Browse > Article
http://dx.doi.org/10.5666/KMJ.2011.51.3.283

On a Class of Semicommutative Rings  

Ozen, Tahire (Department of Mathematics, Abant Izzet Baysal University)
Agayev, Nazim (Department of Computer Engineering, University of Lefke)
Harmanci, Abdullah (Department of Maths, Hacettepe University)
Publication Information
Kyungpook Mathematical Journal / v.51, no.3, 2011 , pp. 283-291 More about this Journal
Abstract
In this paper, a generalization of the class of semicommutative rings is investigated. A ring R is called central semicommutative if for any a, b ${\in}$ R, ab = 0 implies arb is a central element of R for each r ${\in}$ R. We prove that some results on semicommutative rings can be extended to central semicommutative rings for this general settings.
Keywords
semicommutative rings; weakly semicommutative rings; reduced rings;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 N. Agayev and A. Harmanci, On Semicommutative Modules and Rings, Kyungpook Math. J., 47(1)(2007), 21-30.
2 M. Baser and N. Agayev, On Reduced and Semicommutative Modules, Turk. J. Math., 30(2006), 285-291.
3 Y. Hirano, Some Studies of Strongly $\pi$-Regular Rings, Math. J. Okayama Univ., 20(2)(1978), 141-149.
4 C. Y. Hong, N. K. Lim and T. K. Kwak, Extensions of Generalized Reduced Rings, Alg. Coll., 12(2)(2005), 229-240.   DOI
5 S. U. Hwang, C. H. Jeon and K. S. Park, A Generalization of Insertion of Factors Property, Bull. Korean Math. Soc., 44(1)(2007), 87-94.   과학기술학회마을   DOI   ScienceOn
6 N. K. Kim and Y. Lee, Extensions of Reversible Rings, J. Pure and Applied Alg., 167(2002), 37-52.   DOI   ScienceOn
7 L. Liang, L. Wang and Z. Liu, On a Generalization of Semicommutative Rings, Taiwanese Journal of Mathematics, 11(5)(2007), 1359-1368.   DOI
8 G. Shin, Prime ideals and Sheaf Represantation of a Pseudo Symmetric ring, Transactions of the American Mathematical Society, 184(1973), 43-69.   DOI