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Abstract. We say a module MR a semicommutative module if for any m ∈ M and any

a ∈ R, ma = 0 implies mRa = 0. This paper gives various properties of reduced, Ar-

mendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition

we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an

abelian ring and MR be a p.p.-module, then MR is a semicommutative module iff MR is

an Armendariz module. For any ring R, R is semicommutative iff A(R, α) is semicommu-

tative. Let R be a reduced ring, it is shown that for number n ≥ 4 and k = [n/2], T k
n (R)

is semicommutative ring but T k−1
n (R) is not.

1. Introduction

Throughout this paper all rings R are associative with unity and all modules
M are unital right R-modules. For a nonempty subset X of a ring R, we write
rR(X) = {r ∈ R | Xr = 0} and lR(X) = {r ∈ R | rX = 0}, which are called
the right annihilator of X in R and the left annihilator of X in R, respectively.
The notation “≤” will denote a submodule. Recall that a ring R is reduced if R
has no nonzero nilpotent elements. Observe that reduced rings are abelian (i.e., all
idempotents are central). In [5] Kaplansky introduced Baer rings as rings in which
the right (left) annihilator of every nonempty subset is generated by an idempo-
tent. A ring R is called quasi-Baer if the right annihilator of each right ideal of
R is generated (as a right ideal) by an idempotent. These definitions are left-right
symmetric. A ring R is called a right (resp. left) principally quasi-Baer (or simply
right (resp. left) p.q.-Baer) ring if the right (resp. left) annihilator of a principally
right (resp. left) ideal of R is generated by an idempotent. R is called a p.q.-Baer
ring if it is both right and left p.q.-Baer.

Another generalization of Baer rings is a p.p.-ring. A ring R is called a right
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(resp. left) p.p.-ring if the right (resp. left) annihilator of an element of R is
generated by an idempotent. R is called a p.p.-ring if it is both a right and left
p.p.-ring. A ring R is called Armendariz if whenever polynomials f(x) =

∑
aix

i ∈
R[x], g(x) =

∑
bix

i ∈ R[x] satisfy f(x)g(x) = 0, we have aibj = 0 for every i and j.
A ring R is called semicommutative if for every a ∈ R, rR(a) is an ideal of R.
(equivalently, for any a, b ∈ R, ab = 0 implies aRb = 0). An idempotent e ∈ R is
called central if xe = ex for all x ∈ R. An idempotent e2 = e ∈ R is called a left
(resp. right) semicentral idempotent if eR (resp. Re) is a two sided ideal of R.

According to Lee-Zhou [6], a module MR is called α-reduced if, for any m ∈ M
and any a ∈ R,

(1) ma = 0 implies mR ∩Ma = 0

(2) ma = 0 iff mα(a) = 0,

where α : R −→ R is a ring homomorphism with α(1) = 1. The module MR is
called reduced if MR is 1-reduced. In [8] Lee-Zhou introduced a Baer, quasi-Baer
and p.p.- module as follows: (a) MR is called Baer if, for any subset X of M ,
rR(X) = eR where e2 = e ∈ R. (b) MR is called quasi-Baer if, for any submodule
N of M , rR(N) = eR where e2 = e ∈ R. (c) MR is called p.p. if, for any m ∈ M ,
rR(m) = eR where e2 = e ∈ R. In [2] the module MR is called principally quasi-
Baer (p.q.-Baer for short) if, for any m ∈ M , rR(mR) = eR where e2 = e ∈ R. In
[3], the module MR is semicommutative module if for any m ∈ M and any a ∈ R,
ma = 0 implies mRa = 0, and the module MR is called Armendariz if whenever
polynomials m(x) =

