• Title/Summary/Keyword: semi-ideals

Search Result 31, Processing Time 0.023 seconds

MULTIPLICATION MODULES WHOSE ENDOMORPHISM RINGS ARE INTEGRAL DOMAINS

  • Lee, Sang-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1053-1066
    • /
    • 2010
  • In this paper, several properties of endomorphism rings of modules are investigated. A multiplication module M over a commutative ring R induces a commutative ring $M^*$ of endomorphisms of M and hence the relation between the prime (maximal) submodules of M and the prime (maximal) ideals of $M^*$ can be found. In particular, two classes of ideals of $M^*$ are discussed in this paper: one is of the form $G_{M^*}\;(M,\;N)\;=\;\{f\;{\in}\;M^*\;|\;f(M)\;{\subseteq}\;N\}$ and the other is of the form $G_{M^*}\;(N,\;0)\;=\;\{f\;{\in}\;M^*\;|\;f(N)\;=\;0\}$ for a submodule N of M.

RELATIONSHIP BETWEEN THE STRUCTURE OF A FACTOR RING R/P AND DERIVATIONS OF R

  • Karim Bouchannafa;Moulay Abdallah Idrissi;Lahcen Oukhtite
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1281-1293
    • /
    • 2023
  • The purpose of this paper is to study the relationship between the structure of a factor ring R/P and the behavior of some derivations of R. More precisely, we establish a connection between the commutativity of R/P and derivations of R satisfying specific identities involving the prime ideal P. Moreover, we provide an example to show that our results cannot be extended to semi-prime ideals.

On SF-Rings and Semisimple Rings

  • Lee, Kyoung Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 1994
  • In this note, we study conditions under which SF-rings are semi-simple. We prove that left SF-rings are semisimple for each of the following classes of rings: (1) left non-singular rings of finite rank; (2) rings whose maximal left ideals are finitely generated; (3) rings of pure global dimension zero and (4) rings which is pure-split. Also it is shown that left SF-rings without zero-divisors are semisimple.

  • PDF

GENERALIZED NORMALITY IN RING EXTENSIONS INVOLVING AMALGAMATED ALGEBRAS

  • Kwon, Tae In;Kim, Hwankoo
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.701-708
    • /
    • 2018
  • In this paper, seminormality and t-closedness in ring extensions involving amalgamated algebras are studied. Let $R{\subseteq}T$ be a ring extension with ideals $I{\subseteq}J$, respectively such that J is contained in the conductor of R in T. Assume that T is integral over R. Then it is shown that ($R{\bowtie}I$, $T{\bowtie}J$) is a seminormal (resp., t-closed) pair if and only if (R, T) is a seminormal (resp., t-closed) pair.

ON FULLY IDEMPOTENT RINGS

  • Jeon, Young-Cheol;Kim, Nam-Kyun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.715-726
    • /
    • 2010
  • We continue the study of fully idempotent rings initiated by Courter. It is shown that a (semi)prime ring, but not fully idempotent, can be always constructed from any (semi)prime ring. It is shown that the full idempotence is both Morita invariant and a hereditary radical property, obtaining $hs(Mat_n(R))\;=\;Mat_n(hs(R))$ for any ring R where hs(-) means the sum of all fully idempotent ideals. A non-semiprimitive fully idempotent ring with identity is constructed from the Smoktunowicz's simple nil ring. It is proved that the full idempotence is preserved by the classical quotient rings. More properties of fully idempotent rings are examined and necessary examples are found or constructed in the process.

