KYUNGPOOK Math. J. 58(2018), 203-219
https://doi.org/10.5666/KMJ.2018.58.2.203
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Extensions of Strongly α-semicommutative Rings

Ayoub Elshokry* and Eltiyeb Ali
Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China
Department of Mathematics,Faculty of Education, University of Khartoum, Omdurman, Sudan
e-mail: ayou1975@yahoo.com and eltiyeb76@gmail.com
Liu ZhongKui
Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China
e-mail: liuzk@nwnu.edu.cn

Abstract. This paper is devoted to the study of strongly α-semicommutative rings, a generalization of strongly semicommutative and α-rigid rings. Although the n-by- n upper triangular matrix ring over any ring with identity is not strongly $\bar{\alpha}$-semicommutative for $n \geq 2$, we show that a special subring of the upper triangular matrix ring over a reduced ring is strongly $\bar{\alpha}$-semicommutative under some additional conditions. Moreover, it is shown that if R is strongly α-semicommutative with $\alpha(1)=1$ and S is a domain, then the Dorroh extension D of R by S is strongly $\bar{\alpha}$-semicommutative.

1. Introduction

Throughout this paper, R denotes an associative ring with identity and α denotes a nonzero and non-identity endomorphism, unless specified otherwise. A ring R is called semicommutative, if for all $a, b \in R, a b=0$ implies $a R b=0$. This is equivalent to the usual definition by [18, Lemma 1.2] or [8, Lemma 1]. Properties, examples and counterexamples of semicommutative rings were given in Huh, Lee and Smoktunowicz [8], Kim and Lee [10], Liu [13] and Yang [19]. One of general-

[^0]izations of semicommutative rings was investigated by Liu and Zhao in [14].
Recall that an endomorphism α of a ring R is called rigid [11] if for $a \in R$, $a \alpha(a)=0$ implies $a=0$, and R is called an α-rigid ring [6] if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism, and α-rigid rings are reduced rings by [6, Proposition 5]. Due to [1], an endomorphism α of a ring R is called semicommutative if whenever $a b=0$ for $a, b \in R, a R \alpha(b)=0$. A ring R is called α-semicommutative if there exists a semicommutative endomorphism α of R. Gang and Ruijuan [5] called a ring R strongly semicommutative, if whenever polynomials $f(x), g(x)$ in $R[x]$ satisfy $f(x) g(x)=0$, then $f(x) R[x] g(x)=0$. In general the polynomial rings over α-semicommutative rings need not be α-semicommutative. In this paper, we consider the α-semicommutative rings over which polynomial rings are also α semicommutative and we call them strongly α-semicommutative rings, i.e., if α is an endomorphism of R, then α is called strongly semicommutative if whenever polynomials $f(x), g(x) \in R[x]$ satisfy $f(x) g(x)=0$, then $f(x) R[x] \alpha(g(x))=0$. A ring R is called strongly α-semicommutative if there exists a strongly semicommutative endomorphism α of R. Clearly strongly α-semicommutative rings are α semicommutative but not conversely. If R is Armendariz, then these two concepts coincide (see, Proposition 2.11). We characterize α-rigid rings by showing that a ring R is α-rigid if and only if R is a reduced strongly α-semicommutative ring and α is a monomorphism. It is also shown that a ring R is strongly α-semicommutative if and only if the polynomial ring $R[x]$ over R is strongly α-semicommutative. Some extensions of α-semicommutative rings are considered.

2. Strongly α-semicommutative Rings

In this section we introduce the concept of a strongly α-semicommutative ring and study its properties. Observe that the notion of strongly α-semicommutative rings not only generalizes that of α-rigid rings, but also extends that of strongly semicommutative rings. We start by the following definition.

Definition 2.1. An endomorphism α of a ring R is called strongly semicommutative if whenever polynomials $f(x), g(x) \in R[x]$ satisfy $f(x) g(x)=0$, then $f(x) R[x] \alpha(g(x))=0$. A ring R is called strongly α-semicommutative if there exists a strongly semicommutative endomorphism α of R.

It is clear that a ring R is strongly semicommutative, if R is strongly $I_{R^{-}}$ semicommutative, where I_{R} is the identity endomorphism of R. It is easy to see that every subring S with $\alpha(S) \subseteq S$ of a strongly α-semicommutative ring is also strongly α-semicommutative. For any $i \in I$, let R_{i} be strongly α_{i}-semicommutative where α_{i} is an endomorphism of R_{i}. Set $W=\Pi_{i \in I} R_{i}$. Define an endomorphism α of W as following:

$$
\alpha\left(a_{i}\right)_{i \in I}=\left(\alpha_{i}\left(a_{i}\right)\right)_{i \in I}
$$

Then it is easy to see that W is strongly α-semicommutative.

Remark 2.2. Let R be a strongly α-semicommutative ring with $f(x) g(x)=0$ for $f(x), g(x) \in R[x]$. Then $f(x) R[x] \alpha(g(x))=0$ and, in particular, $f(x) \alpha(g(x))=$ 0 . Since R is strongly α-semicommutative, we get $f(x) R[x] \alpha^{2}(g(x))=0$. So, by induction hypothesis, we obtain $f(x) R[x] \alpha^{k}(g(x))=0$ and $f(x) \alpha^{k}(g(x))=0$, for any positive integer k.

The following example shows that there exists an endomorphism α of strongly semicommutative ring R such that R is not strongly α-semicommutative.

Example 2.3. Let \mathbb{Z}_{2} be the ring of integers modulo 2 and consider the ring $R=\mathbb{Z}_{2} \bigoplus \mathbb{Z}_{2}$, with the usual addition and multiplication. Then R is strongly semicommutative, since R is a commutative reduced ring. Now, let $\alpha: R \rightarrow R$ be defined by $\alpha((a, b))=(b, a)$. Then α is an automorphism of R. For $f(x)=$ $(1,0)+(1,0) x$ and $g(x)=(0,1)+(0,1) x$, it is clear that $f(x) g(x)=0$. But $(0,0) \neq$ $((1,0)+(1,0) x)(1,1) x((1,0)+(1,0) x) \in f(x) R[x] \alpha(g(x))$. Thus R is not strongly α-semicommutative.

Lemma 2.4. R is a reduced ring if and only if so is $R[x]$.
Lemma 2.5. A ring R is α-rigid if and only if $R[x]$ is α-rigid.
Theorem 2.6. A ring R is α-rigid if and only if R is a reduced strongly α semicommutative ring and α is a monomorphism.
Proof. (\Rightarrow) Let R be an α-rigid ring. Then R is reduced and α is a monomorphism by [6, p.218]. Assume that $f(x) g(x)=0$, for $f(x), g(x) \in$ $R[x]$. Let $h(x)$ be an arbitrary polynomial of $R[x]$. Then $g(x) f(x)=0$ since $R[x]$ is reduced by Lemma 2.4. Thus $f(x) h(x) \alpha(g(x)) \alpha(f(x) h(x) \alpha(g(x)))=$ $f(x) h(x) \alpha(g(x) f(x)) \alpha(h(x)) \alpha^{2}(g(x))=0$. Since R is α-rigid, $f(x) h(x) \alpha(g(x))=0$ by Lemma 2.5 so $f(x) R[x] \alpha(g(x))=0$. Thus R is strongly α-semicommutative.
(\Leftarrow) Assume that $f(x) \alpha(f(x))=0$ for $f(x) \in R[x]$. Since R is reduced and strongly α-semicommutative, $\alpha(f(x)) f(x)=0$ and so $\alpha(f(x)) R[x] \alpha(f(x))=0$. Hence $\alpha\left((f(x))^{2}\right)=0$ and so $f(x)=0$, since α is a monomorphism and R is reduced. Therefore R is α-rigid.

The following examples show that the condition " R is reduced ring" and " α is a monomorphism" in Theorem 2.6 cannot be dropped respectively.

Example 2.7. Let \mathbb{Z} be the ring of integers. Consider $R=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}$. Let $\alpha: R \rightarrow R$ be an endomorphism defined by $\alpha\left(\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}a & -b \\ 0 & a\end{array}\right)$. Note that α is an automorphism. By [1, Example 2.5(1)] R is not reduced and hence R is not α-rigid. Thus $R[x]$ is not α-rigid by Lemma 2.5.

