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STUDY OF THE ANNIHILATOR IDEAL GRAPH OF A

SEMICOMMUTATIVE RING

Abolfazl Alibemani and Ebrahim Hashemi

Abstract. Let R be an associative ring with nonzero identity. The an-

nihilator ideal graph of R, denoted by ΓAnn(R), is a graph whose vertices
are all nonzero proper left ideals and all nonzero proper right ideals of R,

and two distinct vertices I and J are adjacent if I ∩ (`R(J) ∪ rR(J)) 6= 0

or J ∩ (`R(I) ∪ rR(I)) 6= 0, where `R(K) = {b ∈ R | bK = 0} is the left
annihilator of a nonempty subset K ⊆ R, and rR(K) = {b ∈ R | Kb = 0}
is the right annihilator of a nonempty subset K ⊆ R. In this paper, we
assume that R is a semicommutative ring. We study the structure of

ΓAnn(R). Also, we investigate the relations between the ring-theoretic

properties of R and graph-theoretic properties of ΓAnn(R). Moreover,
some combinatorial properties of ΓAnn(R), such as domination number

and clique number, are studied.

1. Introduction

In recent years, assigning graphs to algebraic structures has played an im-
portant role in the study of algebraic structures, for instance, see [1], [2] and
[3].

Let G = (V,E) be a simple graph, where V = V (G) is the set of vertices
and E = E(G) is the set of edges. We say G is empty if V = ∅. By |G|,
diam(G), gr(G), γ(G), α(G) and ω(G), we mean the number of vertices, the
diameter, the girth, the domination number, the independence number and
the clique number of G, respectively. Also, for a vertex v ∈ V , the degree
of v, denoted by deg(v), is the number of incident edges. For two distinct
vertices u and v in G, the notation u− v means that u and v are adjacent, or
neighbors. The set of neighbors of a vertex v in G is denoted by N(v), that is,
N(v) := {u ∈ V \{v} | {u, v} ∈ E}. For any undefined notation or terminology
in graph theory, we refer the reader to [14].

Let R be an associative ring with nonzero identity. A ring R is called semi-
commutative [11] if ab = 0 implies aRb = 0 for a, b ∈ R. Bell [4] and Shin
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[13] used the terms IFP and SI for semicommutative, respectively. According
to Cohn [5], a ring R is called reversible if ab = 0 implies ba = 0 for a, b ∈ R.
Clearly, reduced rings (i.e., rings with no nonzero nilpotent elements) and com-
mutative rings are reversible. For a nonempty subset X ⊆ R, let `R(X) = {b ∈
R | bX = 0} be the left annihilator of X, and rR(X) = {b ∈ R | Xb = 0} be
the right annihilator of X. Note that if R is a reversible ring and X ⊆ R, then
`R(X) = rR(X), and we denote it by Ann(X). We write Z`(R), Zr(R), Z(R)
and J(R) for the set of all left zero-divisors of R, the set of all right zero-divisors
of R, the set Z`(R) ∪Zr(R) and the Jacobson radical of R, respectively. By Z
and Zn, we mean the integers and the integers modulo n, respectively. Also,
the nonzero elements of X ⊆ R will be denoted by X∗. A regular element in a
ring R is any element a ∈ R \ Z(R). A prime ideal P of R is called completely
prime, if ab ∈ P implies a ∈ P or b ∈ P for a, b ∈ R. We denote the number of
elements of a set S by |S|.

According to [1], the annihilator ideal graph of a commutative ring R, de-
noted by ΓAnn(R), is a graph whose vertices are all nontrivial ideals of R
(i.e., distinct from 0 and R) and two distinct vertices I and J are adjacent if
I ∩ Ann(J) 6= 0 or J ∩ Ann(I) 6= 0. In this paper, we extend this concept to
any arbitrary ring R with nonzero identity as follows:

Definition. Let R be an associative ring with nonzero identity. We associate
a simple graph ΓAnn(R) to R whose vertices are all nonzero proper left ideals
and all nonzero proper right ideals of R, and two distinct vertices I and J are
adjacent if I ∩ (`R(J) ∪ rR(J)) 6= 0 or J ∩ (`R(I) ∪ rR(I)) 6= 0.

Remark 1.1. Let R be an associative ring with nonzero identity. According
to the commutative case, we assume that R is a ring such that every left (or
right) annihilator over R is an ideal of R. Thus by [9, Lemma 1.1], R must be a
semicommutative ring. Hence, we impose the semicommutativity condition on
a ring R. Thus, we assume that throughout this paper, R is a semicommutative
ring with nonzero identity.

