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SEMICOMMUTATIVE PROPERTY ON

NILPOTENT PRODUCTS

Nam Kyun Kim, Tai Keun Kwak, and Yang Lee

Abstract. The semicommutative property of rings was introduced ini-
tially by Bell, and has done important roles in noncommutative ring the-
ory. This concept was generalized to one of nil-semicommutative by Chen.
We first study some basic properties of nil-semicommutative rings. We
next investigate the structure of Ore extensions when upper nilradicals
are σ-rigid δ-ideals, examining the nil-semicommutative ring property of
Ore extensions and skew power series rings, where σ is a ring endomor-
phism and δ is a σ-derivation.

1. Introduction

Throughout this note every ring is an associative ring with identity unless
otherwise stated. Given a ring R, N∗(R) and N(R) denote the upper nilradical
(i.e., sum of nil ideals) and the set of all nilpotent elements in R, respectively.
Note N∗(R) ⊆ N(R). The polynomial ring with an indeterminate x over a
ring R is denoted by R[x]. Let Cf(x) denote the set of all coefficients of given a
polynomial f(x). Z and Zn denote the ring of integers and the ring of integers
modulo n. Denote the n by n (n ≥ 2) full (resp., upper triangular) matrix ring
over R by Matn(R) (resp., Un(R)). Use eij for the matrix with (i, j)-entry 1
and elsewhere 0.

Due to Bell [6], a ring R is called to satisfy the Insertion-of-Factors-Property
if ab = 0 implies aRb = 0 for a, b ∈ R. Narbonne [20] and Shin [23] used the
terms semicommutative and SI for the IFP, respectively. (In this paper, we
choose “a semicommutative ring” in the above names, so as to cohere with other
related references.) Commutative rings clearly are semicommutative, and any
reduced ring (i.e., a ring without nonzero nilpotent elements) is semicommu-
tative by a simple computation. There exist many non-reduced commutative
rings (e.g., Znl for n, l ≥ 2), and many noncommutative reduced rings (e.g.,
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direct products of noncommutative domains). A ring is called Abelian if ev-
ery idempotent is central. Semicommutative rings are Abelian by a simple
computation.

According to Marks [18], R is called NI if N∗(R) = N(R). Note that R is NI
if and only if N(R) forms an ideal if and only if R/N∗(R) is reduced. It is well-
known that semicommutative rings are NI, but not conversely. Following [7,
Definition 2.1], a ring R is called nil-semicommutative if whenever ab ∈ N(R)
for a, b ∈ R, then arb ∈ N(R) for any r ∈ R. It is shown that every NI ring is
nil-semicommutative and that the converse is true if Köthe’s conjecture holds
in [7]. Notice that the class of nil-semicommutative rings is clearly closed under
subrings, and that semicommutative rings are clearly nil-semicommutative.

On the other hand, a ring R is called weak symmetric [21, Definition 1] if
abc ∈ N(R) implies acb ∈ N(R) for all a, b, c ∈ R.

Proposition 1.1. A ring R is nil-semicommutative if and only if R is weak

symmetric.

Proof. Assume that R is nil-semicommutative and let abc ∈ N(R) for a, b, c ∈
R. Then (acb)2 = a · c · b ·a · c · b · 1 ∈ N(R) by assumption, and so acb ∈ N(R).
Thus R is weak symmetric.

Conversely, assume that R is weak symmetric and let ab ∈ N(R) for a, b ∈ R,
say (ab)n = 0 for a positive integer n. Let r ∈ R. Then (ab)n = 0 implies

(ab)nrn = 0 ⇒ ab(ab)n−1rn−1r = 0 ⇒ (arb)(ab)n−1rn−1 ∈ N(R)

⇒ ((arb)a)
(

b(ab)n−2rn−2
)

r ∈ N(R)

⇒ (arb)2(ab)n−2rn−2 ∈ N(R)

· · · · · ·

⇒ (arb)n ∈ N(R)

⇒ arb ∈ N(R),

by assumption. This shows that R is nil-semicommutative. �

Note that the weak symmetric ring property is left-right symmetric by the
similar computation to the proof of Proposition 1.1. Hence, we will use this
fact and Proposition 1.1 without reference.

We obtain basic equivalences for nil-semicommutative rings as follows.

Theorem 1.2. Given a ring R, the following conditions are equivalent:

(1) R is nil-semicommutative.

(2) If a1a2 · · · an ∈ N(R) for a1, . . . , an ∈ R, then aθ(1)aθ(2) · · · aθ(n) ∈
N(R) for any permutation θ of the set {1, 2, . . . , n}, where n is any

positive integer.

(3) abc ∈ N(R) implies bac ∈ N(R) for a, b, c ∈ R.

(4) If a1 · · · an ∈ N(R) for a1, . . . , an ∈ R, then r1a1r2a2 · · · rnanrn+1 ∈
N(R) for all r1, . . . , rn+1 ∈ R.
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Proof. (1)⇒(2): Let R be a nil-semicommutative ring and suppose that
a1 · · · ai · · · aj · · · an ∈ N(R) for a1, . . . , ai, · · · , aj , . . . , an ∈ R (i < j). Then we
get the following directions:

(a1 · · · ai−1)(ai · · ·aj−1)(aj . . . an) ∈ N(R)

⇒ (a1 · · · ai−1)(aj . . . an)(ai · · ·aj−1) ∈ N(R);

(a1 · · · ai−1aj)(aj+1 . . . anai)(ai+1 · · · aj−1) ∈ N(R)

⇒ (a1 · · · ai−1aj)(ai+1 · · · aj−1)(aj+1 . . . anai) ∈ N(R);

and

(a1 · · · ai−1ajai+1 · · ·aj−1)(aj+1 . . . an)ai ∈ N(R)

⇒ (a1 · · · ai−1)aj(ai+1 · · · aj−1)ai(aj+1 . . . an)

= (a1 · · · ai−1ajai+1 · · ·aj−1)ai(aj+1 . . . an) ∈ N(R),

using Proposition 1.1. Since any permutation is a product of finite number of
transpositions, we have aθ(1)aθ(2) · · · aθ(n) ∈ N(R) for any permutation θ of the
set {1, 2, . . . , n}.

