MULTIPLICATION MODULES WHOSE ENDOMORPHISM RINGS ARE INTEGRAL DOMAINS

Sang Cheol Lee

Abstract

In this paper, several properties of endomorphism rings of modules are investigated. A multiplication module M over a commutative ring R induces a commutative ring M^{*} of endomorphisms of M and hence the relation between the prime (maximal) submodules of M and the prime (maximal) ideals of M^{*} can be found. In particular, two classes of ideals of M^{*} are discussed in this paper: one is of the form $G_{M^{*}}(M, N)=$ $\left\{f \in M^{*} \mid f(M) \subseteq N\right\}$ and the other is of the form $G_{M^{*}}(N, 0)=\{f \in$ $\left.M^{*} \mid f(N)=0\right\}$ for a submodule N of M.

0. Introduction

Throughout this paper, unless otherwise specified, we shall assume that all rings are associative with identity and all modules are unitary left modules.

Let R be a ring and let M be an R-module. Then the set of all R homomorphisms from M into itself can be given the structure of a ring. We call this ring the ring of endomorphisms of M and denote this by M^{*}.

Let L and N be any two submodules of M. Then the set

$$
\left\{f \in M^{*} \mid f(L) \subseteq N\right\}
$$

will be considered. This set becomes an additive subgroup of the group $\left(M^{*},+\right)$. So, we will denote this subgroup by $G_{M^{*}}(L, N)$.

If we make different choices of L and N, then $G_{M^{*}}(L, N)$ has different algebraic structures. There are four cases to consider:
(1) $L \supseteq N$,
(2) $L \subseteq N$,
(3) $L \nsupseteq N$,
(4) $L \nsubseteq N$.

In case of (1), $G_{M^{*}}(L, N)$ is a subring of the ring M^{*}. In particular, $G_{M^{*}}(0,0)=M^{*}, G_{M^{*}}(M, 0)=0$, and $G_{M^{*}}(M, M)=M^{*}$.

As special cases of (2), $G_{M^{*}}(M, M)=M^{*}$ and for any submodule N of M, $G_{M^{*}}(0, N)=M^{*}$.

Received April 10, 2009.
2000 Mathematics Subject Classification. 13C05, 13C10, 13C11.
Key words and phrases. multiplication module, semi-injective module, self-cogenerated module, tight closed submodule and closed submodule.

This paper was (partially) supported by the CBNU funds for overseas research, 2006 (OR-2006-XX).

In cases of (3) and (4), we do not know the further algebraic structure of $G_{M^{*}}(L, N)$.

Now, let N be a submodule of M. Then we get $M \supseteq N \supseteq 0$. So, by (1) we get three subrings of $M^{*}: G_{M^{*}}(M, N), G_{M^{*}}(N, N)$, and $G_{M^{*}}(N, 0)$. We will discuss about these three subrings of M^{*}. Of course, they have inclusion relation as follows:

$$
G_{M^{*}}(N, 0) \subseteq G_{M^{*}}(N, N) \supseteq G_{M^{*}}(M, N)
$$

1. Endomorphism rings

Let R be a ring. Let M be an R-module. Define a ring homomorphism $\varphi: R \rightarrow M^{*}$ to be $\varphi(r)=\varphi_{r}: M \rightarrow M$ with $\varphi_{r}(x)=r x$. Then

$$
R / \operatorname{Ann}_{R}(M) \cong \operatorname{Im}(\varphi) \subseteq M^{*}
$$

The φ may not be injective. The example of this is given below.
Example 1.1. Take $R=\mathbb{Z}, M=\mathbb{Z} / 2 \mathbb{Z}$. Then $2 \in \operatorname{Ann}_{R}(M)$.
When M is a faithful R-module, however, φ is injective. If V is a non-zero vector space over a field F, then V is faithful over F. So, $\varphi: F \rightarrow V^{*}$ is injective. Hence, F can be embedded in V^{*}. If M is a non-zero free module over a commutative ring with identity with finite rank, then M is also faithful over R. So, $\varphi: R \rightarrow M^{*}$ is injective. Hence, R can be embedded in M^{*}.

Proposition 1.2. Let R be a ring. Let M be an R-module. If $\varphi: R \rightarrow M^{*}$ is surjective and M^{*} is a projective R-module with rank 1 , then φ is injective and hence $R \cong M^{*}$.

