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ON FULLY IDEMPOTENT RINGS

Young Cheol Jeon, Nam Kyun Kim, and Yang Lee

Abstract. We continue the study of fully idempotent rings initiated by
Courter. It is shown that a (semi)prime ring, but not fully idempotent,
can be always constructed from any (semi)prime ring. It is shown that
the full idempotence is both Morita invariant and a hereditary radical
property, obtaining hs(Matn(R)) = Matn(hs(R)) for any ring R where
hs(−) means the sum of all fully idempotent ideals. A non-semiprimitive
fully idempotent ring with identity is constructed from the Smoktunow-
icz’s simple nil ring. It is proved that the full idempotence is preserved
by the classical quotient rings. More properties of fully idempotent rings
are examined and necessary examples are found or constructed in the
process.

1. Introduction

Throughout this note each ring is associative with identity unless stated
otherwise. Given a ring R, denote the n by n full (resp. upper triangular)
matrix ring over R by Matn(R) (resp. Un(R)). Use Eij for the matrix with
(i, j)-entry 1 and elsewhere 0. Z denotes the ring of integers.

A ring (possibly without identity) is called reduced if it has no nonzero
nilpotent elements. A ring (possibly without identity) is called semiprime if
the prime radical is zero. Reduced rings are clearly semiprime and note that a
commutative ring is semiprime if and only if it is reduced.

The study of fully idempotent rings was initiated by Courter [2]. Based on
Courter [2, 3], a ring (possibly without identity) is called fully idempotent when
every factor ring is semiprime. Fully idempotent rings are clearly semiprime
but the converse need not hold by examples below.
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In the following we introduce a simple way to construct a (semi)prime ring,
but not fully idempotent, from given any (semi)prime ring. Consider the ring
extension of a ring S, that is a subring of U2n(S),

D2n(S) = {M ∈ U2n(S) | the diagonal entries of M are equal}.
Theorem 1.1. A semiprime (resp. prime) ring, which is not fully idempotent,
can be always constructed from given any semiprime (resp. prime) ring.

Proof. (1) Let S be a semiprime ring. Define a map σ : U2n(S) → U2n+1(S)
by A 7→ ( A 0

0 A ). Then U2n(S) can be considered as a subring of U2n+1(S) via σ
(i.e., A = σ(A) for A ∈ U2n(S)). Set R be the direct limit of the direct system
(U2n(S), σij) with σij = σj−i. Then R is a semiprime ring by [8, Theorem 2.2].
We will show that R is not fully idempotent. Consider the subset

I = {(aij) ∈ R | aij = 0 if i = j and a(2k−1)(2k) = 0 for k = 1, 2, . . .}
of R. Then I is an ideal of R such that the factor ring R/I contains the nonzero
nilpotent ideal J/I with

J = {(aij) ∈ R | aij = 0 if i = j}.
This implies that R is not fully idempotent.

(1′) Let S be a prime ring in (1). We apply the proof of [7, Proposition 1.3] to
show that R is a prime ring. Let 0 6= A = (afg) ∈ Rn and 0 6= B = (bhk) ∈ Rm.
We can put n = m through σ. Set i be smallest such that the i-th row of A
contains a nonzero entry, and j be smallest such that aij 6= 0 in the i-th row;
and set s be smallest such that the s-th row of B contains a nonzero entry,
and t be smallest such that bst 6= 0 in the s-th row. Say a = aij and b = bst.
Since S is a prime ring, there exists α ∈ R with aαb 6= 0. Assume j ≤ s. Then
(i, t)-entry of AαEjsB is aαb 6= 0, where Ejs ∈ Rn. Next assume j > s. We
can find a positive integer k such that k > n and B = σk−n(B) ∈ Rk contains
a nonzero `-th row with j ≤ `. Set w be smallest such that b`w 6= 0 in the `-th
row of B. Here we can put ` = s + 2k−n, w = t + 2k−n and b = b`w. Then
(i, w)-entry of AαEj`B is aαb 6= 0, where Ej` ∈ Rk. Thus ARB 6= 0 and R is
a prime ring. But R is not fully idempotent by the same method as (1).