∑
mix

i ∈ M [x], f(x) =
∑

aix
i ∈ R[x] satisfy m(x)f(x) = 0,

we have miaj = 0 for every i and j.
Let M be a right R-module and S = EndR(M). Then M is a left S-module,

right R-module and S−R-bimodule. In [11], Rizvi and Roman call M a Baer module
if the right annihilator in M of any left ideal of S is generated by an idempotent of
S(or equivalently, for all R-submodules N of M , lS(N) = Se with e2 = e ∈ S); and
M is a quasi-Baer module if the right annihilator in M of any ideal of S is generated
by an idempotent of S(or equivalently, for all fully invariant R-submodules N of
M , lS(N) = Se with e2 = e ∈ S). Among others they have proved that any
direct summand of a Baer (resp. quasi-Baer) module M is again a Baer (respect.
quasi-Baer) module, and the endomorphism ring S = EndR(M) of a Baer (resp.
quasi-Baer) module M is a Baer (resp.quasi-Baer) ring (see Theorem 4.1 in [11]).
They gave several results for a direct sum of Baer (resp. quasi-Baer) modules to be
a Baer (resp. quasi-Baer) module.

We shortly summarize the content of the paper. In [1, Proposition 2.7] it is
shown that if MR is a semicommutative module, then MR is a Baer module if
and only if it is a quasi-Baer module, and MR is a p.p.-module if and only if it
is a p.q.-Baer module. In Proposition 2.7 we prove that for an abelian ring R
and a p.p.-module MR, MR is a semicommutative module if and only if it is an
Armendariz module. In Proposition 2.11 for a semicommutative ring R we show
that R is a p.p.-ring if and only if R[x] is a p.p.-ring, R is a Baer ring if and only
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if R[x] is a Baer ring, R is a p.q.-Baer ring if and only if R[x] is a p.q.-Baer ring,
and R is a quasi-Baer ring if and only if R[x] is a quasi-Baer ring. In Proposition
2.13 we prove that for any ring R, R is semicommutative if and only if A(R, α) is
semicommutative, and in Theorem 2.15 for a reduced ring R and any integer n ≥ 4
and k = [n/2], we show that T k

n (R) is semicommutative ring but T k−1
n (R) is not.

Examples.
1. Every reduced module is semicommutative but the inverse is not true. For

example, Zn is semicommutative for any n ∈ N, but is reduced for only square-free
n.

2. For any commutative ring R, any module MR is semicommutative.

3. Let D be a division ring, R =
[

D D
0 D

]
, and A =

[
0 D
0 D

]
. Then AR is

a semicommutative module.
From [4, Example 2] and [10, Proposition 4.6] we want to restate next results:
1. If a module MR is semicommutative then M [x]R[x] need not to be semicom-

mutative.
2. If a semicommutative module MR is Armendariz, then M [x]R[x] is a semi-

commutative module.

2. Semicommutative modules

We start with some preliminary results on semicommutative modules and rings.
Some of the results are known but we state and give their proofs for the sake of
completeness.

Lemma 2.1. Let MR be a semicommutative module.
(1) If e2 = e ∈ R with rR(m) = eR for some m ∈ M , then e is left semicentral

idempotent.
(2) For any e2 = e ∈ R, mea = mae for all m ∈ M and all a ∈ R.

Proof. (1) Let e2 = e ∈ R with rR(m) = eR for some m ∈ M . Then me = 0.
To prove e is left semicentral we show teR ≤ eR for any t ∈ R. For any t ∈ R,
then met = 0. By (1), mte = 0. Hence te ∈ rR(m) = eR, and so teR ≤ eR This
completes the proof.
(2) See also [1] for a proof. For e2 = e ∈ R, e(1 − e) = (1 − e)e = 0. Then for all
m ∈ M , me(1− e) = 0 and m(1− e)e = 0. Since MR is semicommutative, we have
meR(1 − e) = 0 and m(1 − e)Re = 0. Thus, for all a ∈ R, mea(1 − e) = 0 and
m(1 − e)ae = 0. So, mea = meae and mae = meae. Hence, mea = mae for all
a ∈ R. ¤