Let $f(x) g(x)=0$ for $f(x)=\left(\begin{array}{cc}f_{0}(x) & f_{1}(x) \\ 0 & f_{0}(x)\end{array}\right), g(x)=\left(\begin{array}{cc}g_{0}(x) & g_{1}(x) \\ 0 & g_{0}(x)\end{array}\right) \in$ $R[x]$. Then $f_{0}(x) g_{0}(x)=0$ and $f_{0}(x) g_{1}(x)+f_{1}(x) g_{0}(x)=0$. For $h(x)=$

$$
\begin{aligned}
& \left(\begin{array}{cc}
h_{0}(x) & h_{1}(x) \\
0 & h_{0}(x)
\end{array}\right) \in R[x], \text { we have } \\
& \left(\begin{array}{cc}
f_{0}(x) & f_{1}(x) \\
0 & f_{0}(x)
\end{array}\right)\left(\begin{array}{cc}
h_{0}(x) & h_{1}(x) \\
0 & h_{0}(x)
\end{array}\right) \alpha\left(\left(\begin{array}{cc}
g_{0}(x) & g_{1}(x) \\
0 & g_{0}(x)
\end{array}\right)\right) \\
& =\left(\begin{array}{cc}
f_{0}(x) h_{0}(x) g_{0}(x) & -f_{0}(x) h_{0}(x) g_{1}(x)+f_{0}(x) h_{1}(x) g_{0}(x)+f_{1}(x) h_{0}(x) g_{0}(x) \\
0 & f_{0}(x) h_{0}(x) g_{0}(x)
\end{array}\right) .
\end{aligned}
$$

Since $f_{0}(x) g_{0}(x)=0, f_{0}(x)=0$ or $g_{0}(x)=0$. If $f_{0}(x)=0$ then $f_{1}(x) g_{0}(x)=0$. So $f(x) R[x] \alpha(g(x))=0$. If $g_{0}(x)=0$ then $f_{0}(x) g_{1}(x)=0$. Again $f(x) R[x] \alpha(g(x))=0$. Thus R is strongly α-semicommutative.

Example 2.8. Let F be a field and $R=F[x]$ the polynomial ring over F. Define $\alpha: R[x] \rightarrow R[x]$ by $\alpha(f(x))=f(0)$ where $f(x) \in R[x]$. Then $R[x]$ is a commutative domain (and so reduced) and α is not a monomorphism. If $f(x) g(x)=0$ for $f(x), g(x) \in R[x]$ then $f(x)=0$ or $g(x)=0$, and so $f(x)=0$ or $\alpha(g(x))=0$. Hence $f(x) R[x] \alpha(g(x))=0$, and thus R is strongly α-semicommutative. Note that R is not α-rigid, since $x \alpha(x)=0$ for $0 \neq x \in R$.

Observe that if R is a domain then R is both strongly semicommutative and strongly α-semicommutative for any endomorphism α of R. Example 2.7 also shows that there exists a strongly α-semicommutative ring R which is not a domain. According to Cohn [4], a ring R is called reversible if $a b=0$ implies $b a=0$ for $a, b \in R$. Baser and et al. [2] called a ring R right (respectively, left) α-reversible if there exists a right (respectively, left) reversible endomorphism α of R. A ring is α-reversible if it is both left and right α-reversible.

Lemma 2.9.([16, Proposition 3]) A reduced α-reversible ring is α-semicommutative.
Proposition 2.10. Let R be a reduced and α-reversible ring. Then R is strongly α-semicommutative.
Proof. Let $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{j=0}^{m} b_{j} x^{j} \in R[x]$ be such that $f(x) g(x)=$ $0=\sum_{s=0}^{n+m} \Sigma_{i+j=s} a_{i} b_{j} x^{s}$. Since every reduced ring is an Armendariz ring, we obtain $a_{i} b_{j}=0$. Then $\alpha\left(b_{j}\right) a_{i}=0$ (by α-reversibility). Now for arbitrary element $h(x)=\sum_{k=0}^{r} c_{k} x^{k} \in R[x]$, we have $\alpha\left(b_{j}\right) a_{i} c_{k}=0$ for each i, j, k, so $a_{i} c_{k} \alpha\left(b_{j}\right)=0$ (by reducibility). Hence, $f(x) h(x) \alpha(g(x))=0$. Therefore R is strongly α-semicommutative.

Rege and Chhawchharia [17] called a ring R an Armendariz ring if whenever polynomials $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}, g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in R[x]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i and j. Hong et al. [7] called a ring $R \alpha$ Armendariz if whenever $f(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}, g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in$ $R[x ; \alpha]$ satisfy $f(x) g(x)=0$, then $a_{i} b_{j}=0$ for each i and j.
Proposition 2.11. Let R be an Armendariz ring. If R is α-semicommutative, then R is strongly α-semicommutative.
Proof. Suppose that $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{j=0}^{m} b_{j} x^{j} \in R[x]$ satisfy $f(x) g(x)=0$.

Then, since R is Armendariz, each $a_{i} b_{j}$ is zero, additionally R is α-semicommutative, therefore $a_{i} c_{k} \alpha\left(b_{j}\right)=0$ for any element c_{k} in R for all i, j, k. Now it is easy to check that $f(x) h(x) \alpha(g(x))=0$ for any $h(x)=\Sigma_{k=0}^{r} c_{k} x^{k} \in R[x]$.

Lemma 2.12.([10, Proposition 3.1(2)]) If R is a reversible α-Armendariz ring, then R is α-semicommutative.

Liu and Yang [20] called a ring R strongly reversible, if whenever polynomials $f(x), g(x) \in R[x]$ satisfy $f(x) g(x)=0$, then $g(x) f(x)=0$.

Proposition 2.13. If R is a strongly reversible α-Armendariz ring, then R is strongly α-semicommutative.
Proof. Let $f(x) g(x)=0$, for $f(x), g(x) \in R[x]$. Then $g(x) f(x)=0$ since R is strongly reversible. By [7, Proposition 1.3(1)], we obtain $\alpha(g(x)) f(x)=0$, and so $\alpha(g(x)) f(x) h(x)=0$ for all $h(x) \in R[x]$. Hence, $f(x) h(x) \alpha(g(x))=0$ for all $h(x) \in R[x]$ since R is strongly reversible and $f(x) R[x] \alpha(g(x))=0$. Therefore, R is strongly α-semicommutative.

Recall that an element u of a ring R is right regular if $u r=0$ implies $r=0$ for $r \in R$. Similarly, left regular elements can be defined. An element is regular if it is both left and right regular (and hence not a zero divisor).

Proposition 2.14. Let Δ be a multiplicatively closed subset of a ring R consisting of central regular elements. Then R is strongly α-semicommutative if and only if so is $\Delta^{-1} R$.
Proof. It is enough to show that the necessity. Suppose that R is strongly α-semicommutative. Let $F(x) G(x)=0$, for $F(x)=u^{-1} f(x)$ and $G(x)=$ $v^{-1} g(x) \in\left(\Delta^{-1} R\right)[x]$ where u, v are regular and $f(x), g(x) \in R[x]$. Since Δ is contained in the center of R we have $0=F(x) G(x)=u^{-1} f(x) v^{-1} g(x)=$ $\left(u^{-1} v^{-1}\right) f(x) g(x)=(u v)^{-1} f(x) g(x)$ and so $f(x) g(x)=0$. Since R is strongly α-semicommutative, $f(x) R[x] \alpha(g(x))=0$ and $f(x)\left(s^{-1} R\right)[x] \alpha(g(x))=0$ for any regular element s. This implies $F(x)\left(\Delta^{-1} R\right)[x] \alpha(G(x))=0$. Therefore $\Delta^{-1} R$ is strongly α-semicommutative.

The ring of Laurent polynomials in x with coefficients in a ring R, denoted by $R\left[x ; x^{-1}\right]$, consists of all formal sums $\sum_{i=k}^{n} m_{i} x^{i}$ with obvious addition and multiplication, where $m_{i} \in R$ and k, n are (possibly negative) integers.
Corollary 2.15. Let R be a ring with $\alpha(1)=1$. Then $R[x]$ is strongly α semicommutative if and only if $R\left[x ; x^{-1}\right]$ is strongly α-semicommutative.
Corollary 2.16. Let R be an Armendariz ring. Then the following are equivalent:
(1) R is α-semicommutative.
(2) R is strongly α-semicommutative.
(3) $R\left[x ; x^{-1}\right]$ is strongly α-semicommutative.

Proposition 2.17. Let R be a ring, e a central idempotent of R, with $\alpha(e)=e$. Then the following statements are equivalent:
(1) R is strongly α-semicommutative rings.
(2) $e R$ and $(1-e) R$ are strongly α-semicommutative rings.

Proof. (1) $\Leftrightarrow(2)$ This is straightforward since subrings and finite direct products of strongly α-semicommutative rings are strongly α-semicommutative.

We denote by $M_{n}(R)$ and $T_{n}(R)$ the $n \times n$ matrix ring and $n \times n$ upper triangular matrix ring over R, respectively.

Given a ring R and a bimodule ${ }_{R} M_{R}$, the trivial extension of R by M is the ring $T(R, M)=R \oplus M$ with the usual addition and the following multiplication $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)$. This is isomorphic to the ring of all matrices $\left(\begin{array}{cc}r & m \\ 0 & r\end{array}\right)$, where $r \in R, m \in M$ and the usual matrix operations are used.