Proof. The following exact sequence

$$
0 \longrightarrow \operatorname{Ker}(\varphi) \longrightarrow R \xrightarrow{\varphi} M^{*} \longrightarrow 0
$$

splits. So, $R=\operatorname{Ker}(\varphi) \oplus M^{*}$. Let \mathfrak{p} be any element of $\operatorname{Spec}(R)$. Then $R_{\mathfrak{p}}=$ $\operatorname{Ker}(\varphi)_{\mathfrak{p}} \oplus M_{\mathfrak{p}}^{*}$. Since $M_{\mathfrak{p}}^{*}$ is $R_{\mathfrak{p}}$-free with rank 1 , we have $\operatorname{Ker}(\varphi)_{\mathfrak{p}}=0$. This shows that $\operatorname{Ker}(\varphi)=0$. Hence φ is injective.

While discussing projective modules [9] with Professor Satya Mandal, we could see incidently that every projective module with positive rank over a reduced Noetherian ring is faithful.

Lemma 1.3. If R is a reduced Noetherian ring, then every finitely generated projective R-module with positive rank is faithful.
Proof. Let R be a reduced Noetherian ring and let P be any finitely generated projective R-module with positive rank. Let \mathfrak{p} be any minimal prime ideal of R. Let x be any element of $\operatorname{Ann}_{R} P$. Then $x P=0$, and so $(x / 1) P_{\mathfrak{p}}=0 . P_{\mathfrak{p}}$ is a non-zero free $R_{\mathfrak{p}}$-module. Notice that every non-zero free module with finite rank is faithful. Then $x / 1=0$, so there exists an element $s \in R \backslash \mathfrak{p}$ such that $s x=0 . s x=0 \in \mathfrak{p}$. Hence, $x \in \mathfrak{p}$. This shows that $\operatorname{Ann}_{R} P \subseteq \mathfrak{p}$. Thus, $\operatorname{Ann}_{R} P \subseteq \cap_{\mathfrak{p} \in \operatorname{Min}(R)} \mathfrak{p}=\sqrt{0}=0$. Therefore, $\mathrm{Ann}_{R} P=0$.

Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that $N=I M$. If R is a commutative ring with identity, then R is a multiplication module over R. If V is a vector space over a field k and if the dimension of V over k is greater than 1 , then V is not a multiplication module over k. For otherwise, for a subspace W of V with $\operatorname{dim}_{k}(W)=1$, there exists an ideal I of k such that $W=I V$. Since the only ideals of the field k are 0 and k itself, we have $W=0$ or $W=V$. This is a contradiction.

Let R be a ring and let M be an R-module. Let $f \in M^{*}$. A submodule N of M such that $f(N) \subseteq N$ is called f-stable or f-invariant. Further, recall that a submodule N of M is called fully invariant if for every $f \in M^{*}, N$ is f-invariant, or equivalently, if $M^{*}=G_{M^{*}}(N, N)$.

Let R be a commutative ring with identity and let M be a multiplication module. Let N be any submodule of M. Then there exists an ideal I of R such that $N=I M$. Now, let f be any element of M^{*}. Then

$$
f(N)=f(I M)=I f(M) \subseteq I M=N
$$

Hence N is f-invariant. Therefore N is fully invariant. We have proved the following.

Lemma 1.4 ([6, Proposition 7] and [4, Lemma 1]). If M is a multiplication module over a commutative ring with identity, then every submodule of M is fully invariant.

Let R be a commutative ring with identity. For every R-module M, M^{*} is a ring with identity. Assume further that M is a multiplication module. Let m be any element of M. Then by Lemma 1.4, Rm is fully invariant. Let f be any element of M^{*}. Then $f(m) \in f(R m) \subseteq R m$. There exists an element $r \in R$ such that $f(m)=r m$. If g is any element of M^{*}, then by a similar proof we can find an element $s \in R$ such that $g(m)=s m$. Hence

$$
(f g)(m)=s(r m)=(s r) m=(r s) m=r(s m)=(g f)(m) .
$$

Hence $f g=g f$. Therefore, M^{*} is a commutative ring with identity (see [3, Lemma 2]).

Let R be a ring. An element r of R is called a zero-divisor if there exists a non-zero element s in R such that $r s=0$. From now on we denote the set of all zero-divisors of a ring R by $Z(R)$. A commutative ring R with identity is called an integral domain if $Z(R)=0$.

Theorem 1.5. If M is a faithful multiplication module over an integral domain, then M^{*} is an integral domain.

Proof. M^{*} is a commutative ring with identity. So, it is sufficient to prove: if $f g=0$, where $f, g \in M^{*}$, then either f or g is zero.

There are ideals I, J of R such that $f(M)=I M, g(M)=J M$. Then $0=(f g)(M)=J(I M)=(J I) M=(I J) M$, so $I J \subseteq \operatorname{Ann}_{R}(M)=0$. Hence,
$I J=0$. Since R is an integral domain, either I or J is zero. If $I=0$, then $f(M)=0$. If $J=0$, then $g(M)=0$. Hence, either f or g is zero.

Every integral domain is reduced. Hence the next result follows from Lemma 1.3 and Theorem 1.5.

