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CHARACTERIZATIONS OF ELEMENTS IN PRIME

RADICALS OF SKEW POLYNOMIAL RINGS AND

SKEW LAURENT POLYNOMIAL RINGS

Jeoung Soo Cheon, Eun Jeong Kim, Chang Ik Lee, and Yun Ho Shin

Abstract. We show that the θ-prime radical of a ring R is the set of
all strongly θ-nilpotent elements in R, where θ is an automorphism of
R. We observe some conditions under which the θ-prime radical of R

coincides with the prime radical of R. Moreover we characterize elements
in prime radicals of skew Laurent polynomial rings, studying (θ, θ−1)-
(semi)primeness of ideals of R.

1. Introduction

Throughout R denotes a ring with identity and θ : R → R is an automor-
phism of R. We use Z to denote the ring of integers. An ideal I of R is called
a θ-ideal if θ(I) ⊆ I, and is called θ-invariant if θ(I) = I. There are some
examples of θ-ideals which are not θ-invariant.

Example 1.1. Let K be any ring and T = K [xi | i ∈ Z] be the free algebra
over K in the commuting indeterminates xi, i ∈ Z. Define a K-homomorphism
θ : T → T by θ(xi) = xi+1, i ∈ Z.

(1) Put I1 =
∑

i≤−1 Tx
2
i ⊕

∑
i≥0 Txi. Then it is a θ-ideal of T . However, it

is not θ-invariant, since x0 ∈ I1 \ θ(I1).
(2) Consider the ideal N of T generated by the monomials xi1 · · ·xin , where

n ≥ 2, then it is a θ-invariant ideal of T . Thus, θ induces an automorphism of
R = T/N ∼= K ⊕

∑
i∈Z Kx̄i, where x̄i = xi +N . Put I2 =

∑
i≥1 Kx̄i. Then it

is a θ-ideal of R. However, it is not θ-invariant since θ(I) =
∑

i≥2 Kx̄i.

According to Pearson and Stephenson [4], a proper θ-ideal I of R is called
θ-prime provided that if AB ⊆ I for an ideal A and a θ-ideal B in R, then
A ⊆ I or B ⊆ I; a proper θ-ideal I of R is called θ-semiprime provided that
whenever A is an ideal of R and m is an integer such that Aθk(A) ⊆ I for all
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k ≥ m we have A ⊆ I. It is not difficult to check that a θ-invariant ideal I of
R is θ-prime if and only if A ⊆ I or B ⊆ I whenever A, B are ideals in R and
m is an integer such that Aθk(B) ⊆ I for all integers k ≥ m. Thus θ-prime
ideals are θ-semiprime.

A ring is called θ-prime (θ-semiprime) if the zero ideal is θ-prime (θ-semi-
prime). The (left) skew polynomial ring by θ over R is denoted by R[x; θ].
Note that θ extends to an automorphism θ∗ : R[x; θ] → R[x; θ] defined by
θ∗(
∑

i≥0 aix
i) =

∑
i≥0 θ(ai)x

i for all
∑

i≥0 aix
i ∈ R[x; θ].

We first recall the following result proved by Pearson and Stephenson.

Lemma 1.2 ([4, Proposition 1.1]). (1) R[x; θ] is a prime ring if and only if R
is θ-prime.

(2) R[x; θ] is a semiprime ring if and only if R is θ-semiprime.

P (R) denotes the prime radical of R (i.e., the intersection of all prime ideals
in R). Analogously we define the θ-prime radical of R by∩

{P | P is a θ-invariant prime ideal of R},

which is written by Pθ(R).
The prime radical of R[x; θ] had been completely described as follows.

Lemma 1.3 ([4, Theorem 1.3]). The prime radical of R[x; θ] is

P (R[x; θ]) =
{∑

i≥0

aix
i | a0 ∈ P (R) ∩ Pθ(R) and ai ∈ Pθ(R) for i ≥ 1

}
= (P (R) ∩ Pθ(R)) +

∑
i≥1

Pθ(R)xi.

Corollary 1.4. R[x; θ] is semiprime if and only if R is θ-semiprime if and
only if Pθ(R) = 0.

Remark 1.5. For a proper θ-invariant ideal I of R, the map θ̄ : R/I → R/I,
defined by θ̄(a + I) = θ(a) + I for a ∈ R, is an automorphism. Moreover for
an ideal P of R with I ⊆ P , P is θ-prime (θ-semiprime) if and only if P/I
is θ̄-prime (θ̄-semiprime). Thus we have Pθ̄(R/I) = Q/I where Q =

∩
{P |

P is a θ-invariant prime ideal of R and I ⊆ P}.

The following lemma is an immediate consequence of Remark 1.4.

Lemma 1.6. A proper θ-invariant ideal I of R is θ-prime (θ-semiprime) if
and only if R/I is θ̄-prime (θ̄-semiprime).

Proposition 1.7. Let I be a proper θ-invariant ideal of R and θ̄ be the
automorphism of R/I defined as above. Then the following conditions are
equivalent:

(1) I is a θ-semiprime ideal of R;
(2) R/I is a θ̄-semiprime ring;
(3) Pθ̄(R/I) = 0;
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(4) I is the intersection of some θ-invariant prime ideals of R;
(5) (R/I)[x; θ̄] is a semiprime ring;
(6) I[x; θ] = {

∑
i≥0 aix

i | ai ∈ I} is a semiprime ideal of R[x; θ].

Proof. (1)⇔(2) is obtained by Lemma 1.5. Corollary 1.3 gives (2)⇔(3)⇔(5).
(3)⇔(4) is proved by the argument in Remark 1.4. (5)⇔(6) follows from the

fact that R
I [x; θ̄]

∼= R[x;θ]
I[x;θ] . □

Recall that P (R) is the smallest semiprime ideal of R. The following is a
similar result for Pθ(R), obtained from Proposition 1.6.