For an endomorphism α of a ring R and the trivial extension $T(R, R)$ of R, $\bar{\alpha}: T(R, R) \rightarrow T(R, R)$ defined by $\bar{\alpha}\left(\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}\alpha(a) & \alpha(b) \\ 0 & \alpha(a)\end{array}\right)$ is an endomorphism of $T(R, R)$. Since $T(R, 0)$ is isomorphic to R, we can identify the restriction of $\bar{\alpha}$ by $T(R, 0)$ to α. Notice that the trivial extension of a α-semicommutative ring is not $\bar{\alpha}$-semicommutative by [1, Example 2.9]. Now, we may ask whether the trivial extension $T(R, R)$ is strongly $\bar{\alpha}$-semicommutative if R is strongly α semicommutative. But the following example erases the possibility.
Example 2.18. Consider the strongly α-semicommutative ring $R=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right) \right\rvert\,\right.$ $a, b \in \mathbb{Z}\}$ with an endomorphism α defined by $\alpha\left(\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}a & -b \\ 0 & a\end{array}\right)$ in Example 2.7. For
$A=\left(\begin{array}{lc}\left(\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right) & \left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right) \\ \left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)\end{array}\right), B=\left(\begin{array}{ll}\left(\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)\end{array}\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right)\right) ~ \in T(R, R)$
we have $A B=0$. However, for

$$
\left.C=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right)\right) \in T(R, R),
$$

we obtain

$$
0 \neq\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 2 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)\right)=A C \bar{\alpha}(B) \in A T(R, R) \bar{\alpha}(B) .
$$

Thus, $T(R, R)$ is not strongly $\bar{\alpha}$-semicommutative.
It was shown in [1, Proposition 2.10], that if R is a reduced α-semicommutative ring, then $T(R, R)$ is an $\bar{\alpha}$-semicommutative. Here we have the following results.

Proposition 2.19. Let R be a reduced ring. If R is α-semicommutative, then $T(R, R)$ is strongly $\bar{\alpha}$-semicommutative.
Proof. Let $f(x)=\left(f_{0}(x), f_{1}(x)\right), g(x)=\left(g_{0}(x), g_{1}(x)\right) \in T(R, R)[x]$ with $f(x) g(x)=0$. We shall prove $f(x) T(R, R)[x] \alpha(g(x))=0$. Now we have

$$
\begin{align*}
f_{0}(x) g_{0}(x) & =0 \tag{2.1}\\
f_{0}(x) g_{1}(x)+f_{1}(x) g_{0}(x) & =0 \tag{2.2}
\end{align*}
$$

Since R is reduced, $R[x]$ is reduced. Therefore, (2.1) implies $g_{0}(x) f_{0}(x)=0$. Multiplying (2.2) on the left side by $g_{0}(x)$ we get $f_{1}(x) g_{0}(x)=0$, and so $f_{0}(x) g_{1}(x)=0$. Let $f(x)=\Sigma_{i=0}^{n}\left(a_{i}, b_{i}\right) x^{i}, g(x)=\sum_{j=0}^{m}\left(a_{j}^{\prime}, b_{j}^{\prime}\right) x^{j}$, where $f_{0}(x)=\Sigma_{i=0}^{n} a_{i} x^{i}, f_{1}(x)=$ $\sum_{i=0}^{n} b_{i} x^{i}, g_{0}(x)=\sum_{j=0}^{m} a_{j}^{\prime} x^{j}$ and $g_{1}(x)=\sum_{j=0}^{m} b_{j}^{\prime} x^{j}$. Since every reduced ring is an Armendariz ring, we obtain that $a_{i} a_{j}^{\prime}=0, a_{i} b_{j}^{\prime}=0, b_{i} a_{j}^{\prime}=0$ for all i, j by the preceding results. With these facts and the fact that R is α-semicommutative, we have $a_{i} c_{k} \alpha\left(a_{j}^{\prime}\right)=0, a_{i} c_{k} \alpha\left(b_{j}^{\prime}\right)=0, a_{i} d_{k} \alpha\left(b_{j}^{\prime}\right)=0, b_{i} c_{k} \alpha\left(a_{j}^{\prime}\right)=0$, for any elements c_{k}, d_{k}. Thus, $f(x) h(x) \alpha(g(x))=0$, for any arbitrary $h(x)=\Sigma_{k=0}^{r}\left(c_{k}, d_{k}\right) x^{k} \in R[x]$. This implies that $T(R, R)$ is strongly $\bar{\alpha}$-semicommutative.

The trivial extension $T(R, R)$ of a ring R is extended to

$$
S_{3}(R)=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}
$$

and an endomorphism α of a ring R is also extended to the endomorphism $\bar{\alpha}$ of $S_{3}(R)$ defined by $\bar{\alpha}\left(\left(a_{i j}\right)\right)=\left(\bar{\alpha}\left(a_{i j}\right)\right)$. There exists a reduced ring R such that $S_{3}(R)$ is not strongly $\bar{\alpha}$-semicommutative by the following example.

Example 2.20. We consider the commutative reduced ring $R=\mathbb{Z}_{2} \bigoplus \mathbb{Z}_{2}$, and the automorphism α of R defined by $\alpha((a, b))=(b, a)$, in Example 2.3. Then $S_{3}(R)$ is not strongly $\bar{\alpha}$-semicommutative. For $A=\left(\begin{array}{ccc}(1,0) & (0,0) & (0,0) \\ (0,0) & (1,0) & (0,0) \\ (0,0) & (0,0) & (1,0)\end{array}\right)$, $B=\left(\begin{array}{ccc}(0,1) & (0,0) & (0,0) \\ (0,0) & (0,1) & (0,0) \\ (0,0) & (0,0) & (0,1)\end{array}\right) \in S_{3}(R)$, then $A B=0$, but $A A \bar{\alpha}(B)=A \neq 0$. Thus $A S_{3}(R) \bar{\alpha}(B) \neq 0$, and therefore $S_{3}(R)$ is not strongly $\bar{\alpha}$-semicommutative.

However, we obtain that $S_{3}(R)$ is strongly $\bar{\alpha}$-semicommutative for a reduced α semicommutative ring R by the similar method to the proof of Proposition 2.19 as follows:

Proposition 2.21. Let R be a reduced ring. If R is α-semicommutative, then

$$
S_{3}(R)=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in R\right\}
$$

is strongly $\bar{\alpha}$-semicommutative.
Proof. For

$$
\left(\begin{array}{ccc}
a_{1} & b_{1} & c_{1} \\
0 & a_{1} & d_{1} \\
0 & 0 & a_{1}
\end{array}\right),\left(\begin{array}{ccc}
a_{2} & b_{2} & c_{2} \\
0 & a_{2} & d_{2} \\
0 & 0 & a_{2}
\end{array}\right) \in S_{3}(R),
$$

we can denote their addition and multiplication by

$$
\begin{gathered}
\left(a_{1}, b_{1}, c_{1}, d_{1}\right)+\left(a_{2}, b_{2}, c_{2}, d_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}, d_{1}+d_{2}\right) \\
\left(a_{1}, b_{1}, c_{1}, d_{1}\right)\left(a_{2}, b_{2}, c_{2}, d_{2}\right)=\left(a_{1} a_{2}, a_{1} b_{2}+b_{1} a_{2}, a_{1} c_{2}+b_{1} d_{2}+c_{1} a_{2}, a_{1} d_{2}+d_{1} a_{2}\right)
\end{gathered}
$$

respectively. So every polynomial in $S_{3}[x]$ can be expressed in the form of $\left(f_{0}, f_{1}, f_{2}, f_{3}\right)$ for some f_{i} 's in $R[x]$. Let $f(x)=\left(f_{0}(x), f_{1}(x), f_{2}(x), f_{3}(x)\right), g(x)=$ $\left(g_{0}(x), g_{1}(x), g_{2}(x), g_{3}(x)\right) \in S_{3}[x]$ with $f(x) g(x)=0$. Then $f(x) g(x)=\left(f_{0}(x) g_{0}(x)\right.$, $\left.f_{0}(x) g_{1}(x)+f_{1}(x) g_{0}(x), f_{0}(x) g_{2}(x)+f_{1}(x) g_{3}(x)+f_{2}(x) g_{0}(x), f_{0}(x) g_{3}(x)+f_{3}(x) g_{0}(x)\right)$, we shall prove $f(x) S_{3}(R)[x] \alpha(g(x))=0$. So we have the following system of equations:

$$
\begin{align*}
f_{0}(x) g_{0}(x) & =0, \tag{2.3}\\
f_{0}(x) g_{1}(x)+f_{1}(x) g_{0}(x) & =0, \tag{2.4}\\
f_{0}(x) g_{2}(x)+f_{1}(x) g_{3}(x)+f_{2}(x) g_{0}(x) & =0, \tag{2.5}\\
f_{0}(x) g_{3}(x)+f_{3}(x) g_{0}(x) & =0 . \tag{2.6}
\end{align*}
$$