(2)⇒(3) is clear, and (3)⇒(1) is obtained by Proposition 1.1.
(1)⇔(4) is similar to one of Proposition 1.1, applying n+1 times of the nil-

semicommutativity of R for 1 ·a1 ·a2 · · · an ·1 ∈ N(R) where a1, . . . , an ∈ R. �

Proposition 1.3. Let R be a nil-semicommutative ring. Then we have the

following result.

(1) If a ∈ N(R), then both Ra and aR are nil.

(2) N(R) is multiplicatively closed, and N(R) =
⋃

a∈N(R)Ra =
⋃

b∈N(R) bR.

(3) If N(R) is additively closed, then RaR is nil for any a ∈ N(R).

Proof. (1) Assume that an = 0 ∈ N(R) for n ≥ 1. Letting r1 = · · · = rn and
rn+1 = 1 (resp., r2 = · · · = rn+1 and r1 = 1) in (1), we get that Ra (resp., aR)
is nil.

(2) This comes from (1).
(3) First note that ras ∈ N(R) for any a ∈ N(R) and r, s ∈ R by (2). So if

N(R) is additively closed, then RaR is nil. �

Proposition 1.3(3) leads the following result.

Corollary 1.4. Let R be a nil-semicommutative ring. Then N(R) is additively
closed if and only if R is NI.

Proposition 1.5. (1) If there exists a nil-semicommutative ring R but not NI,

then for some a, b ∈ N(R), (a+b)Zn[a+b] ∼= xZn[x] or (a+b)Zn[a+b] contains
a nonzero idempotent, where n = 0 or n ≥ 2.

(2) If R is a nil-semicommutative ring and N(R)[x] ⊆ N(R[x]), then R is

NI.
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Proof. (1) Let R be a nil-semicommutative ring but not NI. Then there exist
0 6= a, b ∈ N(R) with a+b /∈ N(R) by Corollary 1.4. Let S be the subring of R
generated by a+ b. Then S = (a+ b)Zn[a+ b], where n = 0 or n ≥ 2. Consider
the subset T = {(a+b)t | t ≥ 1} of S. Assume that (a+b)m = (a+b)n for some
m 6= n (otherwise, (a+ b)Zn[a+ b] ∼= xZn[x]). Then (a+ b)s is an idempotent
for some s ≥ 1 by the proof of [12, Proposition 16]. But (a+ b)s is nonzero.

(2) Suppose that R is a nil-semicommutative ring and N(R)[x] ⊆ N(R[x]).
Let a, b ∈ N(R) for a, b ∈ R. Then a + bx ∈ N(R)[x] ⊆ N(R[x]), and so
(a + bx)n = 0 for some n ≥ 1. Hence (a + b)n = 0 and thus a + b ∈ N(R),
showing that N(R) is additively closed. Therefore R is NI by Corollary 1.4. �

Proposition 1.6. (1) The class of nil-semicommutative rings is closed under

direct sums.

(2) For any family {Rγ | γ ∈ Γ} of rings, suppose that the direct product R =
∏

γ∈Γ Rγ is of bounded index of nilpotency. Then Rγ is a nil-semicommutative

ring for all γ ∈ Γ if and only if R is.

(3) The classes of nil-semicommutative rings are closed under direct limits.

(4) Let e ∈ R be a central idempotent. Then R is nil-semicommutative if

and only if eR and (1 − e)R are nil-semicommutative rings.

Proof. (1) Let Ru be nil-semicommutative for all u ∈ U and A = ⊕u∈URu, the
direct sum of Ru’s. It can be easily checked that N(A) = ⊕u∈UN(Ru). Thus
this entails that A is nil-semicommutative.

(2) Let k be the bounded index of R. Then Rγ is also of bounded index ≤ k
for each γ ∈ Γ. By the same computation as in the proof of (1), the proof is
completed.

(3) Let D = {Ri, αij} be a direct system of nil-semicommutative rings Ri

for i ∈ I and ring homomorphisms αij : Ri → Rj for each i ≤ j satisfying
αij(1) = 1, where I is a directed partially ordered set. Let R = lim

−→
Ri be the

direct limit of D with ιi : Ri → R and ιjαij = ιi. If we take a, b ∈ R, then
a = ιi(ai), b = ιj(bj) for some i, j ∈ I and there is k ∈ I such that i ≤ k, j ≤ k.
Define

a+ b = ιk(αik(ai) + αjk(bj)) and ab = ιk(αik(ai)αjk(bj)),

where αik(ai) and αjk(bj) are in Rk. Then R forms a ring with 0 = ιi(0)
and 1 = ιi(1). Let abc ∈ N(R). There is k ∈ I such that a = ιi(ai), b =
ιj(bj), c = ιl(cl) and i, j, l ≤ k. Then abc = ιk(αik(ai)αjk(bj)αlk(cl)) ∈ N(Rk).
Since Rk is nil-semicommutative, acb ∈ N(Rk) and this implies that R is nil-
semicommutative by Proposition 1.1.

(4) This directly follows from (1) and the fact that the class of nil-semi-
commutative rings is closed under subrings, since R ∼= eR⊕ (1− e)R. �

For n ≥ 2, the n by n full matrix ring over any ring need not nil-semi-
commutative by the following example.
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Example 1.7. Let R be any ring. For

A =

(

1 −1
1 0

)

, B =

(

0 0
0 1

)

, C =

(

0 1
0 0

)

∈ Mat2(R),

ABC = 0 ∈ N(Mat2(R)) but ACB = ( 0 1
0 1 ) /∈ N(Mat2(R)). Thus Mat2(R) is

not nil-semicommutative and so Matn(R) for n ≥ 2 is not nil-semicommutative.