Corollary 1.8. Pθ(R) is the smallest θ-invariant semiprime ideal, i.e., Pθ(R)
is contained in every θ-invariant semiprime ideal of R.

Note that P (R) is the set of all strongly nilpotent elements in R [2, Propo-
sition 3.2.1]. Similarly we can characterize elements in Pθ(R) as follows.

An element a in R shall be called strongly θ-nilpotent provided that for any
sequence (tn)

∞
n=0 of positive integers such that tn+1 ≥ 1+

∑n
i=0 ti, and for any

sequence (an)
∞
n=0 in R such that a0 = a and an+1 ∈ anRθtn(an) for all n ≥ 0,

there is an integer m such that am = 0. We will prove that Pθ(R) is the set of
all strongly θ-nilpotent elements in R.

Lemma 1.9. Let P be a θ-prime ideal of R. If a ∈ R\P , then for any integer
n there exists an integer tn ≥ n such that aRθtn(a) ⊈ P .

Proof. Since P is θ-invariant and a /∈ P , we have θm(a) /∈ P for each integer m.
For a fixed integer n, let An =

∑∞
k=n Rθk(a)R, then An is a θ-ideal of R and

(RaR)An ⊈ P since P is θ-prime. Now we get (RaR)An =
∑∞

k=n RaRθk(a)R,
hence aRθtn(a) ⊈ P for some tn ≥ n. □

Theorem 1.10. Pθ(R) is the set of all strongly θ-nilpotent elements in R.

Proof. Suppose a ∈ Pθ(R), then ax ∈ P (R[x; θ]) by Lemma 1.2. So ax is
strongly nilpotent in R[x; θ] by [2, Proposition 3.2.1]. Let (an)

∞
n=0 be a sequence

in R such that a0 = a, an+1 = anrnθ
tn(an), where rn ∈ R and tn is a positive

integer satisfying tn+1 ≥ 1+
∑n

i=0 ti for all n ≥ 0. For convenience, let s0 = 1,

sn = 1+
∑n−1

i=0 ti, y0 = ax and yn = anx
sn for all n ≥ 1. Then sn+1 = sn + tn,

sn ≤ tn and hence we have

yn+1 = an+1x
sn+1 = anrnθ

tn(an)x
tnxsn = anx

snθ−sn(rn)x
tn−snanx

sn

= ynznyn ∈ ynR[x; θ]yn,

where zn = θ−sn(rn)x
tn−sn for all n ≥ 0. Since y0 = ax is strongly nilpotent

in R[x; θ], yn = 0 eventually and so does an = 0, proving that a is strongly
θ-nilpotent.

Conversely let a /∈ Pθ(R), then a ̸∈ P for some θ-prime ideal P of R. Thus
by Lemma 1.8 there is an integer t0 ≥ 1 and r0 ∈ R with a0r0θ

t0(a0) /∈ P .
Let a1 = a0r0θ

t0(a0), then we get a2 = a1r1θ
t1(a1) /∈ P for r1 ∈ R and
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t1 ≥ 1 + t0 by applying Lemma 1.8 to a1. Repeating this process, we obtain
sequences (rn)

∞
n=0, (an)

∞
n=0 in R and (tn)

∞
n=0 of positive integers such that

tn+1 ≥ 1 +
∑n

i=0 ti and a0 = a, an+1 = anrnθ
tn(an) with an /∈ P for all n ≥ 0.

This shows that a is not strongly θ-nilpotent. □

Since θ−1 is also an automorphism of R, we can define θ−1-primeness and
θ−1-semiprimeness analogously. In general Pθ−1(R) need not coincide with
Pθ(R) by Example 3.13 below. But Pearson, Stephenson, and Watters [5] gave
an affirmative answer for positive powers of θ as in the following.

Lemma 1.11 ([5, Proposition 4.9]). Pθn(R) = Pθ(R) for any positive integer
n; that is, a ∈ R is strongly θ-nilpotent if and only if a is strongly θn-nilpotent.

Remark 1.12. In [3] Lam, Leroy, and Matczuk defined the notion of strongly θ-
nilpotency and θ-prime radical rad(R; θ) to discuss the prime radicals of R[x; θ]
and R[x, x−1; θ]. But the notions in [3] are different from ours. In Section 3 we
will prove that

rad(R; θ) = P (R) ∩ Pθ(R) ∩ Pθ−1(R).

Lam, Leroy and Matczuk [3, Definition 3.1(b)] introduce the notion of θ-
nilpotency as follows. An element a in R is θ-nilpotent if for each integer k ≥ 1
there exists an integer n = n(k) ≥ 1 such that aθk(a)θ2k(a) · · · θnk(a) = 0. A
θ-invariant ideal I of R is said to be θ-nil if every element in I is θ-nilpotent.

Proposition 1.13. Pθ(R) is θ-nil.

Proof. It is obvious that Pθ(R) is θ-invariant. Thus it suffices to prove that
every strongly θ-nilpotent element is θ-nilpotent. Let a be strongly θ-nilpotent
and k ≥ 1. Put tn = 2nk. Then t0 = k ≥ 1 and tn+1 = 2n+1k ≥ 1+(1+2+· · ·+
2n)k = 1 +

∑n
i=0 ti for all n ≥ 0. Also let a0 = a and an+1 = anθ

tn(an); then
an+1 ∈ anRθtn(an). Thus an = 0 for some n ≥ 1 because a0 = a is strongly
θ-nilpotent. Consequently 0 = an = aθk(a)θ2k(a) · · · θ(2n−1)k(a), entailing that
a is θ-nilpotent. □

Lemma 1.14 ([3, Theorem 3.5]). Every ring R contains the largest θ-nil ideal,
written by Nθ(R), such that Nθ̄(R/Nθ(R)) = 0, where θ̄ is the induced auto-
morphism of R/Nθ(R) defined as in Remark 1.4.