Corollary 1.6. Let R be a Noetherian domain. If P is a finitely generated projective multiplication R-module with positive rank, then P^{*} is an integral domain.

The following result was motivated by [12, Proposition 1.2] and [8, Theorem 2.4].

Lemma 1.7. Let R be a commutative ring with identity. Let M be a finitely generated R-module.
(1) If $f: M \rightarrow M$ is an epimorphism, then f satisfies a polynomial of the form

$$
1+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n}
$$

where the a_{i} are in R.
(2) If $f: M \rightarrow M$ is an epimorphism, then f is a monomorphism.

Let R be a commutative ring with identity. Let E be an R-module. An element e of E is said to be divisible if, for every r of $R \backslash Z(R)$, there exists $e^{\prime} \in E$ such that $e=r e^{\prime}$. If every element of E is divisible, then E is said to be a divisible module. Alternatively, E is divisible if $E=r E$ whenever r is an element of $R \backslash Z(R)$.

Let R be an integral domain. If E is a non-zero divisible R-module, then the ring homomorphism $\varphi: R \rightarrow E^{*}$ which was discussed in the paragraph just prior to Example 1.1 is injective. In other words, if multiplication by r is zero, then r, as an element of R, is zero.

Theorem 1.8. If an integral domain admits a non-zero finitely generated injective module, then it is a field.

Proof. Let R be an integral domain and let E be a non-zero finitely generated injective module. Then E is divisible by [11, Proposition 2.6]. Let r be a non-zero element of R. Then $r E=E$. Hence, multiplication by r is an epimorphism. By Theorem 1.7(1), r satisfies a polynomial of the form

$$
1+a_{1} X+a_{2} X^{2}+\cdots+a_{n} X^{n}
$$

where the a_{i} are in R. Hence,

$$
1+a_{1} r+a_{2} r^{2}+\cdots+a_{n} r^{n}=0
$$

This means that $1+a_{1} r+a_{2} r^{2}+\cdots+a_{n} r^{n}$, as an element of E^{*}, is zero. By the argument just prior to Theorem $1.8,1+a_{1} r+a_{2} r^{2}+\cdots+a_{n} r^{n}$, as an element of R, is zero. Hence, $\left(-a_{1}-a_{2} r-\cdots-a_{n} r^{n-1}\right) r=1$. Therefore, r is invertible.

Corollary 1.9. If E is a non-zero finitely generated injective module over an integral domain, E^{*} is a field.

Proof. By $\left[8\right.$, Theorem 2.1, p. 7], E^{*} is integral over R. By Theorem $1.8, R$ is a field. Hence, by $\left[8\right.$, Lemma 1, p. 66], E^{*} is a field.

Let R be a ring and let M be an R-module. Then we can give M an M^{*} module structure as follows:

$$
f . m=f(m),
$$

where $f \in M^{*}$ and $m \in M$.
Let f be any element of $\operatorname{Ann}_{M^{*}}(M)$. Then $f(M)=f \cdot M=0$ and hence $f=0$. This shows that $\operatorname{Ann}_{M^{*}}(M)=0$. Hence every R-module M can be viewed as a faithful M^{*}-module.

Lemma 1.10. Let R be a commutative ring with identity. Let M be an R module. If M is a multiplication module over R, then M is a faithful multiplication module over M^{*}.

Proof. Let M be a multiplication module over R. Let N be any M^{*}-submodule of the M^{*}-module M. Then for any $r \in R$ and for any $n \in N, r n=\varphi_{r}(n)=$ $\varphi_{r} . n \in N$. Hence, N is an R-submodule of M. There exists an ideal I of R such that $N=I M$. Let $\varphi_{I}=\left\{\varphi_{r} \mid r \in I\right\}$. Then $\varphi_{I} M^{*}$ is an ideal of M^{*} (generated by $\varphi_{I} \subseteq M^{*}$) and

$$
\left(\varphi_{I} M^{*}\right) \cdot M=\varphi_{I} \cdot\left(M^{*} \cdot M\right)=\varphi_{I} \cdot M=\varphi_{I}(M)=I M=N .
$$

Hence, M is also a multiplication module over M^{*}.
Every vector space over a field is injective. Hence the next result follows from Corollary 1.9 and Lemma 1.10.

Corollary 1.11. If E is a non-zero, finitely generated, injective, multiplication module over an integral domain, then it is a non-zero, faithful, finitely generated, injective, multiplication module over the field E^{*}.

2. $G_{M^{*}}(M, N)$

Let N be any submodule of M. The subring $G_{M^{*}}(M, N)$ of M^{*} will be considered. This is a right ideal of the ring M^{*}. However, $G_{M^{*}}(M, N)$ is not always a left ideal of M^{*}. The example of this is given below.