Let R be the ring of quaternions with integer coefficients. Then R is a
domain and thus nil-semicommutative. However, for any odd prime integer
q, there exists a ring isomorphism R/qR ∼= Mat2(Zq) by the argument in
[8, Exercise 2A]. But Mat2(Zq) is not nil-semicommutative by Example 1.7,
and thus R/qR cannot be nil-semicommutative. Therefore the class of nil-
semicommutative rings is not closed under homomorphic images.

Alhevaz et al. [1] and Nasr-Isfahani [19] introduced a skew triangular matrix

ring as a set of all upper triangular matrices with addition point-wise and new
multiplication defined by

(aij)(bij) = (cij),

where cij = aiibij + ai(i+1)σ(b(i+1)j) + · · · + aijσ
j−i(bjj) for each i ≤ j where

(aij), (bij) ∈ Un(R) (n ≥ 2) over a ring R with an endomorphism σ, and
denoted by Un(R, σ). Note that Un(R, 1R) = Un(R), where 1R is the identity
endomorphism of R.

Let Dn(R) be the ring of all matrices in Un(R) whose diagonal entries are
all equal, and Vn(R) be the ring of all matrices (aij) in Dn(R) such that
ast = a(s+1)(t+1) for s = 1, . . . , n− 2 and t = 2, . . . , n− 1. Then Dn(R, σ) and
Vn(R, σ) are subrings of Un(R, σ), and Vn(R, σ) is a subring of Dn(R, σ). There
is a ring isomorphism φ : R[x;σ]/(xn) → Vn(R, σ), given by φ(a0 + a1x+ · · ·+
an−1x

n−1 + (xn)) = (a0, a1, . . . , an−1), with ai ∈ R, where R[x;σ] denotes the
skew polynomial ring with an indeterminate x over R, subject to xr = σ(r)x
for r ∈ R and (xn) is the ideal generated by (xn). So Vn(R, σ) ∼= R[x;σ]/(xn).

Theorem 1.8. For a ring R with an endomorphism σ and n ≥ 2, the following
conditions are equivalent:

(1) R is nil-semicommutative.

(2) Un(R, σ) is nil-semicommutative.

(3) Dn(R, σ) is nil-semicommutative.

(4) Vn(R, σ) is nil-semicommutative.

Proof. It is enough to show (1)⇒(2) since the class of nil-semicommutative
rings is closed under subrings. Assume that R is a nil-semicommutative ring
and n ≥ 2. For a nilpotent ideal

I = {A ∈ Un(R, σ) | each diagonal entry of A is zero}

of Un(R, σ), we have Un(R,σ)
I

∼= ⊕n
i=1Ri, where Ri = R, is nil-semicommutative

by Proposition 1.6(1). Hence Un(R, σ) is also a nil-semicommutative ring by
[7, Corollary 2.4]. �
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The following corollary which includes [7, Proposition 2.5] and [21, Propo-
sition 2.3] directly comes from Theorem 1.8.

Corollary 1.9. For a ring R and n ≥ 2, the following conditions are equivalent:
(1) R is nil-semicommutative.

(2) Un(R) is nil-semicommutative.

(3) Dn(R) is nil-semicommutative.

(4) Vn(R) is nil-semicommutative.

Armendariz [5, Lemma 1] proved that ab = 0 for all a ∈ Cf(x), b ∈ Cg(x)

whenever f(x)g(x) = 0 for f(x), g(x) ∈ R[x], where R is a reduced ring. Based
on this result, Rege-Chhawchharia [22] called a ring (not necessarily reduced)
Armendariz if it satisfies Armendariz’s result. So reduced rings are clearly
Armendariz. Typical examples of non-reduced Armendariz rings are Dn(A)
for n = 2, 3 over a reduced ring A, by [15, Proposition 2]. Armendariz rings
are Abelian by the proof of [3, Theorem 6].

Observe that the class of Armendariz rings and the class of nil-semicommuta-
tive rings do not imply each other by the next example.

Example 1.10. (1) We apply [4, Example 4.8]. Let K be a field and A =
K〈a, b〉 be the free algebra generated by the noncommuting indeterminates a, b.
Let I be the ideal of A generated by a2 and R = A/I. Then R is Armendariz
by [4, Example 4.8] and so R is Abelian. Identify a and b with their images
in R for simplicity. Then (ba)ab ∈ N(R) but (ba)ba /∈ N(R) since ba /∈ N(R).
Thus R is not nil-semicommutative.

(2) The ring Un(R) (n ≥ 2) over a nil-semicommutative ring R is nil-
semicommutative by Theorem 1.8, but it can be checked that U2(A) over a
division ring A is not Abelian, and hence it is not Armendariz.

Antoine called a ring R nil-Armendariz [4, Definition 2.3] if ab ∈ N(R)
for all a ∈ Cf(x) and b ∈ Cg(x) whenever two polynomials f(x), g(x) ∈ R[x]
satisfy f(x)g(x) ∈ N(R)[x]. Nil-Armendariz rings strictly contain both the
class of NI rings and the class of Armendariz rings by [4, Proposition 2.1 and
Proposition 2.7]. Nil-Armendariz rings need not be nil-semicommutative by
Example 1.10(1). Note that for a nil-semicommutative ring, the concept of a
nil-Armendariz ring coincides with the concept of an NI ring by [4, Lemma
3.2(d)] and Corollary 1.4. Consequently, a ring is nil-Armendariz and nil-
semicommutative if and only if it is NI.

Moreover, we have the following result.