The ideal Nθ(R) in Lemma 1.13 is called the θ-nil radical of R.

2. Relations between P (R) and Pθ(R)

In this section we first give some examples of θ and R and next consider
some conditions under which P (R) and Pθ(R) are equal.

Example 2.1. Let F be a field and A = F{xi | i ∈ Z} be the free algebra with
noncommuting indeterminates {xi | i ∈ Z} over F . Let I be the ideal of A
generated by the subset {u2 | u ∈

∑
i∈Z Fxi} and set R = A/I. Then R is the

exterior algebra on the set {x̄i | i ∈ Z}, where x̄i = xi + I. Let θ : R → R be
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the F -automorphism of R induced by the assignment x̄i → x̄i+1 for all i ∈ Z.
Then clearly P (R) =

∑
i∈Z Rx̄i. However Pθ(R) = 0 since R has no nonzero

strongly θ-nilpotent elements. In this case Pθ(R) ⫋ P (R).

Example 2.2. Let F be a field and B =
∏

i∈Z Fi with Fi = F for all i. Let
R be the F -subalgebra of B generated by ⊕i∈ZFi and 1B . For each i set ei
to be the idempotent of B such that ei(j) = δij1F , where δij is the Kronecker
delta. Let θ : R → R be the automorphism of R induced by the assignment
ei 7→ ei+1 for each i. Since R is a reduced ring, we have P (R) = 0. But each ei
is strongly θ-nilpotent (also θ−1-nilpotent); hence Pθ(R) = Pθ−1(R) = ⊕i∈ZFi.
In this case P (R) ⫋ Pθ(R).

Example 2.3. Let R1, θ1 be the ring and automorphism respectively as in
Example 2.1; and R2 and θ2 be the ring and automorphism respectively as
in Example 2.2. Set R = R1 ⊕ R2 and define θ = θ1 ⊕ θ2 by θ(a1, a2) =
(θ1(a1), θ2(a2)). Then clearly θ is an automorphism of R, and we have P (R) =
P (R1) ⊕ P (R2) = P (R1) and Pθ(R) = Pθ1(R1) ⊕ Pθ2(R2) = Pθ2(R2) by Ex-
amples 2.1 and 2.2. Thus P (R) and Pθ(R) are not comparable.

In Examples 2.1, 2.2, and 2.3, we have P (R) ̸= Pθ(R). But P (R) and Pθ(R)
are equal under some ascending chain condition as follows.

Note. If P is a θ-semiprime ideal and A is a θ−1-ideal of R such that A2 ⊆ P ,
then A ⊆ P . In fact, note that Aθk(A) = θk(θ−k(A)A) ⊆ θk(A2) ⊆ θk(P ) = P
for any integer k ≥ 0. Since P is θ-semiprime, we have A ⊆ P .

Proposition 2.4. If R satisfies the ascending chain condition on θ-ideals, then
P (R) = Pθ(R) and especially P (R[x; θ]) = P (R)[x; θ].

Proof. First note that if R satisfies the ascending chain condition on θ-ideals,
then every θ-ideal is θ-invariant. Suppose that A is an ideal of R and m is
an integer such that Aθk(A) ⊆ P (R) for all k ≥ m. Then AB ⊆ P (R) with
B =

∑∞
k=m θk(A). Since B is a θ-ideal, B is θ-invariant. If P is any prime

ideal of R, then AB ⊆ P (R) ⊆ P and so A ⊆ P or B ⊆ P . If B ⊆ P then
A ⊆ θ−m(B) = B ⊆ P . In any case A ⊆ P , entailing A ⊆ P (R). This proves
Pθ(R) ⊆ P (R) by Corollary 1.7.

For the converse inclusion, it is enough to show that Pθ(R) is a semiprime
ideal of R. Suppose that I is an ideal of R such that I2 ⊆ Pθ(R). Then
clearly (θk(I))2 = θk(I2) ⊆ θk(Pθ(R)) = Pθ(R) for any integer k. Choose any
element a ∈ I and let C =

∑∞
k=0 Rθk(a)R. Then C is a θ-ideal of R and hence

is θ-invariant, entailing a ∈ C = θ(C) =
∑∞

k=1 Rθk(a)R. This implies that
a ∈ Rθ(a)R + · · · + Rθm(a)R for some m ≥ 1. Let D =

∑m
k=1 Rθk(a)R; then

D is a θ−1-ideal such that

Dm+1 = (

m∑
k=1

Rθk(a)R)m+1 ⊆
m∑

k=1

(Rθk(a)R)2 ⊆
m∑

k=1

(θk(I))2 ⊆ Pθ(R).

By the preceding Note combined with induction on m ≥ 1, we have D ⊆ Pθ(R).
Since a ∈ D, a ∈ Pθ(R) and hence I ⊆ Pθ(R). □
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Corollary 2.5. If R is left or right Noetherian, then Pθ(R) = Pθ−1(R) = P (R)
for any automorphism θ of R.

An automorphism θ of R is called of locally finite order if for any a ∈ R there
is an integer n = n(a) ≥ 1 such that θn(a) = a. Bedi and Ram proved that if θ
is of locally finite order, then the Jacobson radicals of R[x; θ] and R[x, x−1; θ]
have much nicer forms [1, Corollary 3.3 and Theorem 3.7]. We also prove that
if θ is of locally finite order, then Pθ(R) = P (R) in the following.