Example 2.1. Let R be a ring with identity $\neq 0$ and let M be a free R module with rank 2. Let $\left\{e_{1}, e_{2}\right\}$ be an R-free basis for M. Consider the following submodule of M :

$$
\nabla=\left\{a e_{1}+a e_{2} \mid a \in R\right\}
$$

Then $G_{M^{*}}(M, \nabla)$ is not a left ideal of M^{*}. In fact, define a map $f: M \rightarrow M$ by $f\left(a e_{1}+b e_{2}\right)=a e_{1}+a e_{2}$, where $a, b \in R$. Then $f \in G_{M^{*}}(M, \nabla)$. Now,
define a map $\alpha: M \rightarrow M$ by $\alpha\left(a e_{1}+b e_{2}\right)=a e_{1}$, where $a, b \in R$. Then $\alpha \in M^{*}$. Further, $\alpha f \notin G_{M^{*}}(M, \nabla)$. For otherwise,

$$
\nabla \ni(\alpha f)\left(e_{1}\right)=\alpha\left(e_{1}+e_{2}\right)=e_{1}
$$

This is a contradiction. Therefore $G_{M^{*}}(M, \nabla)$ is not a left ideal of M^{*}.
Lemma 2.2. Let R be a ring and let M be an R-module. Then for every fully invariant submodule N of $M, G_{M^{*}}(M, N)$ is a two-sided ideal of M^{*}.
Proof. We have already known that $G_{M^{*}}(M, N)$ is a right ideal of M^{*}. Now, let $\alpha \in M^{*}$ and $f \in G_{M^{*}}(M, N)$. Then $(\alpha f)(M) \subseteq \alpha(N) \subseteq N$. Hence $\alpha f \in G_{M^{*}}(M, N)$.

If M is a multiplication module over a commutative ring with identity, then for every submodule N of $M, G_{M^{*}}(M, N)$ is a two-sided ideal of M^{*} by Lemma 1.4.

Theorem 2.3. Let R be a commutative ring with identity. Let M be an R module. Assume that M is a multiplication R-module. Then P is a prime submodule of M if and only if $G_{M^{*}}(M, P)$ is a prime ideal of M^{*}.
Proof. Recall that M^{*} is a commutative ring with identity.
Assume that P is a prime submodule of M. Suppose $G_{M^{*}}(M, P)=M^{*}$. Consider the identity map $1_{M}: M \rightarrow M$. Then $1_{M} \in M^{*}=G_{M^{*}}(M, P)$, so $M=1_{M}(M) \subseteq P$. Hence $P=M$, which implies a contradiction. Hence $G_{M^{*}}(M, P) \neq M^{*}$.

Now, assume that $f g \in G_{M^{*}}(M, P)$, where $f, g \in M^{*}$. Then since M is a multiplication R-module, there are ideals I and J of R such that $f(M)=I M$ and $g(M)=J M$. So,

$$
(I J) M=(J I) M=J(I M)=J(f(M))=f(J M)=f(g(M)) \subseteq P
$$

This implies that $I J \subseteq\left(P:_{R} M\right)$. Since P is a prime submodule of M, it is well-known ([7, p. 2]) that $\left(P:_{R} M\right)$ is a prime ideal of R. Hence

$$
I \subseteq\left(P:_{R} M\right) \text { or } J \subseteq\left(P:_{R} M\right)
$$

Assume that $I \subseteq\left(P:_{R} M\right)$. Then $f(M)=I M \subseteq P$, so $f \in G_{M^{*}}(M, P)$. Or, assume that $J \subseteq\left(P:_{R} M\right)$. Then $g(M)=J M \subseteq P$, so $g \in G_{M^{*}}(M, P)$.

Therefore, $G_{M^{*}}(M, P)$ is a prime ideal of M^{*}.
Conversely, assume that $G_{M^{*}}(M, P)$ is a prime ideal of M^{*}. Suppose that $P=M$. Then $G_{M^{*}}(M, P)=G_{M^{*}}(M, M)=M^{*}$. This is a contradiction. Hence $P \neq M$.