A ring R is called (von Neumann) regular if for each a ∈ R there exists b ∈ R
such that a = aba.

Proposition 1.11. For a regular ring R, R is nil-semicommutative if and only

if R is Armendariz if and only if R is nil-Armendariz if and only if R is NI.
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Proof. Recall that a regular ring R is Armendariz if and only if R is nil-
Armendariz if and only if R is NI if and only if R is reduced by [17, Theo-
rem 20]. Let R be a regular and nil-semicommutative ring. Then we claim
the R is reduced. Assume on the contrary that there exists 0 6= a ∈ R with
a2 = 0. Since R is regular, there exists b ∈ R such that a = aba. Since R is
nil-semicommutative, a2b2 = 0 implies abab ∈ N(R) and so ab ∈ N(R). But
(ab)n = ab 6= 0 for any n ≥ 1, a contradiction. Therefore R is reduced. �

2. Nil-semicommutative and NI properties of Ore extensions

Recall that for an endomorphism σ of a ring R, the additive map δ : R → R
is called a σ-derivation if

δ(ab) = δ(a)b + σ(a)δ(b) for any a, b ∈ R.

For a ring R with an endomorphism σ of R and a σ-derivation δ, the Ore

extension R[x; σ, δ] of R is the ring obtained by giving the polynomial ring
over R a new skew-multiplication

xr = σ(r)x + δ(r)

for all r ∈ R. If δ = 0, then we write R[x;σ] for R[x;σ, 0] and it is called an
Ore extension of endomorphism type, and for an identity endomorphism 1R of
R, we write R[x; δ] for R[x; 1R, δ] and it is called an Ore extension of derivation

type. The ring R[[x;σ]] is called a skew power series ring.
According to Krempa [16], an endomorphism σ of a ring R is called rigid

if aσ(a) = 0 implies a = 0 for a ∈ R. Hong et al. [10] called R a σ-rigid
ring if there exists a rigid endomorphism σ of R. Note that any rigid endo-
morphism of a ring is a monomorphism and σ-rigid rings are reduced rings
by [10, Proposition 5]. Following [9], a ring R is called σ-compatible if for
each a, b ∈ R, ab = 0 ⇔ aσ(b) = 0, and R is called δ-compatible if for each
a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. If R is both σ-compatible and δ-compatible,
then R is called (σ, δ)-compatible, in this case the endomorphism σ is clearly
a monomorphism.

On the other hand, for a σ-ideal I (i.e., σ(I) ⊆ I) of a ring R, I is called a
σ-rigid ideal of R [11] if aσ(a) ∈ I for a ∈ R implies a ∈ I. Obviously, R is a
σ-rigid ring if and only if the zero ideal of R is a σ-rigid ideal. If R is a σ-rigid
ring, then N∗(R) = 0 is clearly a σ-rigid ideal, but the converse does not hold
by Example 2.4 to follow.

From now on, let σ be a non-zero non-identity endomorphism of each given
ring and δ be a σ-derivation. For a σ-derivation δ, an ideal I of a ring R is
called a δ-ideal of R if δ(I) ⊆ I, and if I is both a σ-rigid ideal and a δ-ideal,
then we call I a σ-rigid δ-ideal.

Lemma 2.1. For a ring R, let N∗(R) be a σ-rigid ideal of R. Then we get

the following result.

(1) R is NI.
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(2) If ab ∈ N(R) for a, b ∈ R, then aσn(b), σn(a)b ∈ N(R) for every

positive integer n. Conversely, if aσk(b) or σk(a)b ∈ N(R) for some

positive integer k, then ab ∈ N(R).
(3) If a1a2 · · · an ∈ N(R) for a1, a2, . . . , an ∈ R, then

σl1(aθ(1))σ
l2(aθ(2)) · · ·σ

ln(aθ(n)) ∈ N(R) ∈ N(R)

for any li ≥ 0 and any permutation θ of the set {1, 2, . . . , n}.
Conversely, if σk1(a1)σ

k2 (a2) · · ·σ
kn(an) ∈ N(R) where ai ∈ R and

ki ≥ 0 for 1 ≤ i ≤ n, then a1a2 · · · an ∈ N(R).
(4) Suppose that N∗(R) is a δ-ideal of R. Then

(i) ab ∈ N(R) implies aδn(b), δn(a)b ∈ N(R) for every positive inte-

ger n;
(ii) a1a2 · · · an ∈ N(R) for a1, a2, . . . , an ∈ R implies

δl1(aθ(1))δ
l2(aθ(2)) · · · δ

ln(aθ(n)) ∈ N(R)

for any li ≥ 0 and any permutation θ of the set {1, 2, . . . , n}.

Proof. (1) This is in [11, Corollary 2.3].
(2) and (4)-(i) follow from [11, Proposition 2.4] and (1).
(3) Since R is NI by (1), it is nil-semicommutative. Let a1a2 · · · an ∈ N(R)

for a1, a2, . . . , an ∈ R. By Theorem 1.2(2), we obtain aθ(1)aθ(2) · · · aθ(n) ∈ N(R)
for any permutation θ of the set {1, 2, . . . , n}. Then

(aθ(1)aθ(2) · · · aθ(n−1))aθ(n) ∈ N(R)

⇒ (aθ(1)aθ(2) · · · aθ(n−1))σ
ln(aθ(n)) ∈ N(R) for any ln ≥ 0

⇒ (σln(aθ(n))(aθ(1)aθ(2) · · · aθ(n−2))aθ(n−1) ∈ N(R)

⇒ σln−1(aθ(n−1))σ
ln(aθ(n))(aθ(1)aθ(2) · · ·aθ(n−3))aθ(n−2) ∈ N(R)

for any ln, ln−1 ≥ 0

...