Use the fact that $R[x]$ is reduced. From Eq. (2.3), we get $g_{0}(x) f_{0}(x)=0$. If we multiply Eq. (2.4), on the right side by $g_{0}(x)$, then $0=\left(f_{0}(x) g_{1}(x)+\right.$ $\left.f_{1}(x) g_{0}(x)\right) g_{0}(x)=f_{1}(x) g_{0}^{2}(x)$, and so $f_{1}(x) g_{0}(x)=0$ and $f_{0}(x) g_{1}(x)=0$. Similarly, from Eq. (2.6), we have $f_{3}(x) g_{0}(x)=0$, and $f_{0}(x) g_{3}(x)=0$. Also, in Eq. (2.5), $0=\left(f_{0}(x) g_{2}(x)+f_{1}(x) g_{3}(x)+f_{2}(x) g_{0}(x)\right) g_{0}(x)=f_{2}(x) g_{0}^{2}(x)$ implies $f_{2}(x) g_{0}(x)=0$ and

$$
\begin{equation*}
f_{0}(x) g_{2}(x)+f_{1}(x) g_{3}(x)=0 . \tag{2.7}
\end{equation*}
$$

Multiplying (2.7) on left side by $f_{0}(x)$ gives $0=f_{0}(x)\left(f_{0}(x) g_{2}(x)+f_{1}(x) g_{3}(x)\right)=$ $f_{0}^{2}(x) g_{2}(x)$, and so $f_{0}(x) g_{2}(x)=0$ hence $f_{1}(x) g_{3}(x)=0$. Let

$$
f(x)=\sum_{i=0}^{n}\left(\begin{array}{ccc}
a_{i} & b_{i} & c_{i} \\
0 & a_{i} & d_{i} \\
0 & 0 & a_{i}
\end{array}\right) x^{i}, g(x)=\sum_{j=0}^{m}\left(\begin{array}{ccc}
a_{j}^{\prime} & b_{j}^{\prime} & c_{j}^{\prime} \\
0 & a_{j}^{\prime} & d_{j}^{\prime} \\
0 & 0 & a_{j}^{\prime}
\end{array}\right) x^{j}
$$

and $h(x)=\sum_{k=0}^{r}\left(\begin{array}{ccc}a_{k}^{\prime \prime} & b_{k}^{\prime \prime} & c_{k}^{\prime \prime} \\ 0 & a_{k}^{\prime \prime} & d_{k}^{\prime \prime} \\ 0 & 0 & a_{k}^{\prime \prime}\end{array}\right) x^{k} \in S_{3}(R)$,
where $f_{0}(x)=\sum_{i=0}^{n} a_{i} x^{i}, f_{1}(x)=\sum_{i=0}^{n} b_{i} x^{i}, f_{2}(x)=\sum_{i=0}^{n} c_{i} x^{i}, f_{3}(x)=\sum_{i=0}^{n} d_{i} x^{i}, g_{0}(x)$ $=\sum_{j=0}^{m} a_{j}^{\prime} x^{j}, g_{1}(x)=\sum_{j=0}^{m} b_{j}^{\prime} x^{j}, g_{2}(x)=\sum_{j=0}^{m} c_{j}^{\prime} x^{j}, g_{3}(x)=\sum_{j=0}^{m} d_{j}^{\prime} x^{j}$. Since every reduced ring is an Armendariz ring, we obtain that $a_{i} a_{j}^{\prime}=0, a_{i} b_{j}^{\prime}=0, b_{i} a_{j}^{\prime}=$ $0, a_{i} c_{j}^{\prime}=0, b_{i} d_{j}^{\prime}=0, c_{i} a_{j}^{\prime}=0, a_{i} d_{j}^{\prime}=0, d_{i} a_{j}^{\prime}=0$, for all i, j by the preceding results. With these facts and the fact that R is α-semicommutative ring, we have $a_{i} a_{k}^{\prime \prime} \alpha\left(a_{j}^{\prime}\right)=0, a_{i} a_{k}^{\prime \prime} \alpha\left(b_{j}^{\prime}\right)=0, b_{i} a_{k}^{\prime \prime} \alpha\left(a_{j}^{\prime}\right)=0, b_{i} a_{k}^{\prime \prime} \alpha\left(d_{j}^{\prime}\right)=0, a_{i} a_{k}^{\prime \prime} \alpha\left(c_{j}^{\prime}\right)=$ $0, a_{i} b_{k}^{\prime \prime} \alpha\left(d_{j}^{\prime}\right)=0, b_{i} a_{k}^{\prime \prime} \alpha\left(d_{j}^{\prime}\right)=0, a_{i} c_{k}^{\prime \prime} \alpha\left(a_{j}^{\prime}\right)=0, b_{i} d_{k}^{\prime \prime} \alpha\left(a_{j}^{\prime}\right)=0, c_{i} a_{k}^{\prime \prime} \alpha\left(a_{j}^{\prime}\right)=$ $0, a_{i} a_{k}^{\prime \prime} \alpha\left(d_{j}^{\prime}\right)=0, a_{i} d_{k}^{\prime \prime} \alpha\left(a_{j}^{\prime}\right)=0, d_{i} a_{k}^{\prime \prime} \alpha\left(a_{j}^{\prime}\right)=0$. Consequently, we get the equation:

$$
\begin{gathered}
f(x) h(x) \alpha(g(x))=\left(f_{0}(x), f_{1}(x), f_{2}(x), f_{3}(x)\right) S_{3}(R)[x] \alpha\left(\left(g_{0}(x), g_{1}(x), g_{2}(x), g_{3}(x)\right)\right. \\
=\left(f_{0}(x) S_{3}(R)[x] \alpha\left(g_{0}(x)\right), f_{0}(x) S_{3}(R)[x] \alpha\left(g_{1}(x)\right)+f_{1}(x) S_{3}(R)[x] \alpha\left(g_{0}(x)\right)\right. \\
\quad f_{0}(x) S_{3}(R)[x] \alpha\left(g_{2}(x)\right)+f_{1}(x) S_{3}(R)[x] \alpha\left(g_{3}(x)\right)+f_{2}(x) S_{3}(R)[x] \alpha\left(g_{0}(x)\right), \\
\left.\quad f_{0}(x) S_{3}(R)[x] \alpha\left(g_{3}(x)\right)+f_{3}(x) S_{3}(R)[x] \alpha\left(g_{0}(x)\right)\right)=0 .
\end{gathered}
$$

Therefore $S_{3}(R)$ is strongly $\bar{\alpha}$-semicommutative.
Let R be a ring. Define a subring S_{n} of the n-by- n full matrix ring $M_{n}(R)$ over R as follows:

$$
S_{n}(R)=\left\{\left.\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}
$$

For an α-rigid ring R and $n \geq 2$, by Proposition 2.21 , we may suspect that $S_{n}(R)$ may be strongly $\bar{\alpha}$-semicommutative ring for $n \geq 4$. But the possibility is eliminated by the next example.

Example 2.22. Let R be an α-rigid and

$$
S_{4}=\left\{\left.\left(\begin{array}{cccc}
a & a_{12} & a_{13} & a_{14} \\
0 & a & a_{23} & a_{24} \\
0 & 0 & a & a_{34} \\
0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a, a_{i j} \in R\right\}
$$

Note that if R is an α-rigid ring, then $\alpha(e)=e$, for $e^{2}=e \in R$ by [6, Proposition
5]. In particular $\alpha(1)=1$. For $A=\left(\begin{array}{cccc}0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right), B=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \in$
$S_{4}(R)$, we obtain $A B=0$. But we have $0 \neq\left(\begin{array}{cccc}0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)=A C \bar{\alpha}(B) \in$ $S_{4}(R)$, for $C=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \in S_{4}(R)$. Thus $A C \bar{\alpha}(B) \neq 0$ and so $S_{4}(R)$ is not strongly $\bar{\alpha}$-semicommutative. Similarly, it can be proved that $S_{n}(R)$ is not strongly $\bar{\alpha}$-semicommutative for $n \geq 5$.

Let R be a ring and let

$$
V_{n}(R)=\left\{\left.S=\left(\begin{array}{ccccccc}
a_{1} & a_{2} & a_{3} & \cdots & a_{n-2} & a & b \\
0 & a_{1} & a_{2} & \cdots & a_{n-3} & a_{n-2} & c \\
0 & 0 & a_{1} & \cdots & a_{n-4} & a_{n-3} & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{1} & a_{2} & a_{3} \\
0 & 0 & 0 & \cdots & 0 & a_{1} & a_{2} \\
0 & 0 & 0 & \cdots & 0 & 0 & a_{1}
\end{array}\right) \right\rvert\, a_{i}, a, b, c \in R\right\}
$$

Note that if $a=c$, then the matrix S is called an upper triangular Toeplitz matrix over R, see [15].