Assume that $r m \in P$, where $r \in R$ and $m \in M$. Since M is a multiplication R-module, there exists an ideal I of R such that $R m=I M$. So,

$$
(r I) M=r(I M)=(r R) m \subseteq P
$$

Consider the ring homomorphism $\varphi: R \rightarrow M^{*}$ which was discussed in the paragraph just prior to Example 1.1. Since $G_{M^{*}}(M, P)$ is a prime ideal of M^{*},
it follows that $\varphi^{-1}\left(G_{M^{*}}(M, P)\right)$ is a prime ideal of R. Further, notice that $\varphi_{r I}(M)=(r I) M \subseteq P$. Then $\varphi(r I)=\varphi_{r I} \subseteq G_{M^{*}}(M, P)$. This implies that $r I \subseteq \varphi^{-1}\left(G_{M^{*}}(M, P)\right)$. Hence $r \in \varphi^{-1}\left(G_{M^{*}}(M, P)\right)$ or $I \subseteq \varphi^{-1}\left(G_{M^{*}}(M, P)\right)$. Assume that $r \in \varphi^{-1}\left(G_{M^{*}}(M, P)\right)$. Then $\varphi(r) \in G_{M^{*}}(M, P)$, so $r M=$ $\varphi_{r}(M) \subseteq P$. Hence $r \in\left(P:_{R} M\right)$. Or, assume that $I \subseteq \varphi^{-1}\left(G_{M^{*}}(M, P)\right)$. Then $\varphi(I) \subseteq G_{M^{*}}(M, P)$, so $R m=I M=\varphi_{I}(M) \subseteq P$. Hence $m \in P$.

Therefore, P is a prime submodule of M.
Lemma 2.4. Let R be a commutative ring with identity and let M be an R module. If M is a multiplication R-module, then for every submodule N of M, $N=\sum_{f \in G_{M^{*}}(M, N)} f(M)$.
Proof. It is obvious that $\sum_{f \in G_{M^{*}(M, N)}} f(M) \subseteq N$.
Conversely, let x be any element of N. Since M is a multiplication R module, there exists an ideal I of R such that $R x=I M$. Further, there are $a_{1}, a_{2}, \ldots, a_{r} \in I$ and $m_{1}, m_{2}, \ldots, m_{r} \in M$ such that $x=a_{1} m_{1}+a_{2} m_{2}+$ $\cdots+a_{r} m_{r}$. Let $\varphi: R \rightarrow M^{*}$ be as before. Then for each $i \in\{1,2, \ldots, r\}$, $\varphi_{a_{i}}(M)=a_{i} M \subseteq I M=R x \subseteq N$ and hence $\varphi_{a_{i}} \in G_{M^{*}}(M, N)$. Hence

$$
\begin{aligned}
x & =a_{1} m_{1}+a_{2} m_{2}+\cdots+a_{r} m_{r} \\
& \in \varphi_{a_{1}}(M)+\varphi_{a_{2}}(M)+\cdots+\varphi_{a_{r}}(M) \\
& \subseteq \sum_{f \in G_{M^{*}}(M, N)} f(M) .
\end{aligned}
$$

Hence $N \subseteq \sum_{f \in G_{M^{*}(M, N)}} f(M)$. Therefore $N=\sum_{f \in G_{M^{*}}(M, N)} f(M)$.
Consider the ring homomorphism $\varphi: R \rightarrow M^{*}$ which was discussed in the paragraph just prior to Example 1.1. $\varphi^{-1}\left(G_{M^{*}}(M, N)\right)$ will be denoted by $G_{M^{*}}(M, N) \cap R$. Then we have the following result.

Proposition 2.5. For every submodule N of an R-module M,

$$
\left(N:_{R} M\right)=G_{M^{*}}(M, N) \cap R .
$$

Let M be a multiplication R-module and let N be any submodule of M. Then there exists an ideal I of R such that $N=I M$. This implies that $\left.I \subseteq N:_{R} M\right) M$. Hence $N=I M \subseteq\left(N:_{R} M\right) M$. Also, $\left(N:_{R} M\right) M \subseteq N$, which is clear from the definition. Hence $N=\left(N:_{R} M\right) M$. This is useful in the proof of the following result.

Theorem 2.6. Let R be a commutative ring with an identity. Let M be a finitely generated multiplication R-module. Then a submodule N of M is maximal if and only if $\left(N:_{R} M\right)$ is a maximal ideal of R.

Proof. Let N be a maximal submodule of M. Assume that J is an ideal of R such that $\left(N:_{R} M\right) \subseteq J \subseteq R$. Since M is a multiplication R-module, it follows from the above argument that

$$
N=\left(N:_{R} M\right) M \subseteq J M \subseteq M .
$$

By the maximality of N, either $J M=N$ or $J M=M$. Assume that $J M=N$. Then $J \subseteq\left(N:_{R} M\right)$. Hence $J=\left(N:_{R} M\right)$. Or, assume that $J M=M$. By the Nakayama Lemma, there exists an element $a \in J$ such that $(1-a) M=0$. So, $(1-a) M=0 \subseteq N$. This implies that $1-a \in\left(N:_{R} M\right) \subseteq J$. Hence $1=a+(1-a) \in J$. Hence $J=R$. This shows that $\left(N:_{R} M\right)$ is a maximal ideal of R.