This generalization, at least in our opinion, is comprehensive and natural
enough. Since it is worth to mention that some of our results in this paper
appear at first time for the case of non-commutative rings, and there do not
exist the counterpart results for the case of commutative rings in the literature,
for example, see Propositions 2.1, Corollary 2.2(1), Corollary 2.5, Proposition
3.15 and Lemma 3.21. Moreover, some results are stronger than those results
given for the counterpart results on the previous annihilator ideal graph, for
example, see Proposition 3.12 and [1, Proposition 21 and Theorem 22]. In
addition, the definition of the edges has been chosen to get as many results
which are analogous to the commutative case as possible (for example, assume
that I and J are adjacent if I ∩ (`R(J)∩ rR(J)) 6= 0 or J ∩ (`R(I)∩ rR(I)) 6= 0
and see Example 1.2, Proposition 3.10 and [1, Theorem 10(i)]).
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Example 1.2. Let R = Z2〈a, b〉/〈a2, ab, b2〉, where Z2〈a, b〉 is the free associa-
tive algebra, with 1, over Z2 generated by two indeterminates (as labeled above)
and 〈a2, ab, b2〉 is the ideal generated by a2, ab and b2. Then by [12, Page 3], R
is a semicommutative ring, but R is not reversible. Moreover, it is easy to check
that ΓAnn(R) is complete. Also, I = aR and J = Rb are two distinct vertices
of ΓAnn(R) such that I ∩ (`R(J) ∩ rR(J)) = 0 and J ∩ (`R(I) ∩ rR(I)) = 0.

In this paper, we study the structure of ΓAnn(R). Also, we investigate
the relations between the ring-theoretic properties of R and graph-theoretic
properties of ΓAnn(R). Moreover, we study some combinatorial properties of
ΓAnn(R) such as domination number and clique number.

2. The structure of ΓAnn(R)

In this section, we want to study the structure of ΓAnn(R). We start with
the following proposition, that will be useful in the sequel.

Proposition 2.1. Let R be a ring. If I and J are two non-adjacent vertices
of ΓAnn(R), then N(I) = N(J).

Proof. Assume that I and J are two distinct vertices of ΓAnn(R) such that I
is not adjacent to J . Also, assume that K ∈ N(I) \ N(J). We consider the
following cases:

Case 1: Suppose that I and J are left ideals. Since I is not adjacent to
J , we have I ∩ `R(J) = 0, I ∩ rR(J) = 0, J ∩ `R(I) = 0 and J ∩ rR(I) = 0.
Then one can easily see that `R(I) = `R(J), rR(J) ⊆ `R(I) and rR(I) ⊆ `R(J).
Moreover, since I is adjacent to K, we have I ∩ `R(K) 6= 0, I ∩ rR(K) 6= 0,
K ∩ `R(I) 6= 0 or K ∩ rR(I) 6= 0. Now we consider two following subcases:

Subcase 1: Assume that K is a left ideal. Since K is not adjacent to J ,
we have `R(K) = `R(J), rR(J) ⊆ `R(K) and rR(K) ⊆ `R(J). Now it is easy
to see that I ∩ `R(K) = 0, I ∩ rR(K) = 0, K ∩ `R(I) = 0 and K ∩ rR(I) = 0,
a contradiction.

Subcase 2: Assume that K is a right ideal. Since K is not adjacent to J ,
we have rR(K) = `R(J), `R(K) ⊆ `R(J) and rR(J) ⊆ rR(K). Then one can
easily see that I∩`R(K) = 0, I∩rR(K) = 0, K∩`R(I) = 0 and K∩rR(I) = 0,
a contradiction.

The other cases follow similarly. Therefore, we conclude that N(I) = N(J).
�

Corollary 2.2. Let R be a ring.

(1) If S 6= ∅ is an induced subgraph of ΓAnn(R), then diam(S) ∈ {0, 1, 2,∞}.
(2) diam(ΓAnn(R)) ∈ {0, 1, 2,∞}.
(3) ΓAnn(R) is disconnected or empty if and only if R is a domain.

Proof. (1) If |S| = 1, then diam(S) = 0. Thus, we may assume that I and
J are two distinct vertices of S such that I is not adjacent to J . Then
NS(I) = NS(J). If NS(I) = ∅, then S is disconnected and hence diam(S) =∞.
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Otherwise, we can suppose that Z ∈ NS(I). Then I−Z−J is a path of length
two in S. Therefore, we conclude that diam(S) ∈ {0, 1, 2,∞}.

(2) It follows from item (1).
(3) If ΓAnn(R) is empty, then it is easy to see that R is a division ring.