⇒ σl1(aθ(1))σ
l2(aθ(2)) · · ·σ

ln(aθ(n)) ∈ N(R) for any li ≥ 0

by (2).
Conversely, assume that σk1(a1)σ

k2(a2) · · ·σ
kn(an) ∈ N(R) where ai ∈ R

and ki ≥ 0 for 1 ≤ i ≤ n. By the inverse operation of the previous computation
and (2), we have a1a2 · · · an ∈ N(R).

(4)-(ii) This is obtained by the same argument as in the proof of (3) and
(4)-(i), replacing σ with δ. �

Regarding Lemma 2.1(1), there exists an NI ring R but N∗(R) is not a σ-
rigid ideal of R by [11, Example 3.5]. For convenience, we will use the fact
N∗(R) = N(R) whenever N∗(R) is a σ-rigid ideal of R without reference, in
the procedure.
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Lemma 2.2. If R is a (σ, δ)-compatible ring, then

(1) abc = 0 implies aσ(b)c = 0 and so aσ(b)δ(c) = 0 for a, b, c ∈ R.

(2) an = 0 for a ∈ R and n ≥ 2 implies σ(a)δ(an−1) = 0 and δ(a)an−1 = 0.

Proof. (1) For a, b, c ∈ R,

abc = 0 ⇒ aσ(bc) = 0 ⇒ aσ(b)σ(c) = 0 ⇒ aσ(b)c = 0 ⇒ aσ(b)δ(c) = 0

by the (σ, δ)-compatibility of R.
(2) Let an = 0 for a ∈ R and n ≥ 2. Then we directly get σ(a)δ(an−1) = 0

by (1). Next,

an = 0 ⇒ δ(an) = 0 ⇒ δ(a)an−1 + σ(a)δ(an−1) = 0 ⇒ δ(a)an−1 = 0

since σ(a)δ(an−1) = 0. �

Proposition 2.3. If R is a (σ, δ)-compatible NI ring, then N∗(R) is a σ-rigid
δ-ideal of R.

Proof. Suppose that R is a (σ, δ)-compatible NI ring. We first show that
N∗(R) = N(R) is a σ-ideal of R. Let a ∈ N∗(R) for a ∈ R. Then an = 0 for
some n ≥ 2 implies (σ(a))n = σ(an) = 0 and so σ(a) ∈ N∗(R). Thus N∗(R) is
a σ-ideal.

Now, let aσ(a) ∈ N∗(R) for a ∈ R. Then (aσ(a))n = 0 for some n ≥ 2.
Using Lemma 2.2(1), we have

(aσ(a))a(σ(a)(aσ(a))n−2) = 0 ⇒ aσ(a)σ(a)σ(a)(aσ(a))n−2 = 0

⇒ aσ(a3)(aσ(a))n−2 = 0.

Continuing this process, aσ(a2n−1) = 0 implies σ(a2n) = 0 by Lemma 2.2(1).
Since σ is a monomorphism, we have a2n = 0 and so a ∈ N∗(R). Thus N∗(R)
is a σ-rigid ideal.

Finally, we show that N∗(R) is a δ-ideal. Let a ∈ N∗(R) for a ∈ R. Then
an = 0 for some n ≥ 2 and so δ(a)an−1 = 0 by Lemma 2.2(2). Thus

δ(a)an−1 = 0 ⇒ δ(a)δ(an−1) = 0

⇒ δ(a)(δ(a)an−2 + σ(a)δ(an−2)) = 0

⇒ (δ(a))2an−2 = 0

by the δ-compatibility of R and Lemma 2.2(1). Then we inductively have
(δ(a))n = 0 and so δ(a) ∈ N∗(R), completing the proof. �

Following the literature, a ring R is called reversible if ab = 0 implies ba = 0
for a, b ∈ R. It is well-known that reduced rings are reversible, and that
reversible rings are semicommutative but the converse does not hold in either
case.

The nil-semicommutative property between R[x;σ, δ] and R is studied by
Ouyang and Chen [21], when R is a (σ, δ)-compatible reversible ring. In this
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section, we continue to study for the nil-semicommutative property of R[x;σ, δ]
and R[[x;σ]].

Notice that if R is a (σ, δ)-compatible reversible ring, then N∗(R) is clearly
a σ-rigid δ-ideal of R by Proposition 2.3, but not conversely in general by the
following example.

Example 2.4. We apply the example in [11]. Let R = ( F F
0 F ), where F is a

field. Then

N∗(R) =

(

0 F
0 0

)

= N(R).

Let σ : R → R be defined by σ (( a b
0 c )) = ( a 0

0 c ). Then σ is obviously not a
monomorphism. Thus R is not σ-compatible. Moreover, it is easy to check
that R is not reversible (and hence R is not a σ-rigid ring).

Now we show that N∗(R) is a σ-rigid ideal of R. Clearly N∗(R) is a σ-ideal
of R. If

(

a b
0 c

)

σ

((

a b
0 c

))

∈ N∗(R), for

(

a b
0 c

)

∈ R,

then
(

a2 bc
0 c2

)

∈ N∗(R) =

(

0 F
0 0

)

.

This implies that a2 = 0 and c2 = 0, and so a = 0 = c. Thus ( a b
0 c ) = ( 0 b

0 0 ) ∈
N∗(R). Therefore N∗(R) is a σ-rigid ideal of R.

Following [21], for integers i, j with 0 ≤ i ≤ j, let f j
i ∈ End(R,+) be the

map which is the sum of all possible words in σ, δ built with i letters σ and
j − i letters δ. For example, f0

0 = 1, f j
j = σi, f j

0 = δj and

f j
j−1 = σj−1δ + σj−2δσ + · · ·+ δσj−1.

Proposition 2.5. For a ring R, assume that N∗(R) is a σ-rigid δ-ideal of R.

(1) ab ∈ N(R) implies af j
i (b) ∈ N(R) for all j ≥ i ≥ 0 and a, b ∈ R.