Conversely, assume that $\left(N:_{R} M\right)$ is a maximal ideal of R. Let A be a submodule of M such that $N \subseteq A \subseteq M$. Then

$$
\left(N:_{R} M\right) \subseteq\left(A:_{R} M\right) \subseteq R
$$

By the maximality of $\left(N:_{R} M\right)$, either $\left(A:_{R} M\right)=\left(N:_{R} M\right)$ or $\left(A:_{R} M\right)=$ R. Assume that $\left(A:_{R} M\right)=\left(N:_{R} M\right)$. Since M is a multiplication module, we have $A=\left(A:_{R} M\right) M=\left(N:_{R} M\right) M=N$. Or, if $\left(A:_{R} M\right)=R$, then $M=A$. This shows that N is a maximal submodule of M.

We have already known that if R is a commutative ring with identity and M is a multiplication module over R, then M^{*} is a commutative ring with identity. If M, as an R-module, is finitely generated, then M, as an M^{*}-module, is also finitely generated. Compare the following result with Theorem 2.3.

Corollary 2.7. Let R be a commutative ring with identity. Let M be a finitely generated multiplication module over R and let N be any submodule of M. Then N is a maximal M^{*}-submodule of the M^{*}-module M if and only if $G_{M^{*}}(M, N)$ is a maximal ideal of M^{*}.

Proof. Note that $G_{M^{*}}(M, N)=\left(N:_{M^{*}} M\right)$. Then it suffices to prove that N is a maximal M^{*}-submodule of the M^{*}-module M if and only if $\left(N:_{M^{*}} M\right)$ is a maximal ideal of M^{*}. Use [5, Theorem 3.1, p. 768] to prove the 'only if part'. The remainder of the proof is almost the same as that of Theorem 2.6.

3. $G_{M^{*}}(N, 0)$

Let R be ring and let N be a submodule of M. Then $G_{M^{*}}(N, 0)$ is a left ideal of M^{*}. However, this is not a right ideal of M^{*}. The example of this is given below.

Example 3.1. Use the same notation as in Example 1.1. Define a map g : $M \rightarrow M$ by $g\left(a e_{1}+b e_{2}\right)=(a-b) e_{1}$, where $a, b \in R$. Then $g \in G_{M^{*}}(\nabla, 0)$. Further,

$$
(g \alpha)\left(e_{1}+e_{2}\right)=g\left(\alpha\left(e_{1}+e_{2}\right)\right)=g\left(e_{1}\right)=e_{1} \neq 0
$$

Hence $g \alpha \notin G_{M^{*}}(\nabla, 0)$. Hence $G_{M^{*}}(\nabla, 0)$ is not a right ideal of M^{*}.
Compare the following lemma with Lemma 2.2.
Lemma 3.2. Let R be a ring with identity and let M be an R-module. Then for every fully invariant submodule N of $M, G_{M^{*}}(N, 0)$ is a two-sided ideal of M^{*}

Proof. We have already known that $G_{M^{*}}(N, 0)$ is a left ideal of M^{*}. Now, let $\alpha \in M^{*}$ and $f \in G_{M^{*}}(N, 0)$. Then $(f \alpha)(N) \subseteq f(N)=0$. Hence $f \alpha \in$ $G_{M^{*}}(N, 0)$.

If M is a multiplication module over a commutative ring with identity, then for every submodule N of $M, G_{M^{*}}(N, 0)$ is a two-sided ideal of M^{*}.

Let R be a ring. Let M be an R-module and let N be a submodule of M. Then for each $f \in G_{M^{*}}(N, 0), \operatorname{Ker}(f)$ contains N. Hence

$$
\cap_{f \in G_{M^{*}}(N, 0)} \operatorname{Ker}(f) \supseteq N .
$$

A submodule N of an R-module M is called to be tight closed if

$$
\cap_{f \in G_{M^{*}}(N, 0)} \operatorname{Ker}(f)=N .
$$

In papers [1] and [2], the name of the submodule in the definition was a "closed submodule", however we call it to be a tight closed submodule to avoid confusion with the name in [10]. Moreover, in view of the following Proposition 3.4 , it seems like to be reasonable for us to call the submodule a tight closed submodule.

Proposition 3.3. Let R be a ring and let M be an R-module. Let N be a submodule of M. If there exists an element $f \in M^{*}$ such that $\operatorname{Ker}(f)=N$, then N is tight closed.

Proof. Assume that there exists an element $f \in M^{*}$ such that $\operatorname{Ker}(f)=N$. Then $N \subseteq \cap_{g \in G_{M^{*}}(N, 0)} \operatorname{Ker}(g) \subseteq \operatorname{Ker}(f)=N$. Hence $\cap_{g \in G_{M^{*}}(N, 0)} \operatorname{Ker}(g)=N$. Therefore N is tight closed.