We proved in Proposition 2.21 and Example 2.22 that when R is a reduced ring and R is an α-semicommutative ring, then $S_{3}(R)$ is strongly $\bar{\alpha}$-semicommutative, but $S_{n}(R)$ is not strongly $\bar{\alpha}$-semicommutative for $n \geq 4$. In the next theorem we will show that a special subring $V_{n}(R)$ of $T_{n}(R)$ for any positive integer $n \geq 2$ is strongly $\bar{\alpha}$-semicommutative, where R is a reduced and α-semicommutativethe ring.

Theorem 2.23. Let R be a reduced ring. If R is α-semicommutative, then $V_{n}(R)$ is strongly $\bar{\alpha}$-semicommutative.
Proof. Suppose that

$$
\left(\begin{array}{ccccccc}
a_{1} & a_{2} & a_{3} & \cdots & a_{n-2} & a_{1, n-1} & a_{1 n} \\
0 & a_{1} & a_{2} & \cdots & a_{n-3} & a_{n-2} & a_{2 n} \\
0 & 0 & a_{1} & \cdots & a_{n-4} & a_{n-3} & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{1} & a_{2} & a_{3} \\
0 & 0 & 0 & \cdots & 0 & a_{1} & a_{2} \\
0 & 0 & 0 & \cdots & 0 & 0 & a_{1}
\end{array}\right),\left(\begin{array}{ccccccc}
b_{1} & b_{2} & b_{3} & \cdots & b_{n-2} & b_{1, n-1} & b_{1 n} \\
0 & b_{1} & b_{2} & \cdots & b_{n-3} & b_{n-2} & b_{2 n} \\
0 & 0 & b_{1} & \cdots & b_{n-4} & b_{n-3} & b_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & b_{1} & b_{2} & b_{3} \\
0 & 0 & 0 & \cdots & 0 & b_{1} & b_{2} \\
0 & 0 & 0 & \cdots & 0 & 0 & b_{1}
\end{array}\right)
$$

are in $V_{n}(R)$. So every polynomial in $V_{n}(R)[x]$ can be expressed in the form of $\left(f_{1}, f_{2}, \cdots, f_{n-2}, f_{1, n-1}, f_{1 n}, f_{2 n}\right)$ for some f_{i} 's in $R[x]$. Let $f(x)=\left(f_{0}(x), f_{1}(x)\right.$, $\left.\cdots, f_{2 n}(x)\right), g(x)=\left(g_{0}(x), g_{1}(x), \cdots, g_{2 n}(x)\right) \in V_{n}(R)[x]$ with $f(x) g(x)=0$. We
shall prove $f(x) V_{n}(R)[x] \alpha(g(x))=0$. Now we have the following system of equations:

$$
\begin{align*}
f_{1}(x) g_{1}(x) & =0, \tag{2.8}\\
f_{1}(x) g_{2}(x)+f_{2}(x) g_{1}(x) & =0, \tag{2.9}\\
f_{1}(x) g_{3}(x)+f_{2}(x) g_{2}(x)+f_{3}(x) g_{1}(x) & =0, \\
\vdots & \\
f_{1}(x) g_{n-2}(x)+f_{2}(x) g_{n-3}(x)+\cdots+f_{n-2}(x) g_{1}(x) & =0, \tag{2.10}\\
f_{1}(x) g_{1, n-1}(x)+f_{2}(x) g_{n-2}(x)+\cdots+f_{n-2}(x) g_{2}(x)+f_{1, n-1}(x) g_{1}(x) & =0, \tag{2.11}\\
f_{1}(x) g_{1 n}(x)+f_{2}(x) g_{2 n}(x)+\cdots+f_{1, n-1}(x) g_{2}(x)+f_{1 n}(x) g_{1}(x) & =0, \tag{2.12}\\
f_{1}(x) g_{2 n}(x)+f_{2}(x) g_{n-2}(x)+\cdots+f_{n-2}(x) g_{2}(x)+f_{2 n}(x) g_{1}(x) & =0 .
\end{align*}
$$

Use the fact that $R[x]$ is reduced. From Eq. (2.8), we get $g_{1}(x) f_{1}(x)=0$. If we multiply Eq. (2.9) on the right side by $f_{1}(x)$, then $f_{1}(x) g_{2}(x) f_{1}(x)+$ $f_{2}(x) g_{1}(x) f_{1}(x)=0$. Thus $f_{1}(x) g_{2}(x) f_{1}(x)=0$ and hence $f_{1}(x) g_{2}(x)=0$. From Eq. (2.9) it follows that $f_{2}(x) g_{1}(x)=0$. Continuing in this manner, we can show that $f_{i}(x) g_{j}(x)=0$ when $i+j=2, \ldots, n-1$. Hence $g_{j}(x) f_{i}(x)=0$. Multiplying Eq. (2.10) on the right side by $f_{1}(x)$, we obtain $0=f_{1}(x) g_{1, n-1}(x) f_{1}(x)+f_{2}(x) g_{n-2}(x) f_{1}(x)+\cdots+f_{n-2}(x) g_{2}(x) f_{1}(x)+$ $f_{1, n-1}(x) g_{1}(x) f_{1}(x)=f_{1}(x) g_{1, n-1}(x) f_{1}(x)$. Thus $f_{1}(x) g_{1, n-1}(x)=0$. Hence

$$
\begin{equation*}
f_{2}(x) g_{n-2}(x)+\cdots+f_{n-2}(x) g_{2}(x)+f_{1, n-1}(x) g_{1}(x)=0 \tag{2.13}
\end{equation*}
$$

Multiplying Eq. (2.13) on the right side by $f_{2}(x)$, we obtain

$$
\begin{aligned}
0 & =f_{2}(x) g_{n-2}(x) f_{2}(x)+\cdots+f_{n-2}(x) g_{2}(x) f_{2}(x)+f_{1, n-1}(x) g_{1}(x) f_{2}(x) \\
& =f_{2}(x) g_{n-2}(x) f_{2}(x)
\end{aligned}
$$

Thus $f_{2}(x) g_{n-2}(x)=0$. Continuing in this manner, we can show that $f_{i}(x) g_{j}(x)=0$ when $i+j=n$ and $f_{1}(x) g_{1, n-1}(x)=0, f_{1, n-1}(x) g_{1}(x)=0$. Similarly, from Eq. (2.12), it follows that $f_{1}(x) g_{2 n}(x)=0$ and $f_{2 n}(x) g_{1}(x)=0$. Now multiplying Eq. (2.11) on the right side by $f_{1}(x)$, we have

$$
\begin{aligned}
& \quad 0=f_{1}(x) g_{1 n}(x) f_{1}(x)+f_{2}(x) g_{2 n}(x) f_{1}(x)+f_{3}(x) g_{n-2}(x) f_{1}(x)+\cdots+f_{n-2}(x) g_{3}(x) \\
& f_{1}(x)+f_{1, n-1}(x) g_{2}(x) f_{1}(x)+f_{1 n}(x) g_{1}(x) f_{1}(x)=f_{1}(x) g_{1 n}(x) f_{1}(x) \text {.Thus } f_{1}(x) g_{1 n}(x) \\
& =0 \text {. Hence }
\end{aligned}
$$

$$
\begin{equation*}
f_{2}(x) g_{2 n}(x)+f_{3}(x) g_{n-2}(x)+\cdots+f_{1, n-1}(x) g_{2}(x)+f_{1 n}(x) g_{1}(x)=0 \tag{2.14}
\end{equation*}
$$