(2) Let S be a semiprime (resp. prime) ring. Define a map σ : D2n(S) →
D2n+1(S) by B 7→ ( B 0

0 B ). Then D2n(S) can be considered as a subring of
D2n+1(S) via σ (i.e., B = σ(B) for B ∈ D2n(S)). Set R be the direct limit of
the direct system (D2n(S), σij), where σij = σj−i. Then it is similarly proved
that R is semiprime (resp. prime) but not fully idempotent. ¤

[7, Proposition 1.3] is obtained as a corollary of (1′) in the proof of Theorem
1.1. As a converse of (1′), there exists a fully idempotent ring but not prime
as can be seen by S ⊕ S with a simple ring S.

The following is a restatement of [2, Theorem 1.2] with new useful equivalent
conditions and simpler proofs.
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Lemma 1.2. For a ring R (possibly without identity) the following conditions
are equivalent:

(1) R is fully idempotent;
(2) In = I for every ideal I of R and every n ≥ 1;
(3) I2 = I for every ideal I of R;
(4) a ∈ (RaR)n for every a ∈ R and n ≥ 1;
(5) a ∈ (RaR)2 for every a ∈ R;
(6) IJ = JI = I ∩ J for any ideals I, J of R;
(7) IJ = JI = I for any ideals I ⊆ J of R.

Proof. (1)⇒(2): Assume that R is fully idempotent. Then R/In is semiprime.
Since I/In is nilpotent, we have I/In = 0 and I = In.

(3)⇒(1): Let J be an ideal of R. Suppose that I is an ideal of R such that
I2 ⊆ J . By the condition (3), I = I2 ⊆ J , entailing that R/J is semiprime.

(2)⇒(4): Let a ∈ R and I be the ideal of R generated by a. Then

a ∈ I = I6+3k ⊆ (RaR)2+k for k = 0, 1, 2, . . . .

It then follows a ∈ (RaR)2 ⊆ RaR, concluding that a ∈ (RaR)n for n ≥ 1.
(5)⇒(6): Let x ∈ I∩J . Then by the condition (5), x ∈ (RxR)2 ⊆ (I∩J)2 ⊆

IJ (x ∈ (RxR)2 ⊆ (I ∩ J)2 ⊆ JI) and so I ∩ J ⊆ IJ (I ∩ J ⊆ JI), entailing
I ∩ J = IJ = JI.

(4)⇒(5), (6)⇒(7), and (7)⇒(3) are obvious. ¤

Remark. (i) The condition (2) is equivalent to “For every ideal I of R, there
exists m ≥ 2 with Im = I”. The condition (4) is equivalent to “For every
a ∈ R, there exists m ≥ 2 with a ∈ (RaR)m”.

(ii) If R is a ring with identity, then the conditions (4) and (5) can be
rewritten by “(RaR)n = RaR for every a ∈ R and n ≥ 1” and “(RaR)2 = RaR
for every a ∈ R”, respectively.

(iii) ([2, Proposition 2.3]) Let R be a ring without identity. If R is fully
idempotent, then a ∈ RaR for every a ∈ R by the condition (4).

(iv) “= I ∩ J” and “= I” in the conditions (6) and (7) are not superfluous
as can be seen by Z.

According to Ramamurthi [11], a ring R (possibly without identity) is right
(left) weakly regular if I2 = I for every right (left) ideal I of R. A ring is called
weakly regular if it is both right and left weakly regular. Note that a ring R
is right (left) weakly regular if and only if a ∈ (aR)2 (a ∈ (Ra)2) for every
a ∈ R by [11, Proposition 1]. Simple rings are clearly weakly regular, but there
exists a simple domain without identity that is not one-sided weakly regular
by [10, Lemma of Ex.12.2]. A ring is called biregular if every principal ideal
is generated by a central idempotent. One-sided weakly regular rings are fully
idempotent and biregular rings are weakly regular by the definitions. In the
following we see a fully idempotent ring that is neither right nor left weakly
regular.
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Example 1.3. There exists a fully idempotent ring which is neither one-sided
weakly regular nor biregular. Let W be the first Weyl algebra over a field k
of characteristic zero with indeterminates x, y and relation xy − yx = 1. Let
L = Wx = {amxm + · · ·+ a1x | ai ∈ k[y]}, where k[y] denotes the polynomial
ring with an indeterminate y over k. Then L is a simple domain without
identity by [10, Lemma of Ex.12.2]. Since x /∈ xLxL and x /∈ LxLx, L is
neither left nor right weakly regular. Attaching an identity to L, consider the
ring R = {amxm + · · · + a1x + a0 | a0 ∈ k, a1, . . . , am ∈ k[y]}. Then R is a
domain that has exactly three ideals 0, R, and L by the property of L. Since
R/L ∼= k, R is fully idempotent. Since 0 is a prime ideal of R but not maximal,
R is neither left nor right weakly regular by [5, Theorem 3.4]. For example,
x /∈ xRxR and x /∈ RxRx.