Let R be a ring and let M be an R-module. Then $\operatorname{Ker}\left(1_{M}\right)=0$ and $\operatorname{Ker}\left(0_{M}\right)=M$. Hence, by Proposition 3.3, the zero submodule of M and M itself are tight closed and for any $f \in M^{*}, \operatorname{Ker}(f)$ is tight closed.

Let V be a finite-dimensional vector space over a field. Let W be any subspace of V. Then there exists a subspace W^{\prime} of V such that $V=W \oplus W^{\prime}$. So, we can define a map $f: V \rightarrow V$ such that $\left.f\right|_{W}=0$ and $\left.f\right|_{W^{\prime}}=1_{W^{\prime}}$. Then $f \in V^{*}$ and $\operatorname{Ker}(f)=W$. Hence W is tight closed in V. Therefore every subspace of a finite-dimensional vector space V over a field is tight closed in V.

Now, let A be an algebra over a field k. Let P be a finitely generated projective A-module. Then there exists an A-module Q and an integer n such that $P \oplus Q=A^{n}$. So, we can define a map $f: A^{n} \rightarrow A^{n}$ such that $\left.f\right|_{P}=0$ and $\left.f\right|_{Q}=1_{Q}$. Then $f \in\left(A^{n}\right)^{*}$ and $\operatorname{Ker}(f)=P$. Hence, P is tight closed in a free A-module. Therefore every finitely generated projective A-module is tight closed in a free R-module.

Let R be a ring. A submodule K of an R-module M is called closed [10, p. 548] if K has no proper essential extension in M.

Proposition 3.4. Let R be a ring and let M be an R-module such that $Z(M)=$ 0 . If N is tight closed in M, then N is closed in M.

Proof. Suppose that N has a proper essential extension E in M. Then there exists an element $e \in E \backslash N$. So, $0 \neq R e \subseteq E$. Since N is essential in E, $R e \cap N \neq 0$. There exists a non-zero element n such that $n \in \operatorname{Re} \cap N$. There exists an element $r \in R$ such that $n=r e$.

Now, let f be any element in $G_{M^{*}}(N, 0)$. Then $n \in \operatorname{Ker}(f)$. So, $0=f(n)=$ $r f(e)$. Since $Z(M)=0$, we have $f(e)=0$. Hence $e \in \operatorname{Ker}(f)$. This shows that

$$
e \in \cap_{f \in G_{M^{*}}(N, 0)} \operatorname{Ker}(f)
$$

Since N is tight closed in M, we have $e \in N$. This contradiction shows that N has no proper essential extension.

Theorem 3.5. Let R be a ring. Let N be a submodule of an R-module K. If no proper extension of N in K is essential in K, then N is essential in K.

Proof. Suppose that N is not essential in K. Then there exists a non-zero submodule L of K such that $N \cap L=0$. By Zorn's lemma, we may assume that L is maximal among such. By assumption, $N \oplus L$ is not essential in K. Then there exists a non-zero submodule F of K such that $(N \oplus L) \cap F=0$. Hence $N \cap(L \oplus F)=0$. By the maximality of $L, L=L \oplus F \supseteq F$, so $F=L \cap F=0$. This is a contradiction. Hence N is essential in K.

Corollary 3.6. Let R be a ring. Let N be a submodule of K and let K be a submodule of M. If no proper extension of N in K is essential in K and if N is closed in M, then $N=K$.

Let R be a ring and let N be a submodule of M. Let

$$
K=\cap_{f \in G_{M^{*}}(N, 0)} \operatorname{Ker}(f)
$$

Then $N \subseteq K$. If no proper extension of N in K is essential in K and if N is closed in M, then it follows from Corollary 3.6 that N is tight closed in M.

It is well-known [4] that every epimorphism of a multiplication module onto itself is an automorphism. If M is a non-zero multiplication R-module whose endomorphism ring is an integral domain, then we show that every non-zero endomorphism of M is a monomorphism.
Lemma 3.7. Let M be a non-zero multiplication R-module whose endomorphism ring M^{*} is an integral domain. Then
(1) For every non-zero submodule N of $M, G_{M^{*}}(N, 0)=0$. Hence every non-zero endomorphism of M is a monomorphism.
(2) The only tight closed submodule of M are 0 and M itself.

