On Semicommutative Modules and Rings

  • Agayev, Nazim (Abant Izzet Baysal University, Faculty of Science and Letters, Department of Mathematics) ;
  • Harmanci, Abdullah (Hacettepe University, Department of Mathematics, Golkoy Campus)
  • Received : 2005.09.16
  • Published : 2007.03.23

Abstract

We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

Keywords

References

  1. M. Baser and N. Agayev, On Reduced and Semicommutative Modules, Turk. J. Math., 30(2006), 285-291.
  2. G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally Quasi-Baer Rings, Comm. Algebra, 29(2001), 639-660. https://doi.org/10.1081/AGB-100001530
  3. A. M. Buhphang and M. B. Rege, Semicommutative Modules and Armendariz Modules, Arab Journal of Mathematical Sciences, 8(June 2002), 53-65.
  4. C. Huh, Y. Lee and A. Smoktunowicz, Armendariz Rings and Semicommutative Rings, Comm. Algebra, 30(2002), 751-761. https://doi.org/10.1081/AGB-120013179
  5. D. A. Jordan, Bijective Extension of Injective Ring Endomorphisms, J. London Math. Soc., 35(2)(1982), 435-448.
  6. N. K. Kim and Y. Lee, Armendariz Rings and Reduced Rings, J. Algebra, 223(2000), 477-488. https://doi.org/10.1006/jabr.1999.8017
  7. I. Kaplansky, Rings of operators, W. A. Benjamin, New York, 1968.
  8. T. K. Lee and Y. Zhou, Reduced Modules, Rings, modules, algebras and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New york, (2004).
  9. T. K. Lee and Y. Zhou, Armendariz and Reduced Rings, Comm. Algebra, 32(6)(2004), 2287-2299. https://doi.org/10.1081/AGB-120037221
  10. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad., 73(A)(1997), 14-17. https://doi.org/10.3792/pjaa.73.14
  11. S. T. Rizvi and C. S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra, 32(2004), 103-123. https://doi.org/10.1081/AGB-120027854