(2) N(R[x;σ, δ]) ⊆ N(R)[x;σ, δ].

Proof. (1) If ab ∈ N(R) for a, b ∈ R, then aσi(b), aδj(b) ∈ N(R) for all i, j ≥ 0

by Lemma 2.1(2), (4), and thus af j
i (b) ∈ N(R) for all j ≥ i ≥ 0.

(2)We apply the proof of [21, Lemma 2.10]. Suppose that p(x)∈N(R[x;σ, δ])
for p(x) = a0 + a1x + · · ·+ anx

n ∈ R[x;σ, δ]. We show that ai ∈ N(R) for all
0 ≤ i ≤ n. We proceed by induction on n. Let (p(x))k = 0 for some positive
integer k. Then

anσ
n(an)σ

2n(an) · · ·σ
(k−1)n(an) = 0 ∈ N(R)

and so an ∈ N(R) by Lemma 2.1(3). Then f t
s(an) ∈ N(R) for all t ≥ s ≥ 0 by

(1). Let q(x) = a0 + a1x+ · · ·+ an−1x
n−1. Then

0 = (p(x))k = (q(x) + anx
n)k = q(x)k + r(x) ∈ N(R)[x;σ, δ],
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where r(x) ∈ R[x;σ, δ]. The coefficients of r(x) can be written as sums of
monomials in ai and fv

u(aj) for i, j ∈ {0, 1, . . . , n} and v ≥ u ≥ 0, and each
monomial has an or fv

u(an) and hence r(x) ∈ N(R)[x;σ, δ]. Thus (q(x))k ∈
N(R)[x;σ, δ], and it implies that

an−1σ
n−1(an−1) · · ·σ

(k−1)(n−1)(an−1) ∈ N(R)

and so an−1 ∈ N(R) by Lemma 2.1(3). Using induction on n, we get ai ∈ N(R)
for all i. Therefore N(R[x;σ, δ]) ⊆ N(R)[x;σ, δ]. �

Corollary 2.6. For a ring R, let N∗(R) be a σ-rigid δ-ideal of R. Then we

have the following result.

(1) [11, Proposition 3.8] N∗(R[x;σ, δ]) ⊆ N∗(R)[x;σ, δ].
(2) N∗(R)[x;σ, δ] ⊆ N∗(R[x;σ, δ]) if and only if R[x;σ, δ] is NI.

Proof. (1) By Lemma 2.1(1) and Proposition 2.5(2), we have

N∗(R[x;σ, δ]) ⊆ N(R[x;σ, δ]) ⊆ N(R)[x;σ, δ] = N∗(R)[x;σ, δ].

(2) This comes from (1) and [11, Theorem 3.10]. �

Note that the class of NI rings is closed under subrings by [13, Proposition
2.4], and we will freely use this fact without reference.

Theorem 2.7. For a ring R, let N∗(R) be a σ-rigid δ-ideal of R. Then

N(R)[x;σ, δ] ⊆ N(R[x;σ, δ]) if and only if R[x;σ, δ] is NI.

Proof. Suppose that N(R)[x;σ, δ] ⊆ N(R[x;σ, δ]). Then

N(R)[x;σ, δ] = N(R[x;σ, δ])

by Proposition 2.5(2). This shows that N(R[x;σ, δ]) is an ideal of R[x;σ, δ]
because N(R) is a σ-rigid δ-ideal, and so R[x;σ, δ] is NI.

Conversely, assume that R[x;σ, δ] is NI. Note that R is NI, and so we have

N(R)[x;σ, δ] = N∗(R)[x;σ, δ] ⊆ N∗(R[x;σ, δ]) = N(R[x;σ, δ])

by Corollary 2.6(2). �

Corollary 2.8 ([21, Theorem 2.12]). Let R be a reversible ring. If R is (σ, δ)-
compatible, then R is nil-semicommutative if and only if R[x;σ, δ] is nil-semi-

commutative.

Proof. Notice that if R is a (σ, δ)-compatible reversible ring, then N∗(R) is a
σ-rigid δ-ideal of R and N(R)[x;σ, δ] ⊆ N(R[x;σ, δ]) by Proposition 2.3 and
[21, Lemma 2.10], respectively. Hence R[x;σ, δ] is NI by Theorem 2.7. This
yields that both R and R[x;σ, δ] are nil-semicommutative. �

Let R0 be the nil K-algebra (where K is any countable field) constructed
by Smoktunowicz [24]. Smoktunowicz showed that R0[x] is not nil in [24,
Theorem 12]. Let R = K + R0. Then N(R) = R0 and R/R0

∼= K, en-
tailing that R is NI (hence nil-semicommutative). Note that NI property
does not go up to polynomial rings by help of Smoktunowicz. Consider the
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polynomial ring R[x, y] with two commuting indeterminates x, y. Smoktunow-
icz showed that a + bx + cy /∈ N(R[x, y]) in spite of a, b, c ∈ N(R) (equiv-
alently, a, bx, cy ∈ N(R[x, y])) in [24, Theorem 12]. This implies that nil-
semicommutative property also does not go up to polynomial rings.

But we have the following result from Theorem 2.7, recalling that the class
of NI rings is closed under subrings.

Corollary 2.9. For a ring R, the following conditions are equivalent:
(1) R is NI and N∗(R)[x] ⊆ N∗(R[x]).
(2) R is NI and N(R)[x] ⊆ N(R[x]).
(3) R[x] is NI.

Corollary 2.9 and Proposition 1.5(2) provide the next result, noting that the
class of nil-semicommutative rings is closed under subrings.

Corollary 2.10. For a ring R with N(R)[x] ⊆ N(R[x]), the following condi-

tions are equivalent:
(1) R is nil-semicommutative.

(2) R is NI.

(3) R[x] is NI.