Thus, we suppose that there exists no path between I and J , where I and
J are two distinct vertices of ΓAnn(R). Then by Proposition 2.1, N(I) and
N(J) are empty. We show that `R(I) ∪ rR(I) = `R(J) ∪ rR(J) = 0. To see
this, let `R(I) ∪ rR(I) 6= 0. Without loss of generality, we can suppose that
`R(I) 6= 0. Since I contains no neighbors in ΓAnn(R), we have `R(I) = I. Also,
J ∩ I = 0. Thus, we have IJ = 0 or JI = 0. Hence, I is adjacent to J which is
a contradiction. Thus `R(I) ∪ rR(I) = 0. Similarly, `R(J) ∪ rR(J) = 0. Now,
if ΓAnn(R) contains a vertex, say K, such that `R(K) ∪ rR(K) 6= 0, then one
can see that I − K − J is a path between I and J which is a contradiction.
Therefore, we conclude that R is a domain.

The converse is clear. �

In next two propositions, we study some relations between two distinct max-
imal independent sets.

Proposition 2.3. Let R be a ring. If S1 and S2 are two distinct maximal
independent sets of ΓAnn(R), then S1 ∩ S2 = ∅.

Proof. Assume to the contrary that I ∈ S1 ∩ S2. Then by Proposition 2.1, we
have N(I) = N(J) for all vertices J of S1 ∪ S2. Since S1 and S2 are distinct
maximal independent sets, there exist two adjacent vertices A and B such
that A ∈ S1 and B ∈ S2. Thus I is adjacent to A or B which is impossible.
Therefore, S1 ∩ S2 = ∅. �

Proposition 2.4. Let R be a ring. Let S1 and S2 be two distinct maximal
independent sets of ΓAnn(R). If I ∈ S1 and J ∈ S2, then I is adjacent to J .

Proof. Let I ∈ S1 and J ∈ S2, where S1 and S2 are two distinct maximal inde-
pendent sets of ΓAnn(R). Also, assume to the contrary that I is not adjacent
to J . Then by Proposition 2.1, we have N(I) = N(J). Thus S1 ∪ {J} is an
independent set, a contradiction. Therefore, I is adjacent to J . �

Now we have the following corollary.

Corollary 2.5. Let R be a ring and r ≥ 2 be a positive integer. If the vertex set
of ΓAnn(R) can be partitioned into r maximal independent sets, then ΓAnn(R)
is a complete r-partite graph.

3. Some combinatorial properties of ΓAnn(R)

In this section, we investigate the relations between the ring-theoretic prop-
erties of R and the graph-theoretic properties of ΓAnn(R). Then, we study
some combinatorial properties of ΓAnn(R) such as the domination number and
clique number. We start this section with the following proposition.
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Proposition 3.1. Let R = R1×R2, where Ri is a ring for i = 1, 2. If ΓAnn(R)
is complete, then ΓAnn(Ri) is complete for i = 1, 2.

Proof. Assume that ΓAnn(R) is complete. If |ΓAnn(Ri)| ∈ {0, 1} for i = 1, 2,
then ΓAnn(Ri) is complete. Hence, we can suppose that I and J are two distinct
vertices of ΓAnn(R1). Then I×0 and J×0 are two distinct vertices of ΓAnn(R).
Now since I×0 is adjacent to J ×0 in ΓAnn(R), we conclude that I is adjacent
to J in ΓAnn(R1). Therefore, ΓAnn(R1) is a complete graph. Similarly, one can
see that ΓAnn(R2) is a complete graph. �

In [8, Theorem 81], it is proved that if R is a commutative ring, I1, . . . , In
are ideals of R and S ⊆ R is a ring that is contained in the set theoretic union
I1 ∪ · · · ∪ In and at least n− 2 of the I’s are prime, then S is contained in some
Ij . By a similar method as used in the proof of [8, Theorem 81] we have the
following proposition.

Proposition 3.2. Let R be a ring and P1, . . . , Pn a finite number of ideals of
R and S a subring of R that is contained in the set theoretic union P1∪· · ·∪Pn

and at least n−2 of the P ’s are completely prime. Then S is contained in some
Pj.

Recall that an annihilator prime for a left (or right) R-module M is any
prime ideal P of R which equals the annihilator of some nonzero submodule of
M . An associated prime of M is any annihilator prime ideal P which equals
the annihilator of some nonzero submodule N of M such that P must equal the
annihilator of each nonzero submodule of N . The set of all associated primes
of M is denoted Ass(M).

Lemma 3.3. Let R be a ring which is not a domain.

