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On SF-Rings and Semisimple Rings

Kyoung Hee Lee

ABSTRACT. In this note, we study conditions under which SF- 
rings are semi-simple. We prove that left SF-rings are semisimple 
for each of the following classes of rings: (1) left non-singular rings of 
finite rank; (2) rings whose maximal left ideals are finitely generated; 
(3) rings of pure global dimension zero and (4) rings which is pure- 
split. Also it is shown that left S_F-rings without zero-divisors are 
semisimple.

Let R be an associative ring with identity. A ring R is called a 
(leit)SF~ring if every simple left 7?-module is flat. It is known that 
R is regular if and only if every left /《-module is flat. In connection 
with this fact, Ramamurthi [7] bigan the study of the relation of SF- 
rings and regular rings. M.B. Rege[8], Yue Chi Ming [11, 12] and JL 
Chen [3] proved that the SF property implies the regularity for each 
of the following classes of rings: (1) semi-local rings; (2) rings finitely 
generated as modules over their centers; (3) quasi-duo rings; (4) left 
p.p. rings; (5) left semi-artinian rings; (6) left non-singular rings of 
finite Goldie dimension.

In this note, we prove that left SF-rings are semisimple for each of 
the following classes of rings: (1) left non-singular rings of finite rank;
(2) rings whose maximal left ideals are finitely generated; (3) rings of 
pure global dimension zero; (4) rings which is pure-split. Also, it is 
shown that left S2구-rings without zero-divisors are semisimple.
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Throughout this paper, R represents an associative ring with iden­
tity and every J?-module is unital. We say that R is semisimple when­
ever rR is a semisimple left J?-module; equivalently, all left JJ-modules 
are projective. Also, it is known that 7? is a semisimple ring if and 
only if all simple left JJ-modules are projective. For left jR-modules 
A and (7, an epimorphism / : A —» <7 is called pure(finitely split) 
if Hom오(M, A) —Hom호(M, C) is an epimorphism for every finitely 
presented (finitely generated) left j?-module M, A left」F?-module M 
is finitely projective if every epimorphism onto M is finitely split and 
pure-projective if every pure epimorphism onto M is split. A left an- 
nihilator ideal in a ring R is any ideal which equals left annihilator 
ideal of some subset of R. As usual, Z(5) denotes the left annihilator 
ideal of S in R.

We first need the following proposition and lemma.

PROPOSITION 1 [9]. Let R be a subring of a ring S and M a left 
R-module. If M is flat and the left S-module S M is finitely 
projective over S, then M is finitely projective.

LEMMA 2. Let R be a subring of a ring S. If every flat S'-module 
is finitely projective, then the same holds for every Hat R-module.

PROOF. Let M be a flat 7?-module. Then for any monomorphism 
of S-modules A —> J3, the natural homomorphism A®rM —> B®rM 
is a monomorphism. Since A ®s (S M) 스 A M and B ®s 
(S' ®r M) 스 B M, S ®r M is flat over S. Hence S ®r M is finitely 
projective by the hypothesis. So M is a finitely projective J?-module 
by Proposition 1.

Recall that a ring R has a finite left rank (equivalently, finite Goldie 
dimension) if there are no infinite direct sums of nonzero left ideals 
within R. Every left noetherian ring has a finite left rank.
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THEOREM 3. A left nonsingular S F-ring of finite left rank is semis im- 
ple.

PROOF. If J? is a left nonsingular SF-ring of finite rank, then R 
is a subring of the maximal left quotient ring Q of R. By Theorem 
12.2.5 [10], Q is semisimple. Since every flat Q-module is finitely pro­
jective, every flat left J?-module is also finitely projective by Lemma 
2. Therefore, every simple left 7?-module is projective, and so R is 
semisimple.

A left J?-module is called R-Mittag Leffler (R-ML) if the canonical 
homomorphism ® M — M1 defined by 사m,i({h} ® m) =
{rim} is a monomorphism for every set I. So M is finitely presented 
if and only if M is finitely generated and R-ML. A ring R is of left 
pure global dimension zero if every left 2?-module is pure-projective
[2].  Also in [2], M is called pure-split if every pure submodule of M 
is a direct summand of M. In the following theorem, we can see that 
every simple flat I?-module is projective if R is pure-split.