If we multiply Eq. (2.14) on the right side by $f_{2}(x)$, then $0=f_{2}(x) g_{2 n}(x) f_{2}(x)+$ $f_{3}(x) g_{n-2}(x) f_{2}(x)+\cdots+f_{1, n-1}(x) g_{2}(x) f_{2}(x)+f_{1 n}(x) g_{1}(x) f_{2}(x)=f_{2}(x) g_{2 n}(x) f_{2}(x)$. Thus $f_{2}(x) g_{2 n}(x)=0$. Continuing in this manner, we can show that $f_{i}(x) g_{j}(x)=0$
when $i+j=n+1, f_{1, n-1}(x) g_{2}(x)=0$ and $f_{1 n}(x) g_{1}(x)=0$. Let

$$
\begin{gathered}
f(x)=\sum_{i=0}^{n}\left(\begin{array}{ccccccc}
a_{1}^{i} & a_{2}^{i} & a_{3}^{i} & \cdots & a_{n-2}^{i} & a_{1, n-1}^{i} & a_{1 n}^{i} \\
0 & a_{1}^{i} & a_{2}^{i} & \cdots & a_{n-3}^{i} & a_{n-2}^{i} & a_{2 n}^{i} \\
0 & 0 & a_{1}^{i} & \cdots & a_{n-4}^{i} & a_{n-3}^{i} & a_{n-2}^{i} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{1}^{i} & a_{2}^{i} & a_{3}^{i} \\
0 & 0 & 0 & \cdots & 0 & a_{1}^{i} & a_{2}^{i} \\
0 & 0 & 0 & \cdots & 0 & 0 & a_{1}^{i}
\end{array}\right) x^{i}, \\
g(x)=\sum_{j=0}^{m}\left(\begin{array}{ccccccc}
b_{1}^{j} & b_{2}^{j} & b_{3}^{j} & \cdots & b_{n-2}^{j} & b_{1, n-1}^{j} & b_{1 n}^{j} \\
0 & b_{1}^{j} & b_{2}^{j} & \cdots & b_{n-3}^{j} & b_{n-2}^{j} & b_{2 n}^{j} \\
0 & 0 & b_{1}^{j} & \cdots & b_{n-4}^{j} & b_{n-3}^{j} & b_{n-2}^{j} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & b_{1}^{j} & b_{2}^{j} & b_{3}^{j} \\
0 & 0 & 0 & \cdots & 0 & b_{1}^{j} & b_{2}^{j} \\
0 & 0 & 0 & \cdots & 0 & 0 & b_{1}^{j}
\end{array}\right) x^{j} \\
\text { and } h(x)=\sum_{k=0}^{r}\left(\begin{array}{ccccccc}
c_{1}^{k} & c_{2}^{k} & c_{3}^{k} & \cdots & c_{n-2}^{k} & c_{1, n-1}^{k} & c_{1 n}^{k} \\
0 & c_{1}^{k} & c_{2}^{k} & \cdots & c_{n n-3}^{k} & c_{n-2}^{k} & c_{2 n}^{k} \\
0 & 0 & c_{1}^{k} & \cdots & c_{n-4}^{k} & c_{n-3}^{k} & c_{n-2}^{k} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & c_{1}^{k} & c_{2}^{k} & c_{3}^{k} \\
0 & 0 & 0 & \cdots & 0 & c_{1}^{k} & c_{2}^{k} \\
0 & 0 & 0 & \cdots & 0 & 0 & c_{1}^{k}
\end{array}\right)
\end{gathered}
$$

where $f_{1}(x)=\sum_{i=0}^{n} a_{i}^{i} x^{i}, f_{2}(x)=\sum_{i=0}^{n} a_{2}^{i} x^{i}, \cdots, f_{n-2}(x)=\sum_{i=0}^{n} a_{n-2}^{i} x^{i}$, $f_{1, n-1}(x)=\sum_{i=0}^{n} a_{1, n-1}^{i} x^{i}, f_{1 n}(x)=\sum_{i=0}^{n} a_{1 n}^{i} x^{i}, f_{2 n}(x)=\sum_{i=0}^{n} a_{2 n}^{i} x^{i}, g_{1}(x)=$ $\sum_{j=0}^{m} b_{1}^{j} x^{j}, g_{2}(x)=\sum_{j=0}^{m} b_{2}^{j} x^{j}, \cdots, g_{n-2}(x)=\sum_{j=0}^{m} b_{n-2}^{j} x^{j}, g_{1, n-1}(x)=\sum_{j=0}^{m} b_{1, n-1}^{j} x^{j}$, $g_{1 n}(x)=\sum_{j=0}^{m} b_{1 n}^{j} x^{j}, g_{2 n}(x)=\sum_{j=0}^{m} b_{2 n}^{j} x^{j}$. Since every reduced ring is an Armendariz ring, we obtain that $a_{1}^{i} b_{1}^{j}=0, a_{1}^{i} b_{2}^{j}=0, a_{2}^{i} b_{1}^{j}=0, a_{1}^{i} b_{3}^{j}=0, a_{2}^{i} b_{2}^{j}=$ $0, a_{3}^{i} b_{1}^{j}=0, \cdots, a_{1}^{i} b_{n-2}^{j}=0, a_{2}^{i} b_{n-3}^{j}=0, \cdots, a_{n-2}^{i} b_{1}^{j}=0, a_{1}^{i} b_{1, n-1}^{j}=0, a_{2}^{i} b_{n-2}^{j}=$ $0, \cdots, a_{n-2}^{i} b_{2}^{j}=0, a_{1, n-1}^{i} b_{1}^{j}=0, a_{1}^{i} b_{1 n}^{j}=0, a_{2}^{i} b_{2 n}^{j}=0, a_{3}^{i} b_{n-1}^{j}=0, \cdots, a_{n-2}^{i} b_{3}^{j}=$ $0, a_{1, n-1}^{i} b_{2}^{j}=0, a_{1 n}^{i} b_{1}^{j}=0, a_{1}^{i} b_{2 n}^{j}=0, a_{2}^{i} b_{n-2}^{j}=0, \cdots, a_{n-2}^{i} b_{2}^{j}=0, a_{2 n}^{i} b_{1}^{j}=0$ for all i, j by the preceding results. With these facts and the fact that R is α semicommutative ring, we have $a_{1}^{i} c_{1}^{k} \alpha\left(b_{1}^{j}\right)=0, a_{1}^{i} c_{1}^{k} \alpha\left(b_{2}^{j}\right)=0, a_{1}^{i} c_{2}^{k} \alpha\left(b_{1}^{j}\right)=0$, $a_{2}^{i} c_{1}^{k} \alpha\left(b_{1}^{j}\right)=0, a_{1}^{i} c_{1}^{k} \alpha\left(b_{3}^{j}\right)=0, a_{1}^{i} c_{2}^{k} \alpha\left(b_{2}^{j}\right)=0, a_{2}^{i} c_{1}^{k} \alpha\left(b_{2}^{j}\right)=0, a_{1}^{i} c_{2}^{k} \alpha\left(b_{1}^{j}\right)=$ $0, a_{2}^{i} c_{2}^{k} \alpha\left(b_{1}^{j}\right)=0, a_{3}^{i} c_{1}^{k} \alpha\left(b_{1}^{j}\right)=0, \cdots, a_{1}^{i} c_{2 n}^{k} \alpha\left(b_{1}^{j}\right)=0, a_{2}^{i} c_{n-2}^{k} \alpha\left(b_{1}^{j}\right)=0, \cdots$, $a_{n-2}^{i} c_{2}^{k} \alpha\left(b_{1}^{j}\right)=0, a_{2 n}^{i} c_{1}^{k} \alpha\left(b_{1}^{j}\right)=0$.

Therefore $V_{n}(R)$ is strongly $\bar{\alpha}$-semicommutative.
The next result can be proved by using the technique used in the proof of [3,

Proposition 2.6]. A ring is called Abelian if every idempotent is central. Reduced rings are clearly Abelian.

Proposition 2.24. Let R be a strongly α-semicommutative ring. Then
(1) $\alpha(1)=1$, where 1 is the identity of R, if and only if $\alpha(e)=e$ for any $e^{2}=e \in R$.
(2) If $\alpha(1)=1$, then R is Abelian.

Let R be an algebra over a commutative ring S. Recall that the Dorroh extension of R by S is the ring $D=R \times S$ with operations $\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right)=\left(r_{1}+r_{2}, s_{1}+s_{2}\right)$ and $\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}+s_{1} r_{2}+s_{2} r_{1}, s_{1} s_{2}\right)$, where $r_{i} \in R$ and $s_{i} \in S$. For an endomorphism α of R, the S-endomorphism $\bar{\alpha}$ of D defined by $\bar{\alpha}(r, s)=(\alpha(r), s)$ is an S-algebra homomorphism.
Proposition 2.25. If R is a strongly α-semicommutative ring with $\alpha(1)=1$ and S is a domain, then the Dorroh extension D of R by S is strongly $\bar{\alpha}$-semicommutative.
Proof. We apply the method in the proof of [3, Proposition 2.8.] Let $f(x)=$ $\left(f_{1}(x), f_{2}(x)\right), g(x)=\left(g_{1}(x), g_{2}(x)\right) \in D(x)$ with $\left(f_{1}(x), f_{2}(x)\right)\left(g_{1}(x), g_{2}(x)\right)=$ 0 . Then $f_{1}(x) g_{1}(x)+f_{2}(x) g_{2}(x)+g_{2}(x) f_{1}(x)=0$ and $f_{2}(x) g_{2}(x)=0$. Since S is a domain, we have $f_{2}(x)=0$ or $g_{2}(x)=0$. If $f_{2}(x)=0$, then $0=f_{1}(x) g_{1}(x)+f_{2}(x) g_{2}(x)+g_{2}(x) f_{1}(x)=f_{1}(x) g_{1}(x)+g_{2}(x) f_{1}(x)$ and so $f_{1}(x)\left(g_{1}(x)+g_{2}(x)\right)=0$. Since R is strongly α-semicommutative with $\alpha(1)=1$, $\left.0=f_{1}(x) t \alpha\left(g_{1}(x)+g_{2}(x)\right)=f_{1}(x) t \alpha\left(g_{1}(x)\right)+f_{1}(x) \operatorname{tg}_{2}(x)\right)$, for all $t \in R$. This yields $\left(f_{1}(x), f_{2}(x)\right)(r, s) \bar{\alpha}\left(g_{1}(x), g_{1}(x)\right)=\left(f_{1}(x) r+s f_{1}(x)\right) \alpha\left(g_{1}(x)\right)+\left(f_{1}(x) r+\right.$ $\left.s f_{1}(x) g_{2}(x), 0\right)=0$ for any $(r, s) \in D$, and hence $\left(f_{1}(x), f_{2}(x)\right) D \bar{\alpha}\left(g_{1}(x), g_{2}(x)\right)=0$. Now let $g_{2}(x)=0$. Then $\left(f_{1}(x)+f_{2}(x)\right) g_{1}(x)=0$, and so $0=\left(f_{1}(x)+\right.$ $\left.f_{2}(x)\right) R \alpha\left(g_{1}(x)\right)=0$. We similarly obtain $\left(f_{1}(x), f_{2}(x)\right) D \bar{\alpha}\left(g_{1}(x), g_{2}(x)\right)=0$, and thus the Dorroh extension D is strongly $\bar{\alpha}$-semicommutative.