Proposition 2.2. Let M be a semicommutative module. Then the following con-
ditions are equivalent:
(1) MR is a p.q.-Baer module.
(2) The right annihilator of every finitely generated submodule is generated (as a

right ideal) by an idempotent.
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Proof. (1)⇒(2) Assume that MR is p.q.-Baer and N =
∑k

i=1 niR is a finitely gener-
ated submodule of MR. Then rR(N) =

⋂k
i=1 eiR where rR(niR) = eiR and e2

i = ei.
By Lemma 2.1 each ei is a left semicentral idempotent, a routine argument yields
an idempotent e such that

⋂k
i=1 eiR = eR. Therefore, rR(N) = eR. ¤

Corollary 2.3 [2, Prop. 1.7]. Following conditions are equivalent for a ring R :
(1) R is a right p.q.-Baer ring.
(2) The right annihilator of every finitely generated ideal of R is generated (as a

right ideal) by an idempotent.

Proposition 2.4. Let MR be a semicommutative module. Consider the following
properties:
(1) MR is a Baer module.
(2) MR is a quasi-Baer module.
(3) MR is a p.p.-module.
(4) MR is a p.q.-Baer module.
Then (1) ⇔ (2) ⇒ (3) ⇔ (4).

Proof. See [1, Proposition 2.7]. ¤

Proposition 2.5. Let R be an abelian ring and MR be a p.p. module. Then MR is
a p.q.-Baer module.

Proof. See [1, Proposition 2.15]. ¤

Corollary 2.6. Abelian right p.p. rings are right p.q.-Baer.

Proposition 2.7. Let R be an abelian ring and MR be a p.p.-module. Then fol-
lowing conditions are equivalent:
(1) MR is a semicommutative module.
(2) MR is an Armendariz module.

Proof. (1)⇒(2) Let m(x) =
∑

mix
i ∈ M [x], f(x) =

∑
ajx

j ∈ R[x] satisfy
m(x)f(x) = 0. We have the following system of equations:

m0a0 = 0 · · · · · · · · · · · · · · · (1)
m0a1 + m1a0 = 0 · · · · · · · · · · · · · · · (2)

m0a2 + m1a1 + m2a0 = 0 · · · · · · · · · · · · · · · (3)
...

mtas = 0 · · · · · · · · · · · · · · · (n)

for some s and t.
Let r(m0) = e0R, r(m1) = e1R, r(m2) = e2R, · · · , r(mt) = etR for some idem-

potents e0, e1, e2, · · · , et in R. Then a0 ∈ r(m0) = e0R. Since R is abelian,
a0 = e0a0 = a0e0. Multiply (2) from right by e0 to obtain

m0a1e0 + m1a0e0 = 0
From semicommutativity of MR, m0e0 = 0 implies m0a1e0 = 0. Then m1a0e0 =
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m1a0 = 0. So m0a1 = 0 from (2).
Now multiply (3) from right by e0:

m0a2e0 + m1a1e0 + m2a0e0 = 0
From semicommutativity of MR, m0e0 = 0 implies m0a2e0 = 0. Then m1a1e0 +
m2a0e0 = m1a1 + m2a0 = 0
Hence m0a2 = 0 by (3). Continuing this process we get:

m0a0 = m0a1 = m0a2 = · · · = m0as = 0.
If we use these equalities, the equations (2), (3), · · · , will be :

m1a0 = 0 · · · · · · · · · · · · · · · (2
′
)

m1a1 + m2a0 = 0 · · · · · · · · · · · · · · · (3
′
)

...
mtas = 0 · · · · · · · · · · · · · · · (n

′
)

Applying the same method to these equalities we get m1a0 = m1a1 = m1a2 =
· · · = m1as = 0.
Continuing this process we will have:
m2a0 = m2a1 = m2a2 = · · · = m2as = 0 · · ·mtas = 0.
So miaj = 0 for any i, j.