(4) R[x] is nil-semicommutative.

Recall that N(R)[x] = N(R[x]) when R is an Armendariz by [4, Corollary
5.2]. Hence, for an Armendariz ring R, the ring R is nil-semicommutative if
and only if R[x] is, and moreover we have the following corollary by Corollary
2.9.

Corollary 2.11 ([14, Proposition 18]). If a ring R is both NI and Armendariz,

then R[x] is NI.

Let Cp(x) also denote the set of all coefficients of p(x) for p(x) ∈ R[x;σ, δ]
(or, p(x) ∈ R[[x;σ]]).

Theorem 2.12. For a ring R, let N∗(R) be a σ-rigid δ-ideal of R. For

p1(x), p2(x), . . . , pn(x) ∈ R[x;σ, δ],

p1(x)p2(x) · · · pn(x) ∈ N(R)[x;σ, δ] if and only if a1a2 · · ·an ∈ N(R),

where ai ∈ Cpi(x) for i = 1, 2, . . . , n.

Proof. We partially refer to the method in the proof of [21, Theorem 2.11]. Let
p1(x)p2(x) · · · pn(x) ∈ N(R)[x;σ, δ] for p1(x), p2(x), . . . , pn(x) ∈ R[x;σ, δ]. We
proceed by induction on n. The case n = 2 comes from [11, Theorem 2.5]. Let
n ≥ 3.

Claim 1: p(x)q(x)d ∈ N(R)[x;σ, δ] for d ∈ R if and only if abd ∈ N(R) for
any a ∈ Cp(x) and b ∈ Cq(x).

Suppose that p(x)q(x)d ∈ N(R)[x;σ, δ] for d ∈ R. Let q(x) =
∑n

j=0 bjx
j

and q(x)d =
∑n

s=0 qsx
s where qs =

∑n

j=s bjf
j
s (d) for 0 ≤ s ≤ n. We show that
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abjd ∈ N(R) for any a ∈ Cp(x) and all j. We proceed by induction on n. Since

p(x)q(x)d ∈ N(R)[x;σ, δ], aqs = a(
∑n

j=s bjf
j
s (d)) ∈ N(R) = N∗(R) for any

a ∈ Cp(x) and 0 ≤ s ≤ n.
If s = n, then aqs = abnσ

n(d) ∈ N(R) and so abnd ∈ N(R) by Lemma
2.1(2).

If s = n− 1, then

aqs = abn−1f
n−1
n−1 (d) + abnf

n
n−1(d) = abn−1σ

n−1(d) + abnf
n
n−1(d) ∈ N(R).

Since abnd ∈ N(R), we have abnf
n
n−1(d) ∈ N(R) by Proposition 2.5(1) and so

abn−1σ
n−1(d) ∈ N(R). Thus abn−1d ∈ N(R).

Now assume that we have abjd ∈ N(R) for all j > k and any a ∈ Cp(x). Let
s = k, then

aqk = a(bkf
k
k (d) + bk+1f

k+1
k (d) + · · ·+ bnf

n
k (d)) ∈ N(R).

Since abjd ∈ N(R) for j > k, abjf
j
k(d) ∈ N(R). By the similar method to

above, we have abjf
k
k (d) = abjσ

k(d) ∈ N(R) and hence abkd ∈ N(R). By
induction hypothesis, we have abjd ∈ N(R) for any a ∈ Cp(x) and all j.

Conversely, suppose that abd ∈ N(R) for d ∈ R and any a ∈ Cp(x), b ∈ Cq(x).

Then abf t
s(d) ∈ N(R) for all t ≥ s ≥ 0 by Proposition 2.5(1). Then all

coefficients of p(x)q(x)d are in N(R), i.e., p(x)q(x)d ∈ N(R)[x;σ, δ].

Claim 2: p1(x)p2(x) · · · pn(x) ∈ N(R)[x;σ, δ] if and only if a1a2 · · · an ∈
N(R) where ai ∈ Cpi(x) for i = 1, 2, . . . , n.

Let h(x) = p1(x)p2(x) · · · pn−1(x). Then h(x)pn(x) ∈ N(R)[x;σ, δ] and so
ahan ∈ N(R) for any ah ∈ Ch(x) and an ∈ Cpn(x) by [11, Theorem 2.5]. Thus
for all an ∈ Cpn(x),

(p1(x)p2(x) · · · pn−2(x))pn−1(x)an ∈ N(R)[x;σ, δ].

Let p(x) = p1(x)p2(x) · · · pn−2(x) and q(x) = pn−1(x). Then for all an ∈
Cpn(x), we have p(x)q(x)an ∈ N(R)[x;σ, δ] and so apan−1an ∈ N(R) for any
ap ∈ Cp(x) and an−1 ∈ Cpn−1(x) by Claim 1. Then for all an−1 ∈ Cpn−1(x) and
an ∈ Cpn(x),

p1(x)p2(x) · · · pn−3(x)pn−2(x)(an−1an) ∈ N(R)[x;σ, δ].

By the similar computation to above, we inductively obtain a1a2 · · · an ∈ N(R)
where ai ∈ Cpi(x) for i = 1, 2, . . . , n.

Conversely, suppose that a1a2 · · · an ∈ N(R) where ai ∈ Cpi(x) for i =
1, 2, . . . , n. Then

a1f
v1
u1
(a2)f

v2
u2
(a3) · · · f

vn−1

un−1
(an) ∈ N(R)

for all vk, uk ≥ 0 (1 ≤ k ≤ n − 1) by Proposition 2.5(1), completing the
proof. �

As noted in the proof of Corollary 2.8, if R is a (σ, δ)-compatible reversible
ring, then R[x;σ, δ] is NI. Hence, we can obtain the result of [21, Theorem 2.11]
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as a corollary, combining Proposition 2.5 and Theorem 2.7 with Theorem 2.12.
Moreover,

Corollary 2.13. (1) [1, Theorem 3.6] If R is a (σ, δ)-compatible semicom-

mutative ring, then aix
ibjxj ∈ N(R)[x;σ, δ] whenever p(x)q(x) = 0 for any

p(x) =
∑m

i=0 aix
i, q(x) =

∑n

j=0 bjx
j ∈ R[x;σ, δ].