Corollary 2.26.([17, Proposition $3.17(2)])$ Let R be an algebra over a commutative domain S, and D be the Dorroh extension of R by S. Then R is strongly semicommutative if and only if D is strongly semicommutative.

Note that the condition $\alpha(1)=1$ in Proposition 2.25 cannot be dropped by the next example.
Example 2.27. Let $R=\mathbb{Z}_{2} \bigoplus \mathbb{Z}_{2}$, and let $\alpha: R \rightarrow R$ defined by $\alpha((a, b))=(0, b)$. Consider the Dorroh extension D of R by the ring of integers \mathbb{Z}_{2}. We clearly have $((1,0), 0)((1,0),-1)=0$, but $((1,0), 0)((1,0), 0) \bar{\alpha}((1,0),-1)=((1,0),-1) \neq 0$ in D. Thus D is not strongly $\bar{\alpha}$-semicommutative.

For an ideal I of R, if $\alpha(I) \subseteq I$, then $\bar{\alpha}: R / I \rightarrow R / I$ defined by $\bar{\alpha}(a+I)=$ $\alpha(a)+I$ is an endomorphism of the factor ring R / I.

There exists a non-identity automorphism α of a ring R such that R / I is strongly $\bar{\alpha}$-semicommutative and I is strongly α-semicommutative for any nonzero proper ideal I of R, but R is not strongly α-semicommutative by the next example.

Example 2.28. Let F be a field. Consider the ring $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ and an endomorphism α of R defined by $\alpha\left(\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)\right)=\left(\begin{array}{cc}a & -b \\ 0 & c\end{array}\right)$. Then R is not strongly α-semicommutative. In fact, for $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 0 & 1\end{array}\right) \in R$, we have $A B=0$, but $0 \neq A\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right) \alpha(B) \in A R \alpha(B)$. Note that for the only nonzero proper ideals of R

$$
I=\left(\begin{array}{cc}
F & F \\
0 & 0
\end{array}\right), J=\left(\begin{array}{cc}
0 & F \\
0 & F
\end{array}\right), K=\left(\begin{array}{cc}
0 & F \\
0 & 0
\end{array}\right)
$$

it can be easily checked that they are strongly α-semicommutative. Since $R / I \cong F$ and $R / J \cong F, R / I$ and R / J are also strongly $\bar{\alpha}$-semicommutative. Finally, the factor ring R / K is reduced and $\bar{\alpha}$ is an identity map on R / K. Thus, R / K is also strongly $\bar{\alpha}$-semicommutative.

Proposition 2.29. Let R be a ring with an endomorphism α, and I an ideal of R with $\alpha(I) \subseteq I$. Suppose that R / I is a strongly $\bar{\alpha}$-semicommutative ring. If I is α-rigid as a ring without identity, then R is strongly α-semicommutative.
Proof. Let $f(x) g(x)=0$ with $f(x), g(x) \in R[x]$. Then we have $f(x) R \alpha(g(x)) \subseteq I[x]$ and $\alpha(g(x)) I \alpha(f(x))=0$, since $\alpha(g(x)) I \alpha(f(x)) \subseteq I[x],\left(\alpha\left((g(x) I \alpha(f(x)))^{2}=0\right.\right.$ and $I[x]$ is reduced. Thus, $(f(x) R \alpha(g(x)) I)^{2}=f(x) R \alpha(g(x)) I f(x) R \alpha(g(x)) I=0$ and so $f(x) R \alpha(g(x)) I=0$, thus $f(x) R \alpha(g(x)) \alpha(f(x) R \alpha(g(x))) \subseteq f(x) R \alpha(g(x)) I=$ 0 since $f(x) R \alpha(g(x)) \subseteq I[x]$ and $\alpha(I) \subseteq I$. Then $f(x) R \alpha(g(x))=0$ as I is α-rigid. Therefore, R is strongly α-semicommutative.

Theorem 2.30. Let α be an endomorphism of a ring R. Then R is strongly α semicommutative if and only if $R[x]$ is strongly α-semicommutative.
Proof. (\Leftarrow) The converse is obvious since R is a subring of $R[x]$.
(\Rightarrow) Assume that R is strongly α-semicommutative. Let $f(y), g(y) \in R[x][y]$ such that $f(y) g(y)=0$. Let

$$
f(y)=f_{0}+f_{1} y+\cdots+f_{m} y^{m}, g(y)=g_{0}+g_{1} y+\cdots+g_{n} y^{n}
$$

and

$$
h(y)=h_{0}+h_{1} y+\cdots+h_{r} y^{r} \in R[x][y] .
$$

We also let $f_{i}=a_{i_{0}}+a_{i_{1}} x+\cdots+a_{i_{w}} x^{i_{w}}, g_{j}=b_{j_{0}}+b_{j_{1}} x+\cdots+b_{j_{v}} x^{j_{v}}, h_{k}=$ $c_{k_{0}}+c_{k_{1}} x+\cdots+c_{k_{u}} x^{k_{u}} \in R[x]$ for each $0 \leq i \leq m, 0 \leq j \leq n$ and $0 \leq k \leq r$, where $a_{i_{0}}, a_{i_{1}}, \cdots, a_{i_{w}}, b_{j_{0}}, b_{j_{1}}, \cdots, b_{j_{v}}, c_{k_{0}}, c_{k_{1}}, \cdots, c_{k_{u}} \in R$. We claim that $p(y) R[x] q(y)=0$. Take a positive integer k such that $k \geq \max$ $\left\{\operatorname{deg}\left(f_{i}\right), \operatorname{deg}\left(g_{j}\right), \operatorname{deg}\left(h_{k}\right)\right\}$, for any $0 \leq i \leq m, 0 \leq j \leq n, 0 \leq k \leq r$, where the degree is as polynomials in $R[x]$ and the degree of the zero polynomial is taken to be 0 . Let $f\left(x^{s}\right)=f_{0}+f_{1} x^{s}+\cdots+f_{n} x^{m s}, g\left(x^{s}\right)=g_{0}+g_{1} x^{s}+\cdots+g_{n} x^{n s}, h\left(x^{s}\right)=$
$h_{0}+h_{1} x^{s}+\cdots+h_{r} x^{r s} \in R[x]$. Then the set of coefficients of the $f_{i}{ }^{\prime} s, g_{j}$'s (respectively, $h_{k^{\prime}}$) is equal to the set of coefficients of $f\left(x^{s}\right), g\left(x^{s}\right)$ (respectively, $h\left(x^{s}\right)$). Since $f(y) g(y)=0, x$ commutes with elements of R in the polynomial ring $R[x]$, we have $f\left(x^{s}\right) g\left(x^{s}\right)=0$, in $R[x]$. Since R is strongly α-semicommutative, we have $f\left(x^{s}\right) R \alpha\left(g\left(x^{s}\right)\right)=0$. Hence $f(y) R[x] \alpha(g(y))=0$, therefore $R[x]$ is strongly α semicommutative.

Corollary 2.31. Let R be a ring. Then R is strongly semicommutative if and only if $R[x]$ is strongly semicommutative.

Corollary 2.32. Let α be an endomorphism of a ring R. Then the following are equivalent:
(1) R is strongly α-semicommutative.
(2) $R[x]$ is strongly α-semicommutative.
(3) $R\left[x ; x^{-1}\right]$ is strongly α-semicommutative.