Proposition 2.6. If θ is of locally finite order, then P (R) = Pθ(R) = Pθ−1(R).

Proof. It suffices to prove that P (R) is θ-semiprime and Pθ(R) is semiprime.
Let I be an ideal of R and m be an integer such that Iθk(I) ⊆ P (R) for all
k ≥ m. Set A = RaR for a ∈ I. Since θ is of locally finite order there is
an integer n ≥ 1 such that θn(a) = a. Thus θnk(a) = a for any integer k.
Choose a positive integer k such that k ≥ m, then nk ≥ m and hence we have
A2 = Aθnk(A) ⊆ Iθnk(I) ⊆ P (R). Thus we obtain A ⊆ P (R) and a ∈ P (R),
proving that I ⊆ P (R) and P (R) is θ-semiprime.

To show that Pθ(R) is semiprime, let J be an ideal of R with J2 ⊆ Pθ(R).
Since Pθ(R) is θ-invariant, θk(J2) ⊆ θk(Pθ(R)) = Pθ(R) for each integer k. Let

b ∈ J and choose an integer n ≥ 1 such that θn(b) = b. Set B =
∑n−1

k=0 Rθk(b)R.

Then B is a θ-ideal of R and Bn+1 ⊆
∑n−1

k=0 (Rθk(b)R)2 ⊆
∑n−1

k=0 θ
k(J2) ⊆

Pθ(R). Since Pθ(R) is θ-semiprime and B is a θ-ideal in R we have b ∈ B ⊆
Pθ(R), entailing J ⊆ Pθ(R). Thus Pθ(R) is a semiprime ideal of R. □

An important class of automorphisms is the class of power-quasi-inner ones.
According to Pearson et al. [5], an automorphism θ of R is called quasi-inner
(QI for short) if there exists a regular element (i.e., neither left nor right zero-
divisor) u ∈ R such that ur = θ(r)u for all r ∈ R, and θ is called power-quasi-
inner (PQI for short) if θn is QI for some positive integer n.

Remark 2.7. Let θ be a PQI automorphism of R. Then there are an integer
n ≥ 1 and a regular element u ∈ R such that ur = θn(r)u for all r ∈ R. We
call such a regular element u an axis for θ. If u is an axis for θ, then Ru = uR
(hence this is a two-sided ideal of R). Moreover if u is an axis for θ, then un is
also an axis for θ for all n ≥ 1. Pearson, Stephenson and Watters proved that
if θ is PQI, then there is an axis u for θ such that θ(u) = u [5, Proposition 4.7].

We will find relations among P (R), Pθ(R) and Pθ−1(R) for a PQI auto-
morphism θ of R. First notice the following lemma, obtained from [5, Lemma
4.11].

Lemma 2.8. Suppose that θ is a PQI automorphism of R and u ∈ R is an
axis for θ. Then P (R)u ⊆ Pθ(R) and Pθ(R)u ⊆ P (R).

Lemma 2.9. Let θ be a QI automorphism of R with an axis u satisfying
ur = θ(r)u for all r ∈ R. Then

(1) If a ∈ R with au ∈ P (R), then a ∈ Pθ(R).
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(2) If a ∈ R with au ∈ Pθ−1(R), then a ∈ P (R).

Proof. The proofs are similar to that of Theorem 1.9. Since θ is QI, θ(u) = u
by definition.

(1) If au ∈ P (R), then au is strongly nilpotent in R. It suffices to show
that a is strongly θ-nilpotent by Theorem 1.9. Let (an)

∞
n=0 be a sequence in

R such that a0 = a and an+1 = anrnθ
tn(an), where rn ∈ R and t0 ≥ 1,

tn+1 ≥ 1+
∑n

i=0 ti for all n ≥ 0. For convenience let s0 = 1, sn+1 = 1+
∑n

i=0 ti.
Then sn+1 = sn + tn and sn ≤ tn < sn+1. Letting bn = anu

sn for all n ≥ 0,
then we have b0 = au and

bn+1 = an+1u
sn+1 = anrnθ

tn(an)u
tnusn

= anu
snθ−sn(rn)u

tn−snanu
sn = bn(θ

−sn(rn)u
tn−sn)bn ∈ bnRbn

for all n ≥ 0. Since b0 = au is strongly nilpotent, bm = 0 for some m ≥ 0,
causing am = 0 because u is regular. Thus a is strongly θ-nilpotent.

(2) If au ∈ Pθ−1(R), then au is strongly θ−1-nilpotent. We will show that
a is strongly nilpotent. Let (cn)

∞
n=0 be a sequence in R such that c0 = a and

cn+1 = cnrncn, where rn ∈ R for all n ≥ 0. Let tn = 2n, then clearly t0 ≥ 1,
tn+1 ≥ 1 +

∑n
i=0 ti for all n ≥ 0. Put dn = cnu

tn = cnu
2n . Then we have

d0 = c0u = au and

dn+1 = cn+1u
tn+1 = cnrncnu

2n+1

= cnrncnu
2nu2n

= cnu
2nθ−2n(rn)θ

−2n(cnu
2n) = dnθ

−2n(rn)θ
−tn(dn) ∈ dnRθ−tn(dn),

for all n ≥ 0. Since d0 = au is strongly θ−1-nilpotent, we get dk = 0 for some
k ≥ 1, causing ck = 0 because u is regular. Thus a is strongly nilpotent. □

Note. In Lemma 2.9 we also obtain that ua ∈ P (R) (resp. ua ∈ Pθ−1(R))
implies a ∈ Pθ(R) (resp. a ∈ P (R)), by similar proofs.