(2) [2, Theorem 3.6] If R is a σ-compatible NI ring, then aiσ
i(bj) ∈ N(R)

whenever p(x)q(x) ∈ N(R)[x;σ] for any p(x) =
∑m

i=0 aix
i, q(x) =

∑n
j=0 bjx

j ∈

R[x;σ].
(3) [4, Proposition 2.1] NI rings are nil-Armendariz.

Proof. (1) This comes from Proposition 2.3, Proposition 2.5(1) and Theorem
2.12.

(2) This follows from Lemma 2.1(2), Proposition 2.3 and Theorem 2.12.
(3) It directly follows from Theorem 2.12. �

Now we turn our attention to the nil-semicommutative property of the skew
power series ring R[[x;σ]]. We first have the next proposition with the similar
computation to the proof of Proposition 2.5(2), (3).

Proposition 2.14. For a ring R, if N∗(R) is a σ-rigid ideal of R, then we

have the following result.

(1) N(R[[x;σ]]) ⊆ N(R)[[x;σ]].
(2) For p1(x), p2(x), . . . , pn(x) ∈ R[[x;σ]],

p1(x)p2(x) · · · pn(x) ∈ N(R)[[x;σ]] if and only if a1a2 · · ·an ∈ N(R),

where ai ∈ Cpi(x) for i = 1, 2, . . . , n.

Proof. (1) Suppose that p(x) ∈ N(R[[x;σ]]) for p(x) =
∑

∞

i=0 aix
i ∈ R[[x;σ]].

Let (p(x))k = 0 for some positive integer k. Then ak0 = 0 and so a0 ∈ N(R).
Let q(x) =

∑

∞

i=1 aix
i. Then

0 = (p(x))k = (q(x) + a0)
k = q(x)k + r(x) ∈ N(R)[[x;σ]],

where r(x) ∈ R[[x;σ]]. The coefficients of r(x) can be written as sums of
monomials in ai and σm(aj) for i, j ≥ 0 and any m ≥ 0, and each monomial
has a0 or σm(a0) and hence r(x) ∈ N(R)[[x;σ]]. Thus (q(x))k ∈ N(R)[[x;σ]],
and it implies that

a1σ(a1)σ
2(a1) · · ·σ

k−1(a1) ∈ N(R)

and so a1 ∈ N(R) by Lemma 2.1(3). Continuing this process, we get ai ∈ N(R)
for all i. Therefore N(R[[x;σ]]) ⊆ N(R)[[x;σ]].

(2) We apply the proof of Theorem 2.12. We proceed by induction on n.
The case n = 2 comes from [11, Proposition 2.7]. Let n ≥ 3 and q(x) =
p1(x)p2(x) · · · pn−1(x). Then q(x)pn(x) ∈ N(R)[[x;σ]] and so aqan ∈ N(R) for
any aq ∈ Cq(x) and an ∈ Cpn(x) by [11, Proposition 2.7]. By the same argument
as in the proof of Theorem 2.12, we obtain a1σ

v1(a2)σ
v2(a3) · · ·σ

vn−1(an) ∈
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N(R) for all vk ≥ 0 (1 ≤ k ≤ n− 1) and any ai ∈ Cpi(x) (1 ≤ i ≤ n), replacing
fv
u with σv. Thus a1a2 · · · an ∈ N(R) by Lemma 2.1(2).
The converse can be obtained by Lemma 2.1(3). �

Corollary 2.15. For a ring R, let N∗(R) be a σ-rigid ideal of R.

(1) [11, Proposition 3.12] N∗(R[[x;σ]]) ⊆ N∗(R)[[x;σ]].
(2) N∗(R)[[x;σ]] ⊆ N∗(R[[x;σ]]) if and only if R[[x;σ]] is NI.

Proof. (1) This comes from Lemma 2.1(1) and Proposition 2.14(1).
(2) This follows from (1) and [11, Proposition 3.14]. �

The property “N∗(R) is a σ-rigid ideal” and the condition “N(R)[[x;σ]] ⊆
N(R[[x;σ]])” are independent of each other by [11, Examples 3.13 and 3.15(1)].
[11, Example 3.15(1)] also shows that the condition “N∗(R) is σ-rigid ideal”
cannot be replaced by “R is NI” in Propositions 2.5(2) and 2.14(1).

Proposition 2.16. (1) For a ring R, let N∗(R) be a σ-rigid ideal of R. Then

N(R)[[x;σ]] ⊆ N(R[[x;σ]]) if and only if R[[x;σ]] is NI.

(2) If R is a nil-semicommutative ring and N(R)[[x]] ⊆ N(R[[x]]), then R
is NI.

Proof. (1) This is similar to the proof of Theorem 2.7, combining Proposition
2.14(1) with Corollary 2.15(2).

(2) It follows from the same argument as the proof of Proposition 1.5(2). �

Corollary 2.17. (1) For a ring R, R is NI and N∗(R)[[x]] ⊆ N∗(R[[x]]) if

and only if R is NI and N(R)[[x]] ⊆ N(R[[x]]) if and only if R[[x]] is NI.

(2) For a ring R with N(R)[[x]] ⊆ N(R[[x]]), R is nil-semicommutative if

and only if R is NI if and only if R[[x]] is NI if and only if R[[x]] is nil-

semicommutative.

Proof. (1) It comes from Proposition 2.16(1).
(2) This follows from (1) and Proposition 2.16(2). �
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