DOI QR코드

DOI QR Code

STUDY OF THE ANNIHILATOR IDEAL GRAPH OF A SEMICOMMUTATIVE RING

  • Alibemani, Abolfazl (Faculty of Mathematical Sciences Shahrood University of Technology) ;
  • Hashemi, Ebrahim (Faculty of Mathematical Sciences Shahrood University of Technology)
  • Received : 2018.05.04
  • Accepted : 2018.07.24
  • Published : 2019.04.30

Abstract

Let R be an associative ring with nonzero identity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all nonzero proper left ideals and all nonzero proper right ideals of R, and two distinct vertices I and J are adjacent if $I{\cap}({\ell}_R(J){\cup}r_R(J)){\neq}0$ or $J{\cap}({\ell}_R(I){\cup}r_R(I)){\neq}0$, where ${\ell}_R(K)=\{b{\in}R|bK=0\}$ is the left annihilator of a nonempty subset $K{\subseteq}R$, and $r_R(K)=\{b{\in}R|Kb=0\}$ is the right annihilator of a nonempty subset $K{\subseteq}R$. In this paper, we assume that R is a semicommutative ring. We study the structure of ${\Gamma}_{Ann}(R)$. Also, we investigate the relations between the ring-theoretic properties of R and graph-theoretic properties of ${\Gamma}_{Ann}(R)$. Moreover, some combinatorial properties of ${\Gamma}_{Ann}(R)$, such as domination number and clique number, are studied.

Keywords

References

  1. A. Alibemani, M. Bakhtyiari, R. Nikandish, and M. J. Nikmehr, The annihilator ideal graph of a commutative ring, J. Korean Math. Soc. 52 (2015), no. 2, 417-429. https://doi.org/10.4134/JKMS.2015.52.2.417
  2. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
  3. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  4. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  5. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  6. K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, 16, Cambridge University Press, Cambridge, 1989.
  7. T. W. Hungerford, Algebra, reprint of the 1974 original, Graduate Texts in Mathematics, 73, Springer-Verlag, New York, 1980.
  8. I. Kaplansky, Commutative Rings, revised edition, The University of Chicago Press, Chicago, IL, 1974.
  9. N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  10. T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
  11. L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels; anneaux dont les ideaux principaux sont idempotents, in Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.
  12. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
  13. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 (1974). https://doi.org/10.2307/1996398
  14. D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.