THEOREM 4. The following conditions are equivalent:
(1) R is semisimple.
(2) R is a left SF-ring and every simple left R-module is R-ML.
(3) R is a left SF-ring and every simple left R-module is finitely 

presented.
(4) R is a left SF-ring whose maximal left ideals are finitely gen­

erated.
(5) R is a left SF-ring with pure global dimension zero.
(6) R is a pure-split left SF-ring.

PROOF. Since a module is finitely presented if and only if it is 
finitely generated and R-ML, the implications (1) = (2) = (3) fol­
lows. For every maximal left ideal M, R/M is a simple left 2?-module,
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so it is finitely presented. Hence M is finitely generated. Thus (3) =>
(4) is shown. To prove (4) = (1), let S be a simple left 7?-module. 
Then S 스 R/l(S) is flat and finitely presented since Z(S) is a max­
imal left ideal. By Corollary 11.5[10], S is projective. Thus R is 
semisimple. The implication (1) = (5) is obvious.

(5) => (2). Every simple left ZJ-module is pure-projective, so it is 
finitely pure-projective. Since finitely pure-projective modules coin­
cide with R-ML modules (see [6]), it follows that every simple left 
7?-module is R-ML.

(1) = (6). Over a semisimple ring J?, every 7?-module is pure-split 
since every exact sequence is split. Thus J? is a pure-split SF-ring.

(6) => (1). Since every simple left J?-module S is flat, every maximal 
left ideal is a pure submodule of R. Hence it is a direct summand of 
R. Since Z(S) is a maximal left ideal of 7?, the sequence 0 —> Z(S) — 
7? — S' —> 0 is split exact. Thus every simple left K-module S is 
projective and hence R is semisimple.

PROPOSITION 5. Let R be a SF-ring without zero-divisors. Then 
R is semi-simple.

PROOF. Let 5 be a simple left J?-module and x a nonzero element 
of S, Then S is flat and so it is torsion-free in the sense that ⑦ 斗 0 
and s not a zero-divisor implies sx / 0. Hence Rx = S is isomorphic 
to R and so it is projective.

REMARKS. (1) As we have seen, 57고-:rings whose flat modules are 
finitely ( or, singly) projective is semisimple. Thus left Noetherian 
SF-rings and Priifer SF-rings are also semisimple by Proposition 15 
and 18 of [1]. Semiperfect SF-rings are also semisimple since every 
finitely generated flat module is projective over semiperfect rings.

(2) A ring R is called a left semi-artinian ring if every nonzero left 
7?-module has nonzero socle. Chen ([3]) shows that a semi-artinian 
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S'2고-ring is (von Neumann) regular. Therefore, from [5] we can see 
that the following conditions are equivalent for a left semi-artinian 
ring R: (i) 2? is a SF-ring; (ii) R is regular; (iii) R is an /-V-ring; 
(iv) R is fully left idempotent.

(3) A ring without non-zero nilpotent elements is called a reduced 
ring. By Rege [8], it is proved that a reduced SF-ring is strongly 
regular. From this fact, it follows that commutative SF-rings are 
regular. Moreover, commutative SF-rings are V-rings (rings over 
which all simple modules are injective), because a simple module is 
flat if and only if it is injective over a commutative ring.

(4) Azumaya[l] conjectured that every flat left /《-module is finitely
projective if (and only if) Z(ai) C Z(ai«2)C • • • terminates for ev­
ery sequence «i, • • • ? in R, In connection with this, we suggest a
question whether SF-rings satisfying the above condition on termi­
nation of ascending chains are semisimple. We also point out that 
if R satisfies the above condition on termination of ascending chains 
then R has no infinite number of orthogonal idempotents and that 
reduced SF-rings with no infinite number of orthogonal idempotents 
are semisimple ( by the above remark (3) and Corollary 2.16 [4]).
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