The preceding ring R is also not biregular since it is not weakly regular. In
fact, 0 and 1 are all idempotents in R; hence RxR cannot be generated by an
idempotent.

A ring R is called (von Neumann) regular if for each a ∈ R there exists
x ∈ R such that a = axa. Regular rings are weakly regular by the definition.
By the condition (5) in Lemma 1.2, we obtain easily the following.

Proposition 1.4. Let R be a commutative domain. Then R is fully idempotent
if and only if R is right (left) weakly regular if and only if R is biregular if and
only if R is regular if and only if R is a field.

From this proposition one may ask whether a fully idempotent domain is a
division ring. However the answer is negative since there exists a simple domain
but not a division ring (e.g., the first Weyl algebra over a field of characteristic
zero).

Direct products of simple domains are fully idempotent but Z is not fully
idempotent. So the classes of fully idempotent rings and domains do not contain
each other.

The following was obtained by Courter [3, Corollary 1.5]. But we use a
simpler proof here.

Proposition 1.5. The center of a fully idempotent ring (possibly without
identity) is regular.

Proof. Let R be a fully idempotent ring and a ∈ R be central. Then by
Lemma 1.2, a ∈ (RaR)2 ⊆ a2R. The remainder of this proof is equal to that
of [11, Proposition 12]. ¤

The following is immediately obtained from this proposition.

Corollary 1.6. Let R be a commutative ring. Then R is fully idempotent if
and only if R is left (right) weakly regular if and only if R is regular.

It is obvious that the full idempotence is equivalent to the right (left) weak
regularity, the regularity, and the biregularity for right Artinian rings.
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2. Properties of fully idempotent rings

In this section various properties of fully idempotent rings are examined.
For a ring R, we use `R(−) (rR(−)) to denote the left (right) annihilator over
R. We first show that the full idempotence is a Morita invariant property.
The necessity of the second result in the following theorem is obtained also by
Courter [2, Theorem 2.5], but here we use an elementwise method to get it.

Theorem 2.1. (1) If R is a fully idempotent ring (possibly without identity),
then so is eRe for every idempotent e ∈ R.

(2) A ring R is fully idempotent if and only if so is Matn(R).

Proof. (1) Let R be a fully idempotent ring. Then R2 = R by Lemma 1.2. Let
I be an ideal of eRe. Note I = eIe and consider the ideal J = RIR = ReIeR
of R. Note eJe = I. Since R is fully idempotent, J2 = J by Lemma 1.2 and so

I2 = (eReI)(eReIeRe) = eReIeRReIeRe = eJ2e = eJe = I.

Thus eRe is fully idempotent by Lemma 1.2.
(2) Let R be a fully idempotent ring and J be an ideal of Matn(R). Then

J = Matn(I) for some ideal I of R. Take x =
∑

1≤i,j≤n xijEij ∈ J with
xij ∈ I. We use Lemma 1.2 freely. xij ∈ (RxijR)2 since R is fully idempotent
and so

x =
∑

i,j

xijEij ∈
∑

i,j

(RxijR)2Eij =
∑

i,j

(REiixEjjR)(REjixEjjR)

⊆ (Matn(R)xMatn(R))2,

concluding that Matn(R) is fully idempotent.
Conversely suppose that Matn(R) is fully idempotent. Since E2

11 = E11,
E11Matn(R)E11 (∼= R) is fully idempotent by (1). ¤

By this theorem, the full idempotence is Morita invariant. The converse of
Theorem 2.1(1) need not hold as can be seen by the Un(D) where n ≥ 2 and
D is a simple ring.