Lemma 2.10. If θ is a PQI automorphism of R, then we have the following
assertions:

(1) Pθ−1(R) ⊆ P (R) ⊆ Pθ(R);
(2) Every axis u for θ is regular modulo Pθ(R).

Proof. (1) Suppose that θn is QI for some n ≥ 1, then Pθ−n(R) ⊆ P (R) ⊆
Pθn(R) by Lemma 2.9. But Pθn(R) = Pθ(R) and Pθ−n(R) = Pθ−1(R) by
Lemma 1.10; hence we have Pθ−1(R) ⊆ P (R) ⊆ Pθ(R).

(2) Suppose that u is an axis for θ and a ∈ R with au ∈ Pθ(R). Then
au2 ∈ P (R) by Lemma 2.8. Since u2 is also an axis for θ, we have a ∈ Pθ(R)
by Lemma 2.9(1) and Lemma 1.10. We also obtain that ua ∈ Pθ(R) implies
a ∈ Pθ(R) by Note of Lemma 2.9. Thus u is regular modulo Pθ(R). □

The class of QI automorphisms is large as can be seen by the following
construction.
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Example 2.11. Let θ be any automorphism of R and S = R[x; θ]. Define
θ∗ : S → S by θ∗(

∑
i aix

i) =
∑

i θ(ai)x
i. Then θ∗ is a QI automorphism of S

with an axis x, i.e., xf(x) = θ∗(f(x))x for all f(x) ∈ S.

Corollary 2.12. Let S = R[x; θ] and σ = θ∗ be as in Example 2.11. Then
Pσ−1(S) ⊆ P (S) ⊆ Pσ(S).

Proof. By Lemma 2.10(1) and Example 2.11. □

Note. For any automorphism θ of R we have P (S) = (P (R) ∩ Pθ(R)) +∑
i≥1 Pθ(R)xi by Lemma 1.2, where S = R[x; θ]. So we also obtain Pσ(S) =∑
i≥0 Pθ(R)xi = Pθ(R)[x; θ] with the help of Lemma 2.10(2), where σ = θ∗ as

in Corollary 2.12. Therefore P (S) = Pσ(S) if and only if Pθ(R) ⊆ P (R).
In Section 3 we will show Pσ−1(S) = (P (R)∩Pθ(R)∩Pθ−1(R))[x; θ] and also

give an example of R with a QI automorphism θ such that Pθ−1(R) ⫋ P (R) ⫋
Pθ(R). But we have the following equality.

Proposition 2.13. Let θ be a PQI automorphism of R. Then the following
conditions are equivalent:

(1) P (R) = Pθ(R);
(2) Every axis u for θ is regular modulo P (R);
(3) Some axis u for θ is regular modulo P (R).

Proof. (1)⇒(2) follows directly from Lemma 2.10(2) and (2)⇒(3) is obvious.
To prove (3)⇒(1), let u be an axis for θ which is regular modulo P (R). If
a ∈ Pθ(R), then au ∈ P (R) by Lemma 2.8, forcing a ∈ P (R) since u is
regular modulo P (R). Thus we have P (R) = Pθ(R) with the help of Lemma
2.10(1). □

Corollary 2.14. Let θ be a PQI automorphism of R. If there is an axis u for
θ which is regular modulo P (R), then P (R[x; θ]) = P (R)[x; θ].

Proof. By Proposition 2.13 and Note after Corollary 2.12. □

3. The prime radical of R[x, x−1; θ]

Let θ be an automorphism of R. We use S and T to denote R[x; θ] and
R[x, x−1; θ] respectively, where R[x, x−1; θ] is the skew Laurent polynomial ring
with an indeterminate x over R. Let σ = θ∗ be the automorphism of S defined
by σ(

∑
i≥0 aix

i) =
∑

i≥0 θ(ai)x
i. Then σ is QI with an axis x. Note that T =

SX−1, the (right) quotient ring of S by the set X = {xn | n ∈ Z with n ≥ 0}.
In this section we will prove P (T ) = Pσ−1(S)X−1 = (P (R) ∩ Pθ(R) ∩

Pθ−1(R))[x, x−1; θ] and characterize elements in P (T ). The following lemma is
obvious.

Lemma 3.1. Let K be a proper ideal of T . Then we have the following
assertions:

(1) K ∩ S = {f(x) ∈ S | f(x)x−m ∈ K for some integer m ≥ 0}.
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(2) K ∩ S is a σ-invariant ideal of S and (K ∩ S)X−1 = K.
(3) x /∈ K ∩ S and x is regular modulo K ∩ S.

Now we need some technical definitions. A proper θ-invariant ideal P of R
is said to be (θ, θ−1)-prime provided that A ⊆ P or B ⊆ P whenever AB ⊆ P
for θ-invariant ideals A,B in R. A proper θ-invariant ideal Q of R is said
to be (θ, θ−1)-semiprime provided that if A is a θ-invariant ideal of R with
A2 ⊆ Q then A ⊆ Q. Clearly every θ-prime and every θ−1-prime (resp. every
θ-semiprime and every θ−1-semiprime) ideal is (θ, θ−1)-prime (resp. (θ, θ−1)-
semiprime). Observe that P (R), Pθ(R) and Pθ−1(R) are all (θ, θ−1)-semiprime.
Also note that an intersection of any set of (θ, θ−1)-semiprime ideals is (θ, θ−1)-
semiprime. In particular the intersection of all the (θ, θ−1)-semiprime ideals of
R is (θ, θ−1)-semiprime, and hence R contains the smallest (θ, θ−1)-semiprime
ideal. As in the classical case, we define the (θ, θ−1)-prime radical P(θ,θ−1)(R)
by

P(θ,θ−1)(R) =
∩

{P | P is a (θ, θ−1)-prime ideal of R}.