(1) If R is left Noetherian, then Z`(R) =
⋃

i∈Θ Pi, where Θ is a finite set
and each Pi is a completely prime ideal and left annihilator of a nonzero
element of Zr(R).

(2) If R is right Noetherian, then Zr(R) =
⋃

i∈Θ Pi, where Θ is a finite set
and each Pi is a completely prime ideal and right annihilator of a nonzero
element of Z`(R).

(3) If R is Noetherian, then Z(R) =
⋃

i∈Θ Pi, where Θ is a finite set and each
Pi is a completely prime ideal and left or right annihilator of a nonzero
element of Z(R).

Proof. (1) Assume that R is a left Noetherian ring and x ∈ Z`(R). Then there
exists a nonzero element y ∈ Zr(R) such that xy = 0. Put Σ := {`R(a) | x ∈
`R(a) and a ∈ R∗}. Now since R is a left Noetherian ring, Σ has a maximal
element, say P = `R(b). Thus we have x ∈ P . We show that P is completely
prime. To see this, let rs ∈ P for r, s ∈ R. Now if sb 6= 0, then since R is a
semicommutative ring, one can see that r ∈ P = `R(sb) = `R(b). Hence P is
a completely prime ideal. Also by [6, Proposition 2.12], we have P ∈ Ass(R)
(R is viewed as a left module over itself). Now by [6, Exercise 2J], we have
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|Ass(R)| < ∞. Therefore, we conclude that Z`(R) =
⋃

i∈Θ Pi, where Θ is
a finite set and each Pi is a completely prime ideal and left annihilator of a
nonzero element of Zr(R).

(2) Use a method similar to that we used in item (1).
(3) Since Z(R) = Z`(R) ∪ Zr(R), it follows from items (1) and (2). �

Proposition 3.4. Let R = R1×R2, where Ri is a Noetherian ring for i = 1, 2.
If ΓAnn(Ri) is complete for i = 1, 2, then ΓAnn(R) is complete.

Proof. Assume that ΓAnn(Ri) is complete for i = 1, 2. Let I and J be two
distinct vertices of ΓAnn(R). Thus I = I1 × I2 and J = J1 × J2, where Ii and
Ji are one-sided ideals of Ri for i = 1, 2. Without loss of generality, assume
that I1 and J1 are distinct. Now we consider three following cases:

Case 1: Suppose that either I1 or J1 is zero. Then I is adjacent to J in
ΓAnn(R).

Case 2: Suppose that either I1 = R1 or J1 = R1. Without loss of generality,
assume that I1 = R1. We show that for all vertices K1 of ΓAnn(R1) we have
K1 ⊆ Z(R1). To see this, let L1 be a vertex of ΓAnn(R1) such that L1 * Z(R1).
Let b ∈ L1 \ Z(R1). Without loss of generality, assume that R1b 6= R1. Then
R1b is not adjacent to R1b

2 in ΓAnn(R1), a contradiction. Hence for all vertices
K1 of ΓAnn(R1) we have K1 ⊆ Z(R1). Now by Lemma 3.3 and Proposition
3.2, we have `R1(J1) ∪ rR1(J1) 6= 0. Thus I is adjacent to J in ΓAnn(R).

Case 3: Suppose that I1 and J1 are nontrivial one-sided ideals of R1. Then
since ΓAnn(R1) is complete, I is adjacent to J in ΓAnn(R). �

The following corollary can be obtained directly from Proposition 3.1 and
Proposition 3.4.

Corollary 3.5. Assume that R = R1 ×R2, where Ri is a Noetherian ring for
i = 1, 2. Then ΓAnn(R) is complete if and only if ΓAnn(Ri) is complete for
i = 1, 2.

In the following proposition, we investigate the relation between ΓAnn(R)
and ΓAnn(R/J(R)).

Proposition 3.6. Let R be a Noetherian ring. If α(ΓAnn(R)) < ∞, then
ΓAnn(R/J(R)) is a complete graph.

Proof. Assume that x ∈ R \ Z(R). We show that x is unit. To see this, let
Rx 6= R. Then the vertices of the set {Rxi}∞i=1 form an independent set which
is a contradiction, since α(ΓAnn(R)) <∞. Thus, x is unit for all x ∈ R \Z(R).
Now if Z(R) = 0, then R is a division ring and hence ΓAnn(R/J(R)) is a
complete graph. Thus we may assume that Z(R) 6= 0. Now by Proposition
3.3, we have Z(R) =

⋃
i∈Θ Pi, where Θ is a finite set and each Pi is a completely

prime ideal and left or right annihilator of a nonzero element of Z(R). Hence,
if M is a maximal left ideal of R, then by Proposition 3.2, we have M = Pj for
some j ∈ Θ. Thus, J(R) =

⋂
i∈Θ Pi. Now by [7, Corollary 2.27 of Chapter 3],
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we have R/J(R) ∼= K1 × · · · ×Kn, where n = |Θ| and Ki is a division ring for
i = 1, . . . , n. Then one can see that ΓAnn(R/J(R)) is a complete graph. �

Corollary 3.7. Let R be a Noetherian ring. If ΓAnn(R) is a complete graph,
then ΓAnn(R/J(R)) is a complete graph.