(2)⇒(1): Let ma = 0 for m ∈ M , a ∈ R. For any r ∈ R take m(x) = mx+mr ∈
M [x] and f(x) = −ax+ra ∈ R[x]. Then m(x)f(x) = (mx+mr)(−ax+ra) = mr2a.
By hypothesis ma = 0 implies a ∈ r(m) = eR for some idempotent e ∈ R. Then
a = ae = ea. So, m(x)f(x) = mr2a = mr2ea = mer2a = 0 since R is abelian. As
MR is Armendariz, we get mra = 0 for any r ∈ R. ¤

Corollary 2.8. Let R be a p.p.-ring. Then the following are equivalent:
(1) R is a semicommutative ring.
(2) R is an Armendariz ring.

Proof. In Lemma 2.1 take M = R, then every semicommutative ring is abelian for
(1)⇒(2) and from [6, Lemma 7] every Armendariz ring is abelian for (2)⇒(1). ¤

Proposition 2.9. Let MR be a semicommutative module and R is a reduced module.
Then MR is an Armendariz module if and only if its torsion submodule T (M) is
Armendariz.

Proof. Assume that the torsion submodule T (M) of M is Armendariz as a right R-
module. Let m(x) =

∑
mjx

j ∈ M [x], f(x) =
∑

aix
i ∈ R[x] satisfy m(x)f(x) = 0.

We have the following system of equations:

m0a0 = 0
m0a1 + m1a0 = 0

m0a2 + m1a1 + m2a0 = 0
...
mtas = 0
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for some s and t.
We may assume a0 6= 0. Multiplying by a0, the second of these equations yields

m1a
2
0 = 0. Thus a2

0 annihilates both m0 and m1. The third equation now implies
m2a

3
0 = 0. Continuing we get m(x) ∈ T (M)[x]. Since T (M) is Armendariz as

R−module, we conclude that mjai = 0 for all i, j. The other implication is trivial.
¤

Given a ring R, the formal power series ring over R is denoted by R[[x]].

Lemma 2.10. Let R be a semicommutative ring.
(1) Every idempotent of R[x] is in R.
(2) Every idempotent of R[[x]] is in R.

Proof. From [6, Lemma 8]. ¤

Proposition 2.11. Let R be a semicommutative ring.
(1) R is a p.p.-ring if and only if R[x] is a p.p.-ring.
(2) R is a Baer ring if and only if R[x] is a Baer ring.
(3) R is a p.q.-Baer ring if and only if R[x] is a p.q.-Baer ring.
(4) R is a quasi-Baer ring if and only if R[x] is a quasi-Baer ring.

Proof. (1) Assume that R is a p.p.-ring. From Corollary 2.16, R is an Armendariz
ring. Then by [6, Theorem 9], R[x] is a p.p.-ring.

Conversely, assume that R[x] is a p.p.-ring. Let a ∈ R. By Lemma 2.10 there
exists an idempotent e ∈ R such that rR[x](a) = eR[x]. Hence rR(a) = rR[x](a)∩R =
eR and therefore R is a p.p.-ring.

(2) Assume that R is a Baer ring. Then R is a p.p.-ring. By Corollary 2.16 R
is an Armendariz ring. From [6, Theorem 10] R[x] is a Baer ring.

Conversely, assume that R[x] is a Baer ring. Let B be a nonempty subset of
R. Then rR[x](B) = eR[x] for some idempotent e ∈ R by Lemma 2.10. Hence
rR(B) = eR and therefore R is a Baer ring.