We next show that the full idempotence is a hereditary radical property. A
proper ideal of a ring is called fully idempotent if it is fully idempotent as a
ring. Considering the connection between Z and the field of rational numbers,
the class of fully idempotent rings is not closed under subrings. But for ideals
we can get affirmative situations as follows.

Theorem 2.2. Let I ⊆ J be ideals of a ring R. Then J is fully idempotent if
and only if I and J/I are both fully idempotent.

Proof. Let J be fully idempotent. Then clearly J/I is fully idempotent. Let
K be an ideal of I. Then RKR ⊆ I implies (RKR)K(RKR) ⊆ K, and so we
get

K3⊇((RKR)K(RKR))3 =((RKR)(RKR)(RKR))3 =(RKR)9 =RKR ⊇ K
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since J is fully idempotent and RKR is an ideal of J . It then follows K2 = K,
concluding that I is fully idempotent by Lemma 1.2.

Conversely suppose that I and J/I are both fully idempotent. Take x ∈ J .
By Lemma 1.2, there exists y ∈ (JxJ)2 such that x − y ∈ I. Since I is also
fully idempotent, x− y ∈ (I(x− y)I)2 by Lemma 1.2. But we have

(I(x− y)I)2 ⊆ (J(x− y)J)2 ⊆ (JxJ)2

from y ∈ (JxJ)2, entailing x ∈ (JxJ)2. Thus J is fully idempotent. ¤

The following is obtained by Courter [2, Theorem 4.4], but here we use a
similar process to [4, Proposition 1.5], with the help of Theorem 2.2.

Theorem 2.3. Let R be a ring and consider the subset

hs(R) = {x ∈ R | RxR is a fully idempotent ideal of R}
of R. Then we have the following:

(1) hs(R) is a fully idempotent ideal of R.
(2) hs(R) contains all fully idempotent ideals of R.
(3) R/hs(R) has no nonzero fully idempotent ideals of R.

Proof. The proving method of [4, Proposition 1.5] is applied to this situation.
(1) Let x, y ∈ hs(R). Then RxR and RyR are fully idempotent. So (RxR+

RyR)/RyR ∼= RxR/(RxR∩RyR) are fully idempotent by Theorem 2.2. R(x+
y)R ⊆ RxR + RyR are fully idempotent also by Theorem 2.2. Moreover, for
all a, b ∈ R, RaxR ⊆ RxR and RxbR ⊆ RxR are also fully idempotent by
Theorem 2.2. Consequently x + y, ax, xb ∈ hs(R) and hs(R) is an ideal of
R. Next letting m ∈ hs(R), RmR is fully idempotent and so by Lemma 1.2
we have m ∈ (RmRmRmR)2 ⊆ (hs(R)mhs(R))2. Thus hs(R) is itself fully
idempotent by Lemma 1.2.

(2) and (3) can be obtained also from Theorem 2.2. ¤

By Theorems 2.2 and 2.3, the full idempotence is a hereditary radical prop-
erty. By Theorem 2.3 (1), (2) we have the following.

Corollary 2.4. Let R be a ring. Then hs(R) is the sum of all fully idempotent
ideals of R.

Note that a ring R is fully idempotent if and only if hs(R) = R. So a
simple ring R has hs(R) = R. There exists a non-simple domain R such
that hs(R) is zero (e.g., Z). For a ring R we have hs(R) = R if and only if
hs(Matn(R)) = Matn(R) by Theorem 2.1.

Theorem 2.5. hs(Matn(R)) = Matn(hs(R)) for any ring R.

Proof. Let J be an ideal of R. Then J = Matn(I) for some ideal I of R. We
first show that

(∗) I is fully idempotent if and only if so is J,
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using Lemma 1.2 freely. It is well-known that Matn(K)m = Matn(Km) for any
ideal K of R and any positive integer m. Suppose that J is fully idempotent.
Then

Matn(I) = J = J2 = Matn(I)2 = Matn(I2),
getting I2 = I. Thus I is fully idempotent. Conversely suppose I is fully
idempotent. Then