Proof. Since ΓAnn(R) is a complete graph, then either α(ΓAnn(R)) = 0 (when-
ever R is a division ring) or α(ΓAnn(R)) = 1. Thus we conclude that
ΓAnn(R/J(R)) is a complete graph. �

In the next proposition, we study the case that ΓAnn(R) is complete. Before
that, the following two lemmas are necessary.

Lemma 3.8. Let R be a ring. Then the subgraph induced by nilpotent one-sided
ideals of R is complete.

Proof. Assume that I and J are two distinct vertices of ΓAnn(R) such that
In = Jm = 0 for some n,m ∈ N. Also, assume that I is not adjacent to J . We
consider the following cases:

Case 1: Suppose that I and J are left ideals. Then `R(I) = `R(J). Now
since I is nilpotent, I ∩`R(I) 6= 0 and hence I is adjacent to J , a contradiction.

Case 2: Suppose that I is a left ideal and J a right ideal. Then `R(I) =
rR(J). Now since I is nilpotent, I ∩ `R(I) 6= 0 and hence I is adjacent to J , a
contradiction.

The other cases follow similarly. Therefore, we conclude that the subgraph
induced by nilpotent one-sided ideals is complete. �

Recall that a ring R is called local if R has a unique maximal left ideal, or
equivalently, if R has a unique maximal right ideal.

Lemma 3.9. Let R be a left (or right) Artinian local ring. Then ΓAnn(R) is
complete.

Proof. It follows from [10, Theorem 4.12] and Lemma 3.8. �

Proposition 3.10. Let R be a left (or right) Artinian ring. Then ΓAnn(R) is
complete.

Proof. Suppose that R is a left Artinian ring. We consider two following cases:
Case 1: Assume that R has no nontrivial idempotents. Then by [10, Corol-

lary 19.19], R is a local ring. Then by Lemma 3.9, ΓAnn(R) is complete.
Case 2: Now assume that R has a nontrivial idempotent element, say e.

Since R is a semicommutative ring, e is a central idempotent, by [10, Lemma
21.5]. Hence Re is an ideal of R. Thus we can suppose that R ∼= R1 × R2,
where Ri is a left Artinian ring for i = 1, 2 (see [10, Exercise 1.7 and Corollary
21.13]). Now by a similar method, we conclude that R ∼= R′1× · · · ×R′n, where
R′i is a left Artinian local ring for i = 1, . . . , n. Then by a method similar to
that we used in Proposition 3.4, one can see that ΓAnn(R) is complete. �
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Recall that a ring R is said to be reversible if ab = 0 implies ba = 0 for a, b ∈
R. Note that if R is a reversible ring and X ⊆ R, then `R(X) = rR(X), and we
denote it by Ann(X). By [9, Lemma 1.4], reversible rings are semicommutative.
We use the following lemma frequently.

Lemma 3.11. Let R be a reversible ring. If I and J are non-adjacent in
ΓAnn(R), then Ann(I) = Ann(J).

Proof. It follows from definition. �

In the following proposition, we study the case that the degree of a vertex
of ΓAnn(R) is finite.

Proposition 3.12. Let R be a reversible ring with Z(R) 6= 0. If ΓAnn(R)
contains a vertex of finite degree, then ΓAnn(R) is a finite graph.

Proof. Assume that deg(I) < ∞, where I is a vertex of ΓAnn(R). Without
loss of generality, we may assume that I is a left ideal of R. We claim that
Ann(I) 6= 0. To prove the claim, let Ann(I) = 0. If J is a vertex of ΓAnn(R)
such that Ann(J) 6= 0, then I is adjacent to J . Thus since deg(I) < ∞, the
number of one-sided ideals K of R such that Ann(K) 6= 0 is finite, and so
R contains a minimal left ideal, say Rx. We show that R is a left Artinian
ring. To see this, since Rx ∼= R

Ann(x) as a left R-module isomorphism and

0 → Ann(x) → R → R
Ann(x) → 0 is an exact sequence of R-modules, R is a

left Artinian ring. Now by a method similar to that we used in the proof of
Proposition 3.10, one can show that R ∼= R1×· · ·×Rn, where Ri is a local ring
for i = 1, . . . , n. Then Ann(I) 6= 0, since J(Ri) = Z(Ri) is nilpotent, which is
a contradiction. Thus Ann(I) 6= 0.