Notice that an ideal I of R is θ-invariant if and only if I[x; θ] = {
∑

i≥0 aix
i |

ai ∈ I for all i} is a σ-invariant ideal of S if and only if the set I[x, x−1; θ] =
{
∑n

i=−m aix
i | m,n ≥ 0, ai ∈ I for all i} is an ideal of T .

Proposition 3.2. Let I be a proper θ-invariant ideal of R. Then we have the
following assertions:

(1) I is (θ, θ−1)-prime if and only if I[x, x−1; θ] is a prime ideal of T .
(2) I is (θ, θ−1)-semiprime if and only if I[x, x−1; θ] is a semiprime ideal of

T .

Proof. (1) Suppose that I is a (θ, θ−1)-prime ideal of R and letH,K be ideals of
T such that HK ⊆ I[x, x−1; θ]. Assume on the contrary that H ⊈ I[x, x−1; θ]
and K ⊈ I[x, x−1; θ]. Then by Lemma 3.1, there are polynomials f(x) =∑m

i=0 aix
i ∈ H ∩S and g(x) =

∑n
j=0 bjx

j ∈ K ∩S such that f(x) /∈ I[x, x−1; θ]

and g(x) /∈ I[x, x−1; θ]. Let p and q be the first integers such that ap /∈ I and
bq /∈ I, respectively. Then for any integer k ∈ Z and any r ∈ R, the coefficient
of xp+q in σk(f(x))rg(x) is

p+q∑
i=0

θk(ai)θ
i(r)θi(bp+q−i) ∈ I.

Since θk(ai) ∈ I and bj ∈ I for all i, j with 0 ≤ i < p, 0 ≤ j < q, we have
θk(ap)θ

p(r)θp(bq) ∈ I for all k ∈ Z, r ∈ R. Thus for any integers k and l we get

θk(ap)Rθl(bq) = θl−p(θk−l+p(ap)Rθp(bq)) ⊆ I,( ∞∑
k=−∞

Rθk(ap)R

)( ∞∑
k=−∞

Rθl(bq)R

)
⊆ I.
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But
∑∞

k=−∞ Rθk(ap)R,
∑∞

k=−∞ Rθl(bq)R are θ-invariant and I is (θ, θ−1)-

prime, we obtain that
∑∞

k=−∞ Rθk(ap)R ⊆ I or
∑∞

k=−∞ Rθl(bq)R ⊆ I. Con-
sequently ap ∈ I or bq ∈ I, a contradiction to the choice of p and q. Therefore
I[x, x−1; θ] is a prime ideal of T .

Conversely suppose that I[x, x−1; θ] is a prime ideal of T and that A,B
are θ-invariant ideals of R such that AB ⊆ I. Then A[x, x−1; θ]B[x, x−1; θ] =
AB[x, x−1; θ] ⊆ I[x, x−1; θ] and hence A[x, x−1; θ] ⊆ I[x, x−1; θ] or B[x, x−1; θ]
⊆ I[x, x−1; θ], forcing A ⊆ I or B ⊆ I. Thus I is (θ, θ−1)-prime.

(2) The case of semiprimeness can be proved by taking H = K and A = B
in the proof of (1). □
Lemma 3.3. Let H be a σ-invariant ideal of S such that x /∈ H and x is regular
modulo H. If A and B are ideals of S such that AB ⊆ H and σ−1(B) ⊆ B,
then there exist σ-invariant (hence σ−1-invariant) ideals C and D such that
A ⊆ C, B ⊆ D and CD ⊆ H.

Proof. Note that Aσi(B)xi = AxiB ⊆ AB ⊆ H for any integer i ≥ 0, and so
Aσi(B) ⊆ H since x is regular modulo H. Let D =

∑∞
i=0 σ

i(B). Then D is a
σ-invariant ideal with B ⊆ D and AD ⊆ H. Moreover σj(A)D = σj(AD) ⊆
σj(H) = H for each integer j. Thus if we let C =

∑∞
i=−∞ σj(A), then C is

σ-invariant and A ⊆ C, CD ⊆ H. □
Proposition 3.4. Let I be a proper θ-invariant ideal of R.

(1) I is (θ, θ−1)-prime if and only if I[x; θ] is a σ−1-prime ideal of S.
(2) I is (θ, θ−1)-semiprime if and only if I[x; θ] is a σ−1-semiprime ideal of

S.

Proof. (1) Suppose that I is (θ, θ−1)-prime and C,D are ideals of S with CD ⊆
I[x; θ] and σ−1(D) ⊆ D. By Lemma 3.3 we can assume that C,D are σ-
invariant. If C ⊈ I[x; θ] and D ⊈ I[x; θ], then the same argument as in
the proof of Proposition 3.2(1) leads to a contradiction. Thus C ⊆ I[x; θ] of
D ⊆ I[x; θ].

Conversely suppose that I[x; θ] is σ−1-prime and A,B are θ-invariant ideals
of R such that AB ⊆ I. Then A[x; θ] and B[x; θ] are σ-invariant ideals of S
satisfying A[x; θ]B[x; θ] = AB[x; θ] ⊆ I[x; θ], whence A ⊆ I or B ⊆ I.