J = Matn(I) = Matn(I2) = Matn(I)2 = J2,

concluding that J is fully idempotent.
Set M = Matn(R). If x ∈ hs(M), then MxM is a fully idempotent

ideal of M by Theorem 2.3. So MxM = Matn(I) for some fully idempotent
ideal I of R by (∗), entailing x ∈ Matn(I) ⊆ Matn(hs(R)) by Theorem 2.3.
Thus hs(Matn(R)) ⊆ Matn(hs(R)). Conversely let y ∈ hs(R). Then RyR is
fully idempotent by Theorem 2.3, and so we have Matn(RyR) is fully idem-
potent by (∗). Thus Matn(RyR) ⊆ hs(Matn(R)) by Theorem 2.3, entailing
hs(Matn(R)) ⊇ Matn(hs(R)). Therefore we obtain

hs(Matn(R)) = Matn(hs(R)). ¤

Cohn and Sasiada [12] constructed a simple (Jacobson) radical ring with-
out identity that is fully idempotent. While Courter [3, Section 2] constructed
semiprimitive fully idempotent rings with identity. Here we will construct non-
semiprimitive fully idempotent rings with identity with the help of Smoktunow-
icz [13]. Note that one-sided weakly regular rings are semiprimitive.

Let S be an algebra (possibly without identity) over a commutative ring
K. The Dorroh extension of S by K, written by S ⊕D K, is the ring with
operations (s1, k1) + (s2, k2) = (s1 + s2, k1 + k2) and (s1, k1)(s2, k2) = (s1s2 +
k1s2 + k2s1, k1k2), where si ∈ S and ki ∈ K.

Example 2.6. Let K be a countable field. Then there exists a simple nil
algebra S over K by Smoktunowicz [13, Theorem 6.6]. Let R be the Dorroh
extension of S by K. Note that S2 = S by the construction of S. Note that
every element of the form (s, k), with k 6= 0, is invertible since M = S ⊕D 0
(∼= S) is a nil ideal of R. So R is a local ring with the Jacobson radical M .
Now since R has 0, M , and R as ideals, R is fully idempotent.

A ring is called right (left) duo if every right (left) ideal of it is two-sided.
One-sided duo rings are Abelian (i.e., every idempotent is central) through a
simple computation. Commutative rings and direct products of division rings
are left and right duo. There exists a simple domain but not one-sided duo
as the first Weyl algebra over a field of characteristic zero. A ring R is called
strongly regular if for each x ∈ R there exists y ∈ R such that x2y = x. A ring
is strongly regular if and only if it is Abelian regular [4, Theorem 3.5].

Proposition 2.7. For a right duo ring R the following conditions are equiv-
alent:
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(1) R is fully idempotent;
(2) Every homomorphic image of R is reduced;
(3) R is (strongly) regular;
(4) R is right (left) weakly regular.

Proof. Suppose that R is fully idempotent.
(1)⇒(2): Let I be an ideal of R and a2 ∈ I for a ∈ R. Since R is right duo,

aRa ⊆ a2R and a2R is an ideal of R. Since a2R is a semiprime ideal, we get
a ∈ a2R ⊆ I.

(1)⇒(3): For x ∈ R, x ∈ (RxR)2 by Lemma 1.2 and so the right duoness
yields x ∈ (RxR)2 ⊆ xRxR ⊆ x2R, concluding that R is strongly regular.

(2)⇒(1), (3)⇒(1), (3)⇒(4) and (4)⇒(1) are obvious. ¤

The equivalence of the conditions (1) and (3) was proved by Courter [3,
Theorem 1.6], but the proof here is simpler. Every factor ring of a regular
(resp. right duo) ring is also regular (resp. right duo), and so (3)⇒(2) in the
preceding proposition is also obtained by [4, Theorem 3.2]. Letting I = 0 in the
preceding proof, we obtain as a byproduct that a right duo ring is semiprime
if and only if it is reduced.

A ring R is weakly right (left) duo if for each a in R there exists a positive
integer n = n(a), depending on a, such that anR (Ran) is two-sided. Weakly
one-sided duo rings are Abelian by [14, Lemma 4]. Right (left) duo rings are
obviously weakly right (left) duo but the converse does not hold in general by
[6, Example 1].

A ring R is called strongly π-regular if for every a ∈ R there exists a positive
integer n, depending on a, such that an ∈ an+1R. Strongly regular rings are
clearly strongly π-regular. The classes of fully idempotent rings and strongly
π-regular rings do not contain each other. Consider the first Weyl algebra over
a field of characteristic zero and the U2(D) with a division ring D. But we
have the following relation.