CONTINUITY OF JORDAN *-HOMOMORPHISMS OF BANACH *-ALGEBRAS

  • Draghia, Dumitru D.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.187-191
    • /
    • 1993
  • In this note we prove the following result: Let A be a complex Banach *-algebra with continuous involution and let B be an $A^{*}$-algebra./T(A) = B. Then T is continuous (Theorem 2). From above theorem some others results of special interest and some well-known results follow. (Corollaries 3,4,5,6 and 7). We close this note with some generalizations and some remarks (Theorems 8.9.10 and question). Throughout this note we consider only complex algebras. Let A and B be complex algebras. A linear mapping T from A into B is called jordan homomorphism if T( $x^{1}$) = (Tx)$^{2}$ for all x in A. A linear mapping T : A .rarw. B is called spectrally-contractive mapping if .rho.(Tx).leq..rho.(x) for all x in A, where .rho.(x) denotes spectral radius of element x. Any homomorphism algebra is a spectrally-contractive mapping. If A and B are *-algebras, then a homomorphism T : A.rarw.B is called *-homomorphism if (Th)$^{*}$=Th for all self-adjoint element h in A. Recall that a Banach *-algebras is a complex Banach algebra with an involution *. An $A^{*}$-algebra A is a Banach *-algebra having anauxiliary norm vertical bar . vertical bar which satisfies $B^{*}$-condition vertical bar $x^{*}$x vertical bar = vertical bar x vertical ba $r^{2}$(x in A). A Banach *-algebra whose norm is an algebra $B^{*}$-norm is called $B^{*}$-algebra. The *-semi-simple Banach *-algebras and the semi-simple hermitian Banach *-algebras are $A^{*}$-algebras. Also, $A^{*}$-algebras include $B^{*}$-algebras ( $C^{*}$-algebras). Recall that a semi-prime algebra is an algebra without nilpotents two-sided ideals non-zero. The class of semi-prime algebras includes the class of semi-prime algebras and the class of prime algebras. For all concepts and basic facts about Banach algebras we refer to [2] and [8].].er to [2] and [8].].

  • PDF

REGULARITY AND SEMIPOTENCY OF HOM

  • Hakmi, Hamza
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.151-167
    • /
    • 2014
  • Let M, N be modules over a ring R and $[M,N]=Hom_R(M,N)$. The concern is study of: (1) Some fundamental properties of [M, N] when [M, N] is regular or semipotent. (2) The substructures of [M, N] such as radical, the singular and co-singular ideals, the total and others has raised new questions for research in this area. New results obtained include necessary and sufficient conditions for [M, N] to be regular or semipotent. New substructures of [M, N] are studied and its relationship with the Tot of [M, N]. In this paper we show that, the endomorphism ring of a module M is regular if and only if the module M is semi-injective (projective) and the kernel (image) of every endomorphism is a direct summand.

CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS

  • Cheon, Jeoung-Soo;Kim, Eun-Jeong;Lee, Chang-Ik;Shin, Yun-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.277-290
    • /
    • 2011
  • We show that the ${\theta}$-prime radical of a ring R is the set of all strongly ${\theta}$-nilpotent elements in R, where ${\theta}$ is an automorphism of R. We observe some conditions under which the ${\theta}$-prime radical of coincides with the prime radical of R. Moreover we characterize elements in prime radicals of skew Laurent polynomial rings, studying (${\theta}$, ${\theta}^{-1}$)-(semi)primeness of ideals of R.

A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

  • Cho, In-Ho;Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.121-126
    • /
    • 1985
  • D.K. Harrison [5] has shown that if R and S are fields of characteristic different from 2, then two Witt rings W(R) and W(S) are isomorphic if and only if W(R)/I(R)$^{3}$ and W(S)/I(S)$^{3}$ are isomorphic where I(R) and I(S) denote the fundamental ideals of W(R) and W(S) respectively. In [1], J.K. Arason and A. Pfister proved a corresponding result when the characteristics of R and S are 2, and, in [9], K.I. Mandelberg proved the result when R and S are commutative semi-local rings having 2 a unit. In this paper, we prove the result when R and S are 2-fold full rings. Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is nondegenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$ (V, R) induced by B is an isomorphism), and with a quadratic mapping .phi.:V.rarw.R such that B(x,y)=(.phi.(x+y)-.phi.(x)-.phi.(y))/2 and .phi.(rx)= $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U(R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$, .., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2, we reserve the notation [ $a_{11}$, $a_{22}$] for the space.the space.e.e.e.

  • PDF