(2) Suppose I is (θ, θ−1)-semiprime. Let C be an ideal of S and m be an
integer such that Cσ−k(C) ⊆ I[x; θ] for all k ≥ m. Let D =

∑
k≥m σ−k(C),

then D is a σ−1-ideal and CD ⊆ I[x; θ]. Since x /∈ I[x; θ] and x is regular
modulo I[x; θ], we can assume that C and D are σ−1-invariant by Lemma 3.3.
Thus we can also assume without loss of generality that C is σ−1-invariant
and C2 ⊆ I[x; θ]. If C ⊈ I[x; θ], then a similar argument as in the proof of
Proposition 3.2(1) leads to a contradiction. So C ⊆ I[x; θ], concluding that
I[x; θ] is σ−1-semiprime.

Conversely suppose that I[x; θ] is σ−1-semiprime and A is a θ-invariant
ideal of R with A2 ⊆ I. Then A[x; θ]2 = A2[x; θ] ⊆ I[x; θ]. Since A[x; θ] is
σ−1-invariant, A[x; θ] ⊆ I[x; θ] and A ⊆ I. Thus I is (θ, θ−1)-semiprime. □
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Corollary 3.5. The following conditions are equivalent:
(1) R is (θ, θ−1)-prime (resp. (θ, θ−1)-semiprime);
(2) S is σ−1-prime (resp. σ−1-semiprime);
(3) T is prime (resp. semiprime).

We may compare Corollary 3.5 with [3, Theorem 4.21].

Lemma 3.6. (1) If P is a σ−1-prime ideal of S, then P ∩R is a (θ, θ−1)-prime
ideal of R and (P ∩R)[x; θ] ⊆ P .

(2) If Q is a prime ideal of T , then Q ∩ S is a σ−1-prime ideal of S. In
particular Q ∩R is a (θ, θ−1)-prime ideal of R with (Q ∩R)[x, x−1; θ] ⊆ Q.

Proof. (1) Let P be a σ−1-prime ideal of S. Then P ∩ R is θ-invariant and
(P ∩ R)[x; θ] ⊆ P because of σ(P ) = P . Let A,B be θ-invariant ideals of R
with AB ⊆ P ∩R. Then A[x; θ]B[x; θ] = (AB)[x; θ] ⊆ (P ∩R)[x; θ] ⊆ P . Since
A[x; θ] and B[x; θ] are σ−1-ideals of S, we have A[x; θ] ⊆ P or B[x; θ] ⊆ P ;
hence A ⊆ P ∩R or B ⊆ P ∩R, showing that P ∩R is (θ, θ−1)-prime.

(2) Let Q be a prime ideal of T . Then Q∩S is a σ-invariant ideal of S with
(Q ∩ S)X−1 = Q by Lemma 3.1. Let C,D be ideals of S with CD ⊆ Q ∩ S
and σ−1(D) ⊆ D. Since x /∈ Q ∩ S and x is regular modulo Q ∩ S, it follows
from Lemma 3.3 that C and D can be assumed σ-invariant. Thus CX−1 and
DX−1 are ideals of T such that CX−1DX−1 = (CD)X−1 ⊆ (Q∩S)X−1 = Q.
Since Q is prime we have that CX−1 ⊆ Q or DX−1 ⊆ Q, yielding C ⊆ Q ∩ S
or D ⊆ Q ∩ S. Thus Q ∩ S is σ−1-prime. Now the (θ, θ−1)-primeness of
Q ∩R = (Q ∩ S) ∩R is an immediate consequence of (1). □

The following proposition is obtained from Propositions 3.2, 3.4 and Lemma
3.6.

Proposition 3.7. (1) Pσ−1(S) = P(θ,θ−1)(R)[x; θ].

(2) P (T ) = P(θ,θ−1)(R)[x, x−1; θ] = Pσ−1(S)X−1.

Corollary 3.8. P(θ,θ−1)(R) is the smallest (θ, θ−1)-semiprime ideal of R. Es-
pecially P(θ,θ−1)(R) ⊆ P (R) ∩ Pθ(R) ∩ Pθ−1(R).

To prove P(θ,θ−1)(R) = P (R) ∩ Pθ(R) ∩ Pθ−1(R) and characterize elements
of P (T ), we need one more related definition. An element a in R is said to be
strongly (θ, θ−1)-nilpotent provided that given any sequence (tn)

∞
n=0 of integers,

every sequence (an)
∞
n=0, such that a0 = a and an+1 ∈ anRθtn(an) for all n ≥ 0,

is eventually zero [3, Definition 1.8].

Lemma 3.9. (1) For any a ∈ R\P(θ,θ−1)(R) there are r ∈ R and an integer t

such that arθt(a) /∈ P(θ,θ−1)(R).

(2) If a ∈ R is strongly (θ, θ−1)-nilpotent, then a ∈ P(θ,θ−1)(R).

(3) If a ∈ P (R) ∩ Pθ(R) ∩ Pθ−1(R), then a is strongly (θ, θ−1)-nilpotent.

Proof. (1) Suppose that a ∈ R and aRθi(a) ⊆ P(θ,θ−1)(R) for any integer i.
Then for all i, j ∈ Z

θi(a)Rθj(a) = θi(aRθj−i(a)) ⊆ θi(P(θ,θ−1)(R)) = P(θ,θ−1)(R).
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Thus if A =
∑∞

i=−∞ Rθi(a)R, then A2 ⊆ P(θ,θ−1)(R). Since A is θ-invariant,
we have A ⊆ P(θ,θ−1)(R) and a ∈ P(θ,θ−1)(R).