(3) Assume that R is a p.q.-Baer ring. Let t(x) = a0 + a1x + · · ·+ anxk ∈ R[x].
By assumption rR(ai) = eiR = rR(aiR), for all i = 0, 1, 2, · · · , n. By Proposi-
tion 2.5 ∩n

i=0rR(aiR) = eR, e = e0e1 · · · en. Let f(x) ∈ rR[x](t(x)R[x]). Then
t(x)R[x]f(x) = 0 implies t(x)Rf(x) = 0 and ajRf(x) = 0 for all j = 0, 1, 2, ..., n.
So ajRbi = 0, hence bi ∈ ∩n

i=0rR(ajR) = eR and bi = ebi for all i, j. Then
ef(x) = f(x) implies f(x) ∈ eR[x].

Conversely, assume that R[x] is a p.q.-Baer. Let a ∈ R. There exists idempotent
e ∈ R such that rR[x](aR[x]) = eR[x]. Then rR[x](aR[x]) ∩ R = (eR[x]) ∩ R = eR.
Since rR(aR) = rR[x](aR[x]) ∩R, we get rR(aR) = eR.

(4) Assume that R is a quasi-Baer. Let A be an ideal of R[x] and A∗ be the
set of all coefficients of elements of A. Then A∗ is an ideal of R, so rR(A∗) = eR
for some idempotent e ∈ R. Since e ∈ rR[x](A), we get eR[x] ⊆ rR[x](A). Now, let
f = b0 + b1x+ · · ·+ bnxn ∈ rR[x](A). Then Af = 0 implies Abi = 0, so A∗bi = 0 for
all i = 0, 1, 2, · · · , n. Hence bi ∈ rR(A∗) = eR and bi = ebi for all i. Consequently,
f ∈ eR[x].
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Conversely, assume that R[x] is a quasi-Baer ring and A is an ideal of R. Then
A[x] is an ideal of R[x]. Hence rR[x](A[x]) = eR[x]. Intersecting both sides with R
we get rR[x](A[x]) ∩ R = eR[x] ∩ R = eR. Since rR(A) = rR[x](A[x]) ∩ R, we have
rR(A) = eR. ¤

Proposition 2.12. Let MR be a p.p.-module. Then MR is a semicommutative
module if and only if mre = mer, for any m ∈ M, r ∈ R, and e2 = e ∈ R.

Proof. Assume that mre = mer, for any m ∈ M, r ∈ R and e2 = e ∈ R. Let
ma = 0 for m ∈ M , a ∈ R. Then a ∈ r(m). By hypothesis r(m) = eR for
some e2 = e ∈ R. Hence me = 0, a = ea, and so mra = mrea. By assumption
mrea = mrae = mera = 0 for any r ∈ R. So mra = 0 for any r ∈ R. The rest is
clear from Lemma 2.1. ¤

Now we consider D. A. Jordan’s construction of the ring A(R, α) (See [5] for
more details). Let A(R, α) or A be the subset {x−irxi | r ∈ R, i ≥ 0} of the
skew Laurent polynomial ring R[x, x−1;α], where α : R 7→ R is an injective ring
endomorphism of a ring R. Elements of R[x, x−1; α] are finite sums of elements of
the form x−jrxi where r ∈ R and i, j are non-negative integers. Multiplication is
subject to xr = α(r)x and rx−1 = x−1α(r) for all r ∈ R. Note that for each j ≥ 0,
x−irxi = x−(i+j)αj(r)x(i+j). It follows that the set A(R, α) of all such elements
forms a subring of R[x, x−1;α] with

x−irxi + x−jsxj = x−(i+j)(αj(r) + αi(s))x(i+j)

(x−irxi)(x−jsxj) = x−(i+j)(αj(r)αi(s))x(i+j)

for r, s ∈ R and i, j ≥ 0.

Proposition 2.13. The following are equivalent for a ring R:
(1) R is semicommutative.
(2) A(R, α) is semicommutative.