Let $A(R, \alpha)$ or A be the subset $\left\{x^{-i} a_{i} x^{i} \mid a \in R, i \geq 0\right\}$ of the skew Laurent polynomial ring $R\left[x, x^{-1} ; \alpha\right]$, where $\alpha: R \rightarrow R$ is an injective ring endomorphism of a ring R (see [9] for more details). Elements of $R\left[x, x^{-1} ; \alpha\right]$ are finite sums of elements of the form $x^{-i} b_{j} x^{j}$, where $b \in R$ and i, j are non-negative integers. Multiplication is subject to $x a=\alpha(a) x$ and $a x^{-1}=x^{-1} \alpha(a)$ for all $a \in R$. Note that for each $j \geq 0, x^{-i} a_{i} x^{i}=x^{-(i+j)} \alpha^{j}\left(a_{i}\right) x^{(i+j)}$. It follows that the set $A(R, \alpha)$ of all such elements forms a subring of $R\left[x, x^{-1} ; \alpha\right]$ with

$$
\begin{gathered}
x^{-i} a_{i} x^{i}+x^{-j} b_{j} x^{j}=x^{-(i+j)}\left(\alpha^{j}\left(a_{i}\right)+\alpha^{i}\left(b_{j}\right)\right) x^{(i+j)} \\
\left(x^{-i} a_{i} x^{i}\right)\left(x^{-j} b_{j} x^{j}\right)=x^{-(i+j)}\left(\alpha^{j}\left(a_{i}\right) \alpha^{i}\left(b_{j}\right)\right) x^{(i+j)}
\end{gathered}
$$

for $a, b \in R$ and $i, j \geq 0$. Note that α is actually an automorphism of $A(R, \alpha)$. Let $A(R, \alpha)$ be the ring defined above. Then for the endomorphism α in $A(R, \alpha)$, the map $A(R, \alpha)[t] \rightarrow A(R, \alpha)[t]$ defined by

$$
\Sigma_{i=0}^{m}\left(x^{-i} a_{i} x^{i}\right) t^{i} \rightarrow \sum_{i=0}^{m}\left(x^{-i} \alpha\left(a_{i}\right) x^{i}\right) t^{i}
$$

is an endomorphism of the polynomial ring $A(R, \alpha)[t]$.
Proposition 2.33. Let $A(R, \alpha)$ be an Armendariz ring. If R is α-semicommutative, then $A(R, \alpha)$ is strongly α-semicommutative.
Proof. Let $f(t)=\sum_{i=0}^{m}\left(x^{-i} a_{i} x^{i}\right) t^{i}, g(t)=\sum_{j=0}^{n}\left(x^{-j} b_{j} x^{j}\right) t^{j} \in A(R, \alpha)[t]$ with $f(t) g(t)=0$. Since $A(R, \alpha)$ is Armendariz, we have $\left(x^{-i} a_{i} x^{i}\right)\left(x^{-j} b_{j} x^{j}\right)=0$, and so $x^{-(i+j)}\left(\alpha^{j}\left(a_{i}\right) \alpha^{i}\left(b_{j}\right)\right) x^{(i+j)}=0$. This implies that $\alpha^{j}\left(a_{i}\right) \alpha^{i}\left(b_{j}\right)=0$,
and so $\alpha^{j+k}\left(a_{i}\right) \alpha^{i+k}\left(b_{j}\right)=0$. Hence $\alpha^{j+k}\left(a_{i}\right) R \alpha^{i+k+1}\left(b_{j}\right)=0$. Since R is $\alpha-$ semicommutative, for any $h(t)=\Sigma_{k=0}^{p}\left(x^{-k} c_{k} x^{k}\right) t^{k} \in A(R, \alpha)[t]$, we have

$$
\begin{aligned}
f(t) h(t) g(t) & =\left(\sum_{i=0}^{m}\left(x^{-i} a_{i} x^{i}\right) t^{i}\right)\left(\sum_{k=0}^{p}\left(x^{-k} c_{k} x^{k}\right) t^{k}\right) \alpha\left(\sum_{j=0}^{n}\left(x^{-j} b_{j} x^{j}\right) t^{j}\right) \\
& =\left(\sum_{i+k=0}^{m+p}\left(x^{-i} a_{i} x^{i}\right)\left(x^{-k} c_{k} x^{k}\right) t^{i+k}\right)\left(\sum_{j=0}^{n}\left(x^{-j} \alpha\left(b_{j}\right) x^{j}\right) t^{j}\right) \\
& =\left(\sum_{i+k=0}^{m+p}\left(x^{-(i+k)}\left(\alpha^{k}\left(a_{i}\right) \alpha^{i}\left(c_{k}\right)\right) x^{i+k}\right) t^{i+k}\right)\left(\sum_{j=0}^{n}\left(x^{-j} \alpha\left(b_{j}\right) x^{j}\right) t^{j}\right) \\
& =\left(\Sigma_{i+n++p=0}^{m+j+k=0}\left(x^{-(i+k)}\left(\alpha^{k}\left(a_{i}\right) \alpha^{i}\left(c_{k}\right)\right) x^{i+k}\right)\left(x^{-j} \alpha\left(b_{j}\right) x^{j}\right) t^{i+j+k}\right. \\
& =\left(\sum _ { i + n + p } ^ { m + j + k = 0 } \left(x^{-(i+j+k)}\left(\alpha^{j}\left(\alpha^{k}\left(a_{i}\right) \alpha^{i}\left(c_{k}\right)\right) \alpha^{i+k}\right)\left(\alpha\left(b_{j}\right)\right)\left(x^{i+j+k}\right) t^{i+j+k}\right.\right. \\
& =\left(\sum _ { i + j + k = 0 } ^ { m + n + p } \left(x^{-(i+j+k)}\left(\alpha^{k+j}\left(a_{i}\right) \alpha^{i+j}\left(c_{k}\right) \alpha^{i+k+1}\left(b_{j}\right)\right)\left(x^{i+j+k}\right) t^{i+j+k} .\right.\right.
\end{aligned}
$$

As $\left(\alpha^{k+j}\left(a_{i}\right) \alpha^{i+j}\left(c_{k}\right) \alpha^{i+k+1}\left(b_{j}\right)=0, f(t) h(t) \alpha(g(t))=0\right.$. So $A(R, \alpha)$ is strongly α-semicommutative.
Corollary 2.34. Let $A(R, \alpha)$ be an Armendariz ring. If R is semicommutative, then $A(R, \alpha)$ is strongly semicommutative.

References

[1] M. Baser, A. Harmanci, T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc., 45(2)(2008), 285-297.
[2] M. Baser, C. Y. Hong and T. K. Kwak, On extended reversible rings, Algebra Colloq., 16(1)(2009), 37-48.
[3] M. Baser and T. K. Kwak, Extended semicommutative rings, Algebra Colloq., 17(2)(2010), 257-264.
[4] P. M. Cohn, Reversible rings, Bull. London Math. Soc., 31(1999), 641-648.
[5] Y. Gang and D. Juan, Rings over which polynomial rings are semicommutative, Vietnam J. Math., $\mathbf{3 7}(4)(2009), 527-535$.
[6] C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151(3)(2000), 215-226.
[7] C. Y. Hong, T.K. Kwak, S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq., 13(2)(2006) 253-266.
[8] C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra, 30(2)(2002), 751-761.
[9] D. A. Jordan, Bijective extensions of injective ring endomorphisms, J. London Math. Soc., 35(2)(1982), 435-448.
[10] N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra, 185(2003), 207-223.
[11] J. Krempa, Some examples of reduced rings, Algebra Colloq., 3(4)(1996), 289-300.
[12] T. K. Kwak, Y. Lee and S. J. Yun, The Armendariz property on ideals, J. Algebra, 354(2012), 121-135.
[13] Z. K. Liu, Semicommutative Subrings of Matrix Rings, J. Math. Res. Exposition, 26(2)(2006), 264-268.
[14] Z. K. Liu and R. Y. Zhao, On Weak Armendariz Rings, Comm. Algebra, 34(2006), 2607-2616.
[15] P. Patricio, R. Puystjens, About the von Neumann regularity of triangular block matrices, Linear Algebra Appl., 332/334(2001), 485-502.
[16] H. Pourtaherian and I. S. Rakhimov, On skew version of reversible rings, Int. J. Pure Appl. Math., 73(3)(2011), 267-280.
[17] M. B. Rege, S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73(1997), 14-17.
[18] G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184(1973), 43-60.
[19] G. Yang, Semicommutative and reduced rings, Vietnam J. Math.. 35(3)(2007), 309315.
[20] G. Yang, Z. K. Liu, On strongly reversible rings, Taiwanese J. Math., 12(1)(2008), 129-136.

[^0]: * Corresponding Author.

 Received August 30, 2017; revised March 8, 2018; accepted March 9, 2018.
 2010 Mathematics Subject Classification: 16U80, 16W20, 16W60.
 Key words and phrases: semicommutative rings; strongly semicommutative rings; α semicommutative rings; strongly α-semicommutative rings.