(2) Let a /∈ P(θ,θ−1)(R). Then ar0θ
t0(a) /∈ P(θ,θ−1)(R) for some r0 ∈ R and

to ∈ Z by (1). Let a1 = ar0θ
t0(a) and apply (1) again to a1. Then we get

a2 = a1r1θ
t1(a1) /∈ P(θ,θ−1)(R) for some r1 ∈ R and t1 ∈ Z. Inductively there

exists a sequence (tn)
∞
n=0 of integers and a sequence (rn)

∞
n=0 in R such that

an /∈ P(θ,θ−1)(R) for all n ∈ {0, 1, 2, . . .}, where a0 = a and ak+1 = akrkθ
tk(ak)

for all k ∈ {0, 1, 2, . . .}. Thus a is not strongly (θ, θ−1)-nilpotent.
(3) Let a ∈ P (R)∩Pθ(R)∩Pθ−1(R) and suppose that (tn)

∞
n=0 is a sequence

in Z and (rn)
∞
n=0 is a sequence in R. Next set a0 = a, ak+1 = akrkθ

tk(ak) for
all k ∈ {0, 1, 2, . . .} and sn =

∑n
i=0 ti for all n ≥ 0. Notice that for all i, j ∈ Z

with 0 ≤ i < j

(∗) ai+1 ∈ aRθsi(a) and aj+1 ∈ ai+1Rθ(sj−si)(ai+1).

In particular if 0 ≤ i < j and si = sj then aj+1 ∈ ai+1Rai+1. We will show
that an = 0 for some n ≥ 0. The proof splits into the following two cases.

Case 1. When the sequence (sn)
∞
n=0 is bounded.

Assume that (sn)
∞
n=0 is bounded. Then there is an integer m such that sk = m

for infinitely many k’s. Choose a sequence (n(k))∞k=0 of positive integers such
that 1 ≤ n(0) < n(1) < n(2) < · · · and sn(k) = m for all k ≥ 0. Let
bk = an(k)+1 for all k ≥ 0; then by (∗) we have

bk+1 = an(k+1)+1 ∈ an(k)+1Rθ(sn(k+1)−sn(k))(an(k)+1)= bkRθm−m(bk) = bkRbk.

Since b0 = an(0)+1 ∈ aRθm(a) ⊆ P (R), b0 is strongly nilpotent; hence bk = 0
and an(k)+1 = 0 for some k ≥ 0.

Case 2. When the sequence (sn)
∞
n=0 is not bounded.

By symmetry we may assume that (sn)
∞
n=0 is not bounded above. So there is

a strictly increasing sequence (n(k))∞k=0 of positive integers such that sn(0) ≥ 1
and sn(k+1) ≥ 1+2sn(k) for all k ≥ 0. Let z0 = sn(0) and zk+1 = sn(k+1)−sn(k)
for all k ≥ 0. Then z0 ≥ 1 and zk+1 = sn(k+1) − sn(k) ≥ 1 + sn(k), and so
1 + z0 + z1 + · · · + zk = 1 + sn(k) ≤ zk+1. Also let b0 = a, bk+1 = an(k)+1 for
all k ≥ 0. Then b1 = an(0)+1 ∈ aRθsn(0)(a) = b0Rθz0(a) and

bk+1 = an(k)+1 ∈ an(k−1)+1Rθ(sn(k)−sn(k−1))(an(k−1)+1) = bkRθzk(bk)

for all k ≥ 1. Since b0 = a ∈ Pθ(R), b0 is strongly θ-nilpotent; hence bk = 0
and an(k)+1 = 0 for some k ≥ 0.

Therefore a is strongly (θ, θ−1)-nilpotent. □
The following, that is obtained from Corollary 3.8 and Lemma 3.9(2), (3),

may be compared with [3, Proposition 1.11].

Corollary 3.10. P(θ,θ−1)(R) = P (R) ∩ Pθ(R) ∩ Pθ−1(R) and P(θ,θ−1)(R) con-

sists of all strongly (θ, θ−1)-nilpotent elements in R.

The following theorem is shown by Proposition 3.7 and Corollary 3.10.
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Theorem 3.11. (1) Pσ−1(S) = (P (R) ∩ Pθ(R) ∩ Pθ−1(R))[x; θ].
(2)

P (T ) = (P (R) ∩ Pθ(R) ∩ Pθ−1(R))[x, x−1; θ]

= (P (R) ∩ Pθ(R) ∩ Pθ−1(R))[x; θ]X−1.

Moreover, P (T ) is a graded ideal of T and for f(x) =
∑n

i=m aix
i ∈ T ,

f(x) ∈ P (T ) if and only if each ai is strongly (θ, θ−1)-nilpotent in R.

Under some available conditions on R and θ, the prime radical of R[x, x−1; θ]
is more tractable as in the following.

Corollary 3.12. (1) If R satisfies the ACC on θ-ideals and θ−1-ideals, then
P (T ) = P (R)[x, x−1; θ].

(2) If θ is of locally finite order, then P (T ) = P (R)[x, x−1; θ].
(3) If θ is PQI on R, then P (T ) = Pθ−1(R)[x, x−1; θ] ⊆ P (R)[x, x−1; θ].

Now we give an example of a QI automorphism σ of S such that Pσ−1(S) ⫋
P (S) ⫋ Pσ(S).

Example 3.13. Let R be a ring and θ be an automorphism of R such that
P (R) = 0 and Pθ(R) ̸= 0 as in Example 2.2. Then σ is a QI automorphism of S.
In this situation we have Pσ−1(S) = (P (R)∩Pθ(R)∩Pθ−1(R))[x; θ] = 0, P (S) =
P (R) ∩ Pθ(R) +

∑∞
i=1 Pθ(R)xi = Pθ(R)[x; θ]x and Pσ(S) =

∑∞
i=0 Pθ(R)xi =

Pθ(R)[x; θ]. Thus Pσ−1(S) ⫋ P (S) ⫋ Pσ(S).
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