Proposition 2.8. Let R be a weakly right duo ring. If R is fully idempotent,
then R is strongly π-regular.

Proof. Suppose that R is fully idempotent and I is an ideal of R. Since R is
weakly right duo, there is a positive integer n such that anR is an ideal of R.
It then follows that a2nR is also an ideal of R. Since R is fully idempotent, we
get an ∈ (RanR)2 by Lemma 1.2; hence

an ∈ (RanR)2 ⊆ anRanR ⊆ a2nR

implies that R is strongly π-regular. ¤

The converse of Proposition 2.8 need not hold. For, the ring
{(

a b
0 a

)
∈ Mat2(D) | a, b ∈ D

}
,
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with D a division ring, is weakly right duo and strongly π-regular but is not
semiprime.

For a ring R and a ∈ R, a is called regular in R if `R(a) = 0 = rR(a).

Proposition 2.9. Let R be a fully idempotent ring and x ∈ R be central. If
xR is a proper ideal of R, then x is not regular.

Proof. Let x ∈ R be central. By Lemma 1.2, x ∈ (RxR)2 = x2R and so
xR = x2R. If x is regular, then xR = R. So if xR is proper, then x is not
regular. ¤

By this proposition, a central element in a fully idempotent ring is either
non-regular or invertible (e.g., direct products of simple rings), entailing that
if R is a commutative fully idempotent ring, then every element of R is either
non-regular or invertible. Also by this proposition Z and any polynomial ring
cannot be fully idempotent.

Proposition 2.10. Let R be a semiprime ring with the ACC and DCC for
right annihilators. Then I ⊕ rR(I)(= I ⊕ `R(I)) contains a regular element of
R for every ideal I of R.

Proof. Since R is semiprime, we have `R(I ⊕ rR(I)) = rR(I ⊕ rR(I)) = 0. For,
if a ∈ rR(I ⊕ rR(I)), then Ia = 0 = rR(I)a and so RaR ⊆ rR(I), RaR ⊆
rR(rR(I)); hence we get (RaR)2 = 0, entailing RaR = 0. So I ⊕ rR(I) is an
essential right ideal of R. Then by [1, Theorem 1.19], I ⊕ rR(I) contains a
regular element of R. ¤

Every semisimple Artinian ring is regular (hence fully idempotent) and so
every homomorphic image of R has the property “I ⊕ rR(I)(= I ⊕ `R(I))
contains a regular element of R for every ideal I” by Proposition 2.10.

It is shown by [10, Ex. 10.5] that every ideal of a ring R (possibly without
identity) is prime if and only if all ideals of R are linearly ordered by inclusion
and R is fully idempotent. The condition “all ideals of R are linearly ordered”
is not superfluous by the structure of infinite direct products of fields. The
condition “fully idempotent” is also not superfluous as can be seen by the local
ring Z/2nZ with n ≥ 2.

3. Examples of fully idempotent rings

In this section we find and construct more examples of fully idempotent
rings.

If a ring R is right nonsingular, then the maximal right quotient ring of R is
regular (hence fully idempotent) by [9, Theorem 13.36]. So a semiprime ring R
with the ACC for right annihilators has a regular maximal right quotient ring
with the help of [1, Theorems 1.6 and 1.7]. But in this case R need not be fully
idempotent, considering Z.

A ring R is called right Ore if given a, b ∈ R with b regular there exist
a1, b1 ∈ R with b1 regular such that ab1 = ba1. The left Ore case is defined
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similarly. It is well-known that R is a right (left) Ore ring if and only if there
exists the classical right (left) quotient ring of R. Note that the free algebra
in two indeterminates over a field is a domain but cannot have its classical
one-sided quotient ring.

Theorem 3.1. Let R be a right Ore ring and Q be the classical right quotient
ring of R. If R is fully idempotent, then so is Q.

Proof. Let R be fully idempotent and ab−1 ∈ Q. Then a ∈ (RaR)2 by
Lemma 1.2. Since

(RaR)2 =

{ ∑

finite

rasat | r, s, t ∈ R

}

=

{ ∑

finite

rab−1bsab−1bt | r, s, t ∈ R

}
⊂ (Qab−1Q)2,

it follows that

ab−1 ∈ (RaR)2b−1 ⊂ (Qab−1Q)2b−1 = (Qab−1Q)2.