Now suppose that I = Ann(I). Then we show that I is adjacent to every
other vertex. To see this, suppose J is a vertex of ΓAnn(R) such that J is
not adjacent to I. Then by Lemma 3.11, I = Ann(I) = Ann(J) which is
impossible. Hence I is adjacent to every other vertex and so ΓAnn(R) is a
finite graph. Now assume that I 6= Ann(I). Then since deg(I) < ∞ and
I ∩ Ann(Ann(I)) 6= 0, the number of R-submodules of Ann(I) is finite and
hence Ann(I) is an Artinian left R-module. Moreover, R

Ann(I) is an Artinian

left R-module (because deg(I) < ∞). Thus R is a left Artinian ring. Now by
Proposition 3.10, we conclude that ΓAnn(R) is a finite graph. �

Recall that a ring R is called reduced if it has no nonzero nilpotent elements.
Clearly, a ring R is reduced if and only if R is a semiprime and reversible ring.
In the next proposition, we study the case that γ(ΓAnn(R)) = 1.

Proposition 3.13. Let R be a ring. If R is not reduced, then γ(ΓAnn(R)) = 1.

Proof. Since R is not a reduced ring, there exists a vertex I of ΓAnn(R) such
that I2 = 0. We show that I is adjacent to every other vertex. To see this,
assume that J is a vertex of ΓAnn(R) and J is not adjacent to I. We have the
following two cases:
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Case 1: Suppose that J is a left ideal. Since J is not adjacent to I,
`R(I) ⊆ `R(J) which is impossible.

Case 2: Suppose that J is a right ideal. Since J is not adjacent to I,
`R(I) ⊆ rR(J) which is impossible.

Therefore, I is adjacent to every other vertex and so γ(ΓAnn(R)) = 1. �

Example 3.14. Let R be a reduced ring. Then we cannot conclude that
γ(ΓAnn(R)) = 2. To see this, let R be a finite direct product of division rings.
Then by Proposition 3.10, we have γ(ΓAnn(R)) = 1.

In the following proposition, we find a dominating set in ΓAnn(R).

Proposition 3.15. Let R be a ring and let I be a vertex of ΓAnn(R) such that
`R(I) ∪ rR(I) 6= 0. Then the set {I}, {I, `R(I)} or {I, rR(I)} is a dominating
set.

Proof. Without loss of generality, assume that `R(I) 6= 0. If I = `R(I), then
I2 = 0. Thus one can see that I is adjacent to every other vertex and hence
the set {I} is a dominating set. Now assume that I 6= `R(I). We show that the
set {I, `R(I)} is a dominating set. To see this, suppose that J is a vertex of
V (ΓAnn(R)) \ {I, `R(I)} such that J is not adjacent to I. Then by Proposition
2.1, we have N(J) = N(I). Since I 6= `R(I), it is easy to see that I is adjacent
to `R(I). Thus J is adjacent to `R(I). Therefore, the set {I, `R(I)} is a
dominating set. �

Note that if R is a reduced ring with finitely many minimal prime ideals,
then we have Z(R) =

⋃n
i=1 Pi, where Pi = Ann(xi) for some xi ∈ R and Pi is

completely prime for each i (see [10, Lemma 12.6 and Proposition 10.16]). In
the following proposition, we study the case that γ(ΓAnn(R)) = 2. Note that
if Z(R) 6= 0, then by Proposition 3.15 we have γ(ΓAnn(R)) ≤ 2.

Proposition 3.16. Let R be a reduced ring with finitely many minimal prime
ideals and Z(R) 6= 0. Then for every vertex I ∈ ΓAnn(R) there exists a vertex
J ∈ V (ΓAnn(R))\{I} such that Ann(I) = Ann(J) if and only if γ(ΓAnn(R)) =
2.

Proof. Suppose that for every vertex I ∈ ΓAnn(R) there exists a vertex J ∈
V (ΓAnn(R)) \ {I} such that Ann(I) = Ann(J). Assume to the contrary that
I1 is a vertex of ΓAnn(R) such that I1 is adjacent to every other vertex. Now
by our assumption, there exists a vertex J1 ∈ V (ΓAnn(R)) \ {I1} such that
Ann(I1) = Ann(J1). Then I1 is not adjacent to J1 which is a contradiction.
Therefore, γ(ΓAnn(R)) = 2.