Proof. (1) ⇒ (2). Let (x−irxi)(x−jsxj) ∈ A(R, α). Suppose that (x−irxi)(x−jsxj) =
0. Then x−(i+j)(αj(r)αi(s))x(i+j) = 0 and so αj(r)αi(s) = 0. Hence αk(αj(r)αi(s)) =
αk+j(r)αk+i(s) = 0, and αj+k(r)αj+i(t)αi+k(s) = 0 by (1). For any x−ktxk ∈
A(R, α)

(x−irxi)(x−ktxk)(x−jsxj) = x−(i+k)(αk(r)αi(t))x(i+k)(x−jsxj)

= x−(i+k+j)αj(αk(r)αi(t))αi+k(s)x(i+k+j)

= x−(i+k+j)αj+k(r)αj+i(t)αi+k(s)x(i+k+j).

(2) ⇒ (1) From the fact that R ≤ A(R, α), R is semicommutative. ¤

Proposition 2.14. Assume that the ring S = R[x]/(xn) is a semicommutative ring
for any n = 2, 3, · · · . Then R is a semicommutative ring.

Proof. Let ab = 0. Take f(x) = a + (xn), f(x) = b + (xn) ∈ R[x]/(xn) = S. Then
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f(x)g(x) = 0S . By assumption (a + (xn))((r + (xn))(b + (xn)) = 0S . So arb ∈ (xn)
implies arb = 0 for any r ∈ R. ¤

For a reduced ring R, it is interesting to find which subrings of Tn(R) are
semicommutative. For this purpose, we introduce some notation. For number
n ≥ 4 and any m from set {1, · · · , n}, we let

Tm
n (R) = {

n∑

i=j

m∑

j=1

ajE(i−j+1)i +
n−m∑

i=j

n−m∑

j=1

rijEj(m+i) : aj , rij ∈ R},

where {Ei,j : 1 ≤ i, j ≤ n} are the matrix units. Then each element of Tm
n (R) has

the matrix form



a1 a2 ... am a1(m+1) ... a1n

0 a1 ... am−1 am ... a2n

0 0 a1 ... a3n

...
a1




,

where a1, · · · , am, a1(m+1), · · · , a(n−m)n ∈ R.

Theorem 2.15. Let R be a reduced ring. Then for number n ≥ 4 and k = [n/2],
T k

n (R) is semicommutative ring but T k−1
n (R) is not.

Proof. Let A =
∑n−k

i=1 Ei(i+k−1) , B = E(n−k+1)n ∈ T k−1
n (R). Then AB = 0. But

for C =
∑n

j=i

∑n
i=1 Eij ∈ T k−1

n (R), ACB 6= 0. So T k−1
n (R) is not semicommu-

tative. To complete the proof that T k
n (R) is semicommutative ring for n ≥ 4 and

k = [n/2], it is enough to consider the case n = 5. The same proof will work for
any n ≥ 4 and k = [n/2]. Let n = 5. Then k = 2. Let

A =




a1 a2 a13 a14 a15

0 a1 a2 a24 a25

0 0 a1 a2 a35

0 0 0 a1 a2

0 0 0 0 a1




, B =




b1 b2 b13 b14 b15

0 b1 b2 b24 b25

0 0 b1 b2 b35

0 0 0 b1 b2

0 0 0 0 b1




be elements of T 2
5 (R) and AB = 0. We show that each term in the following system

of equations obtained from AB = 0 is zero:

A1B
1 : a1b1 = 0 · · · · · · · · · (1)

A1B
2 : a1b2 + a2b1 = 0 · · · · · · · · · (2)

A1B
3 : a1b13 + a2b2 + a13b1 = 0 · · · · · · · · · (3)

A1B
4 : a1b14 + a2b24 + a13b2 + a14b1 = 0 · · · · · · · · · (4)

A1B
5 : a1b15 + a2b25 + a13b35 + a14b2 + a15b1 = 0 · · · · · · · · · (5)

A2B
4 : a1b24 + a2b2 + a24b1 = 0 · · · · · · · · · (6)
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A2B
5 : a1b25 + a2b35 + a24b2 + a25b1 = 0 · · · · · · · · · (7)

A3B
5 : a1b35 + a2b2 + a35b1 = 0 · · · · · · · · · (8)

To prove each term in these equations(n = 5 or any other n) is zero,
we will proceed as follows: For 1 ≤ j ≤ k we show all terms of A1B

j are
zero. Next for 0 ≤ i ≤ n − k − 2 we prove each term in the equations
An−k−iB

n−i, An−k−iB
n−i+1..., An−k−iB

n is zero. By using preceeding results fi-
nally we show each term of the equations A1B

k+1, · · · , A1B
n is zero.

