ≤ j ≤ n and
0 ≤ k ≤ r, where ai0 , ai1 , · · · , aiw , bj0 , bj1 , · · · , bjv , ck0 , ck1 , · · · , cku ∈ R. We
claim that p(y)R[x]q(y) = 0. Take a positive integer k such that k ≥ max
{deg(fi), deg(gj), deg(hk)}, for any 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ r, where
the degree is as polynomials in R[x] and the degree of the zero polynomial is taken
to be 0. Let f(xs) = f0+f1x

s+ · · ·+fnx
ms, g(xs) = g0+g1x

s+ · · ·+gnx
ns, h(xs) =
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h0 + h1x
s + · · ·+ hrx

rs ∈ R[x]. Then the set of coefficients of the fi
,s, gj

,s (respec-
tively, hk

,s) is equal to the set of coefficients of f(xs), g(xs) (respectively, h(xs)).
Since f(y)g(y) = 0, x commutes with elements of R in the polynomial ring R[x],
we have f(xs)g(xs) = 0, in R[x]. Since R is strongly α-semicommutative, we have
f(xs)Rα(g(xs)) = 0. Hence f(y)R[x]α(g(y)) = 0, therefore R[x] is strongly α-
semicommutative. 2

Corollary 2.31. Let R be a ring. Then R is strongly semicommutative if and only
if R[x] is strongly semicommutative.

Corollary 2.32. Let α be an endomorphism of a ring R. Then the following are
equivalent:

(1) R is strongly α-semicommutative.

(2) R[x] is strongly α-semicommutative.

(3) R[x;x−1] is strongly α-semicommutative.

Let A(R,α) or A be the subset {x−iaixi|a ∈ R, i ≥ 0} of the skew Laurent
polynomial ring R[x, x−1;α], where α : R → R is an injective ring endomorphism

of a ring R (see [9] for more details). Elements of R[x, x
−1

;α] are finite sums
of elements of the form x−ibjx

j , where b ∈ R and i, j are non-negative integers.
Multiplication is subject to xa = α(a)x and ax−1 = x−1α(a) for all a ∈ R. Note
that for each j ≥ 0, x−iaix

i = x−(i+j)αj(ai)x
(i+j). It follows that the set A(R,α)

of all such elements forms a subring of R[x, x−1;α] with

x−iaix
i + x−jbjx

j = x−(i+j)(αj(ai) + αi(bj))x
(i+j)

(x−iaix
i)(x−jbjx

j) = x−(i+j)(αj(ai)α
i(bj))x

(i+j)

for a, b ∈ R and i, j ≥ 0. Note that α is actually an automorphism of A(R,α). Let
A(R,α) be the ring defined above. Then for the endomorphism α in A(R,α), the
map A(R,α)[t]→ A(R,α)[t] defined by

Σm
i=0(x−iaix

i)ti → Σm
i=0(x−iα(ai)x

i)ti

is an endomorphism of the polynomial ring A(R,α)[t].

Proposition 2.33. Let A(R,α) be an Armendariz ring. If R is α-semicommutative,
then A(R,α) is strongly α-semicommutative.

Proof. Let f(t) = Σm
i=0(x−iaix

i)ti, g(t) = Σn
j=0(x−jbjx

j)tj ∈ A(R,α)[t] with

f(t)g(t) = 0. Since A(R,α) is Armendariz, we have (x−iaix
i)(x−jbjx

j) = 0,
and so x−(i+j)(αj(ai)α

i(bj))x
(i+j) = 0. This implies that αj(ai)α

i(bj) = 0,
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and so αj+k(ai)α
i+k(bj) = 0. Hence αj+k(ai)Rα

i+k+1(bj) = 0. Since R is α-
semicommutative, for any h(t) = Σp

k=0(x−kckx
k)tk ∈ A(R,α)[t], we have

f(t)h(t)g(t) = (Σm
i=0(x−iaix

i)ti)(Σp
k=0(x−kckx

k)tk)α(Σn
j=0(x−jbjx

j)tj)

= (Σm+p
i+k=0(x−iaix

i)(x−kckx
k)ti+k)(Σn

j=0(x−jα(bj)x
j)tj)

= (Σm+p
i+k=0(x−(i+k)(αk(ai)α

i(ck))xi+k)ti+k)(Σn
j=0(x−jα(bj)x

j)tj)

= (Σm+n+p
i+j+k=0(x−(i+k)(αk(ai)α

i(ck))xi+k)(x−jα(bj)x
j)ti+j+k

= (Σm+n+p
i+j+k=0(x−(i+j+k)(αj(αk(ai)α

i(ck))αi+k)(α(bj))(x
i+j+k)ti+j+k

= (Σm+n+p
i+j+k=0(x−(i+j+k)(αk+j(ai)α

i+j(ck)αi+k+1(bj))(x
i+j+k)ti+j+k.

As (αk+j(ai)α
i+j(ck)αi+k+1(bj) = 0, f(t)h(t)α(g(t)) = 0. So A(R,α) is strongly

α-semicommutative. 2

Corollary 2.34. Let A(R,α) be an Armendariz ring. If R is semicommutative,
then A(R,α) is strongly semicommutative.
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