Thus Q is fully idempotent by Lemma 1.2. ¤

However the converse of Theorem 3.1 need not hold, considering Z and the
field of rational numbers. In the preceding proof we also have

∏
and ⊕ denote

the direct product and direct sum respectively.

Proposition 3.2. Let Ri (i ∈ I) be rings.
(1)

∏
i∈I Ri is fully idempotent if and only if so is every Ri.

(2) ⊕i∈IRi is fully idempotent if and only if so is every Ri.

Proof. Put R =
∏

i∈I Ri and take a = (ai) ∈ R. If every Ri is fully idempotent,
ai ∈ (RiaiRi)2 and so a ∈ ∏

i∈I(RiaiRi)2 = (RaR)2, and R is fully idempotent
by Lemma 1.2. Conversely suppose that R is fully idempotent. Take b = (bi)
with bi 6= 0 and bj = 0 for all j 6= i. b ∈ (RbR)2 by Lemma 1.2. But
(RbR)2 =

∏
i∈I Si with Si = (RibiRi)2 and Sj = 0 for all j 6= i, entailing

bi ∈ (RibiRi)2, and Ri is fully idempotent by Lemma 1.2. The proof for (2) is
similar. ¤

The second result of the preceding proposition is obtained also by Courter
[2, Theorem 2.7].

Proposition 3.3. The class of fully idempotent rings is closed under direct
limits.

Proof. Let D = {Ri, αij} be a direct system of fully idempotent rings Ri (i ∈ I)
and ring homomorphisms αij : Ri → Rj for each i ≤ j satisfying αij(1) = 1,
where I is a directed partially ordered set. Let R be the direct limit of D with
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ιi : Ri → R and ιjαij = ιi. Take x ∈ R. Then x = ιi(xi) for some xi ∈ Ri.
Since Ri is fully idempotent, xi ∈ (RixiRi)2 by Lemma 1.2 and so

x = ιi(xi) ∈ ιi((RixiRi)2) ⊆ (RxR)2.

Thus R is fully idempotent by Lemma 1.2. ¤
From this proposition, one may suspect that the inverse limit of fully idempo-

tent rings is fully idempotent. But the following example erases the possibility.

Example 3.4. There exists a fully idempotent ring with isomorphic fully idem-
potent rings R1 ⊇ R2 ⊇ · · · such that ∩∞i=1Ri is not fully idempotent. To see
that, we use the ring in [4, Example 1.10]. Let F be a field, set Si = Mat2(F )
for i = 1, 2, . . . and let R be the subring of

∏∞
i=1 Si consisting of all sequences

x such that xj = xj+1 = · · · for some j. Note that ⊕∞i=1Si is an ideal of R
with R/(⊕∞i=1Si) ∼= Mat2(F ). Thus R is regular (hence fully idempotent) by
[4, Lemma 1.3]. Now set Rn = {x ∈ R |xi = ( 1 0

1 1 )xi+1

(
1 0
−1 1

)
, i = 1, 2, . . . , n}

for each n = 1, 2, . . .. Then Rn
∼= R by the argument in [4, Example 1.10].

Note R1 ⊇ R2 ⊇ · · · . By the computation in [4, Example 1.10],
⋂∞

n=1 Rn is
isomorphic to the ring S = {( a 0

b a ) | a, b ∈ F}. But S is not semiprime and so⋂∞
n=1 Rn is not fully idempotent.

Proposition 3.5. Any finite subdirect product of fully idempotent rings is fully
idempotent.

Proof. It suffices to show the case of two subdirect product. Let R be a ring
that is a subdirect product of two fully idempotent rings. Then there are two
ideals I, J of R such that R/I, R/J are both fully idempotent and I ∩ J = 0.
We have I ∼= (I + J)/J from I ∩ J = 0, and so I is fully idempotent by
Theorem 2.2 since R/J is fully idempotent. But R/I is fully idempotent, and
so R is fully idempotent by Theorem 2.2. ¤

However subdirect products of infinitely many fully idempotent rings need
not be fully idempotent, considering Z.
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