Note that by hypothesis from rs = 0 for any r and s in R we get sr = 0 and
rRs = 0. Also from r2s = 0 we have (rs)2 = 0 and so Rs = sr = 0. We make
use these implications without referring to the hypothesis. Now multiply (2) from
left by a1, we have a2

1b2 + a1a2b1 = 0. By (1) and hypothesis, a1a2b1 = 0. So
a2
1b2 = 0 and then a1b2 = 0. From (2), a2b1 = 0. Left multiplying (3) by a1,

we have a2
1b13 = 0. Hence a1b13 = 0. Then (3) becomes a2b2 + a3b1 = 0. Left

multiplying this equation by a2, we have a2
2b2 = 0 = a2b2. Hence a13b1 = 0 from

(3). Hence each term in the equations (1), (2) and (3) are zero.
Now we left multiply (8) by a1 and obtain a2

1b35 = 0 since a1b2 = 0 and a1b1 = 0
imply a1a2b2 + a1a35b1 = 0. From (8) a2b2 + a35b1 = 0. Left multiply the latter by
a2 and use a2b1 = 0 we get a2

2b2 = 0. Hence a2b2 = 0. By (8) a35b1 = 0.
Left multiply (6) by a1 and use a1b2 = 0 and a1b1 = 0 to obtain a1b24 = 0. From
(6) a24b1 = 0 since a2b2 = 0.
Left multiply (7) by a1 and use a1b35 = 0, a1b2 = 0 and a1b1 = 0 to obtain
a1b25 = 0. (7) induces to a2b35 + a24b2 + a25b1 = 0. We left multiply the latter by
a2 to obtain a2b35 = 0. From (7) we have a24b2 +a25b1 = 0. Left multiply this by b1

and use a24b1 = 0 to obtain b2
1a25 = 0. Hence b1a25 = 0. Now we go to the equation

(5) to left multiply it by a1 and use a1b35 = 0, a1b25 = 0, a1b2 = 0, a1b1 = 0 to get
a2
1b15 = 0. Hence a1b15 = 0. From (5) we have a2b25 + a13b35 + a14b2 + a15b1 = 0.

Similarly this procedure continues to obtain each term in the latter equation is zero:
a2b25 = 0, a13b35 = 0, a14b2 = 0, a15b1 = 0. As for (4), left multiply it by a1 to
get a2

1b14 = 0 since a1b24 = 0, a1b2 = 0 and a1b1 = 0. So a1b14 = 0. From (4)
a2b24 + a13b2 + a14b1 = 0. Left multiply it by a2 and use a2b2 = 0 and a2b1 = 0 to
obtain similarly a2b24 = 0. We are left with a13b2 + a14b1 = 0. Left multiply it by
b2 and use a14b2 = 0 to obtain b2

2a13 = 0. Hence b2a13 = 0. Thus a14b1 = 0. Since
R is semicommutative, the rest of the proof is clear. ¤
Corollary 2.16. Let R be a prime ring.Then R[x]/(xn) is Armendariz if and only
if R[x]/(xn) is semicommutative.
Proof. Clear from [9, Corollary 1.5] and Theorem 2.23. ¤
Corollary 2.17. If R is a reduced ring then R[x]/(xn) is semicommutative.

Corollary 2.18. Let R be an Armendariz ring.Then R is semicommutative if and
only if R[x]/(xn) is semicommutative.
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