Conversely, let γ(ΓAnn(R)) = 2. Then for every vertex I ∈ ΓAnn(R) there
exists a vertex J ∈ V (ΓAnn(R)) \ {I} such that I is not adjacent to J . Thus
by Lemma 3.11, we have Ann(I) = Ann(J). �

The following corollary can be obtained directly from Proposition 3.16.
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Corollary 3.17. Let R be a reduced ring with finitely many minimal prime
ideals. Then there exists a vertex I ∈ ΓAnn(R) such that Ann(I) 6= Ann(J) for
every vertex J ∈ V (ΓAnn(R)) \ {I} if and only if γ(ΓAnn(R)) = 1.

Example 3.18. Let R = Z × Z. Then one can easily see that for every
vertex I ∈ ΓAnn(R) there exists a vertex J ∈ V (ΓAnn(R)) \ {I} such that
Ann(I) = Ann(J). Also, γ(ΓAnn(R)) = 2.

Example 3.19. Let R = F × Z, where F is a field. Put I := F × 0. Then it
is easy to see that Ann(I) 6= Ann(J) for every vertex J ∈ V (ΓAnn(R)) \ {I}.
Also, γ(ΓAnn(R)) = 1.

In the next proposition, we characterize some reduced rings whose graphs
are complete.

Proposition 3.20. Let R be a reduced ring with finitely many minimal prime
ideals. Then ΓAnn(R) is complete if and only if R ∼= K1 × · · · ×Kn, where Ki

is a division ring for i = 1, . . . , n.

Proof. Let P1, . . . , Pn be the minimal prime ideals of R. First, assume that
ΓAnn(R) is complete. We claim that if I is a vertex of ΓAnn(R), then Ann(I) 6=
0. To prove the claim, let I 6⊆ Z(R). Then we may suppose that there exists
a regular element x ∈ R such that Rx is a vertex of ΓAnn(R). Hence Rx
is not adjacent to Rx2, which is a contradiction. Thus I ⊆ Z(R). Since
Z(R) =

⋃n
i=1 Pi, by Proposition 3.2 we have Ann(I) 6= 0. On the other hand,

P1, . . . , Pn are the maximal ideals (maximal left ideals) of R. Now by [7,
Corollary 2.27 of Chapter 3], R ∼= K1 × · · · ×Kn, where Ki is a division ring
for i = 1, . . . , n.

The converse is clear. �

In the next proposition, we study the case that ΓAnn(R) is bipartite. Before
that, the following lemma is necessary.

Lemma 3.21. Let R be a reversible ring. If ΓAnn(R) contains a path of length
three, then we have gr(ΓAnn(R)) = 3.

Proof. Suppose that I1 − I2 − I3 − I4 is a path of length three in ΓAnn(R). If
I1 is adjacent to I3, then gr(ΓAnn(R)) = 3. Thus we may assume that I1 is
not adjacent to I3. Then by Proposition 2.1, I1 − I2 − I3 − I4 − I1 is a cycle
of length four in ΓAnn(R). Then without loss of generality, we can assume
that Ann(I2) 6= 0. If R is not reduced, then by Proposition 3.13, one can see
that gr(ΓAnn(R)) = 3. Thus we may assume that R is a reduced ring. Now if
Ann(I1) = 0, then I1 − I2 −Ann(I2)− I1 is a cycle of length three in ΓAnn(R)
and so gr(ΓAnn(R)) = 3. Otherwise, we suppose that Ann(I1) 6= 0. Now we
consider the following two cases:

Case 1: Assume that I1 + Ann(I1) = R. Then R is a decomposable ring
(see [10, Exercise 1.7]). Thus R ∼= R1 × R2, where Ri is a ring for i = 1, 2.
Since ΓAnn(R) contains a path of length three, we can suppose that R1 is
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not a division ring. Then R1 × 0 − 0 × R2 − I × R2 − R1 × 0, where I is a
nontrivial one-sided ideal of R1, is a cycle of length three in ΓAnn(R) and so
gr(ΓAnn(R)) = 3.

Case 2: Assume that I1+Ann(I1) 6= R. Then I1−Ann(I1)−I1+Ann(I1)−I1
is a cycle of length three in ΓAnn(R) and so gr(ΓAnn(R)) = 3. �

Recall that a bipartite graph is one whose vertex set can be partitioned into
two subsets so that no edge has both ends in any one subset. A complete
bipartite graph is a bipartite graph such that every two vertices from different
partitions classes are adjacent. Note that if a graph contains a cycle of odd
length, then it is not bipartite (see [14, Theorem 1.2.18]).

Proposition 3.22. Let R be a reversible ring. Then ΓAnn(R) is a bipartite
graph with nonempty edge set if and only if the number of vertices of ΓAnn(R)
is exactly two.

Proof. Suppose that ΓAnn(R) is a bipartite graph. Since ΓAnn(R) contains
an edge, R is not a domain. Then by Corollary 2.2, ΓAnn(R) is a complete
bipartite graph (because, we have diam(ΓAnn(R)) ≤ 2). On the other hand,
by Lemma 3.21, we conclude that ΓAnn(R) contains no path of length three.
Thus γ(ΓAnn(R)) = 1. Now by Proposition 3.12, ΓAnn(R) is a finite graph.
Therefore, the number of vertices of ΓAnn(R) is exactly two, by Proposition
3.10.

The converse is clear. �

In the following proposition, we study the clique number of ΓAnn(R), when
R is decomposable.

Proposition 3.23. Let R be a reversible ring and R = R1×· · ·×Rn, where Ri

is a ring for i = 1, . . . , n and n 6= 1. Then ω(ΓAnn(R)) ≥ 2n−2. In particular,
if R contains a nontrivial one-sided ideal as I such that Ann(I) = 0, then
ω(ΓAnn(R)) ≥ 2n − 1.

Proof. It is sufficient we choose the zero ideal of Ri for i = 1, . . . , n. Then the
subgraph induced by vertices of the set

Ω := {I1 × · · · × In ∈ V (ΓAnn(R)) | Ii is a trivial ideal of Ri for i = 1, . . . , n}

is complete. Thus ω(ΓAnn(R)) ≥
∑n−1

i=1

(
n
i

)
= 2n − 2. The “in particular”

statement is clear. �

Corollary 3.24. Let R be a reversible ring and R = R1 × · · · ×Rn, where Ri

is a ring for i = 1, . . . , n and n 6= 1. Then

(1) ω(ΓAnn(R)) = 2n − 1 if and only if Ri is a domain for i = 1, . . . , n and
Ri is not a division ring for some i = 1, . . . , n.

(2) ω(ΓAnn(R)) = 2n − 2 if and only if Ri is a division ring for i = 1, . . . , n.

Proof. (1) Suppose that Ri is a domain for i = 1, . . . , n and Ri is not a division
ring for some i = 1, . . . , n. By Proposition 3.23, we have ω(ΓAnn(R)) ≥ 2n− 1.
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Now assume that ∆ is a clique of ΓAnn(R) with 2n vertices. Then there exist
two distinct vertices I, J ∈ ∆, where I = I1 × · · · × In, J = J1 × · · · × Jn,
Ii, Ji ⊆ Ri for i = 1, . . . , n, Ii = Ji = 0 for some i ∈ {1, . . . , n}, and for the
other indices, Ii and Ji are nonzero. Then it is easy to see that I is not adjacent
to J , which is a contradiction. Therefore, ω(ΓAnn(R)) = 2n − 1.

Conversely, assume that ω(ΓAnn(R)) = 2n−1. If R is left (or right) Artinian,
then by Proposition 3.10, we conclude that ΓAnn(R) is a complete graph. Thus
the number of vertices of ΓAnn(R) is 2n − 1 which is impossible. Hence, we
conclude that R is not left (or right) Artinian. We show that Ri is a domain
for i = 1, . . . , n. To see this, without loss of generality, we may suppose that
R1 contains a nontrivial one-sided ideal as I such that Ann(I) 6= 0. Put

Ω := {I1 × · · · × In ∈ V (ΓAnn(R)) | Ii is a trivial ideal of Ri for i = 1, . . . , n}

and

Λ := {I×I2×· · ·×In ∈ V (ΓAnn(R)) | Ii is a trivial ideal of Ri for i = 2, . . . , n}.

Then, one can see that the subgraph induced by vertices of Ω∪Λ is a clique
of ΓAnn(R) with more than 2n − 1 vertices, which is a contradiction. Thus, we
conclude that Ri is a domain for i = 1, . . . , n and Ri is not a division ring for
some i = 1, . . . , n.

(2) Suppose that R = R1 × · · · × Rn, where Ri is a division ring for i =
1, . . . , n. Then, it is easy to see that ΓAnn(R) is a complete graph with 2n − 2
vertices.

Conversely, assume that ω(ΓAnn(R)) = 2n − 2. Then, by using a method
similar to that we used in the proof of item (1), one can see that Ri is a division
ring for i = 1, . . . , n. �
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