Proof. (1) Suppose on the contrary that there exists a non-zero submodule N of M such that $G_{M^{*}}(N, 0) \neq 0$. Then there exists a non-zero f in $G_{M^{*}}(N, 0)$. Since M is a multiplication R-module, there exist ideals I, J of R such that $N=I M$ and $f(M)=J M$. Hence we have

$$
0=f(N)=f(I M)=I f(M)=I(J M)=(I J) M
$$

This implies that $I J \subseteq \operatorname{Ann}_{R}(M)$. Since M^{*} is an integral domain, it follows from the argument just prior to Example 1.1 that $\operatorname{Ann}_{R}(M)$ is a prime ideal of R. So, we have $I \subseteq \operatorname{Ann}_{R}(M)$ or $J \subseteq \operatorname{Ann}_{R}(M)$. If $I \subseteq \operatorname{Ann}_{R}(M)$, then $N=I M=0$, a contradiction. Or, if $J \subseteq \operatorname{Ann}_{R}(M)$, then $f(M)=J M=0$ and hence $f=0$, a contradiction. Therefore, for every non-zero submodule N of $M, G_{M^{*}}(N, 0)=0$.

Assume that there exists an non-zero endomorphism f of M such that $\operatorname{Ker}(f) \neq 0$. Then by the previous argument we have $f \in G_{M^{*}}(\operatorname{Ker}(f), 0)=0$. Thus $f=0$, a contradiction. Hence every non-zero endomorphism of M is a monomorphism.
(2) Let N be a non-zero tight closed submodule of M. Then by (1), $G_{M^{*}}(N, 0)=0$ and so $N=\cap_{f \in G_{M^{*}}(N, 0)} \operatorname{Ker}(f)=\operatorname{Ker}(0)=M$.

A submodule L of an R-module M is said to be M-cyclic if L is isomorphic to M / N for some submodule N of M.

Let L be a submodule of an R-module M. Assume that L is M-cyclic. Then there exists a submodule N of M such that $L \cong M / N$. There exists an isomorphism $g: M / N \rightarrow L$. Consider the composite map

$$
f: M \xrightarrow{\pi} M / N \xrightarrow{g} L \xrightarrow{\mathrm{inc}} M .
$$

Then $f \in M^{*}$ and $f(M)=(\operatorname{inc} g \pi)(M)=L$.
Conversely, assume that there exists $f \in M^{*}$ such that $L=f(M)$. Then by the first isomorphism theorem for modules $L=f(M) \cong M / \operatorname{Ker}(f)$.

This shows that L is M-cyclic if and only if there exists $f \in M^{*}$ such that $L=f(M)$.

An R-module M is said to be semi-injective if every homomorphism from an M-cyclic submodule of M to M can be extended to M. Compare the following lemma with [13, Lemma 2.2].

Lemma 3.8. Let R be a ring and let M be an R-module. Then M is semiinjective if and only if for every $f \in M^{*}, G_{M^{*}}(\operatorname{Ker}(f), 0)$ is a cyclic left ideal of M^{*} generated by f.

Proof. Let f be any element of M^{*}. For any $g \in M^{*}$,

$$
(g f)(\operatorname{Ker}(f))=g(f(\operatorname{Ker}(f)))=g(0)=0
$$

Hence $M^{*} f \subseteq G_{M^{*}}(\operatorname{Ker}(f), 0)$. Conversely, let $h \in G_{M^{*}}(\operatorname{Ker}(f), 0)$. Then $h(\operatorname{Ker}(f))=0$, so $\operatorname{Ker}(f) \subseteq \operatorname{Ker}(h)$. Define a map $\varphi: f(M) \rightarrow M$ by $\varphi(f(m))=h(m)$, where $m \in M$. Then

$$
f(m)=0 \Rightarrow m \in \operatorname{Ker}(f) \subseteq \operatorname{Ker}(h) \Rightarrow h(m)=0
$$

This shows that φ is well-defined. Further, φ is an R-homomorphism and $\varphi f=h$. Now, assume that M is semi-injective. Consider the following diagram:

Then $f(M)$ is M-cyclic, so there exists $g \in M^{*}$ such that g inc $=\varphi$. Hence

$$
h=\varphi f=g \operatorname{inc} f=g f
$$

Thus $h \in M^{*} f$. This shows that $G_{M^{*}}(\operatorname{Ker}(f), 0) \subseteq M^{*} f$. Therefore

$$
G_{M^{*}}(\operatorname{Ker}(f), 0)=M^{*} f
$$

Assume that for every $f \in M^{*}, G_{M^{*}}(\operatorname{Ker}(f), 0)$ is a cyclic left ideal of M^{*} generated by f. Consider the following diagram:

$$
\begin{array}{r}
0 \rightarrow L \xrightarrow{\text { inc }} M \\
\varphi \downarrow \\
M
\end{array}
$$

where L is M-cyclic. Then there exists $f \in M^{*}$ such that $L=f(M) . \varphi f \in$ M^{*} and $(\varphi f)(\operatorname{Ker}(f))=0$, so $\varphi f \in G_{M^{*}}(\operatorname{Ker}(f), 0)$. By our assumption, $G_{M^{*}}(\operatorname{Ker}(f), 0)=M^{*} f$. So, there exists $g \in M^{*}$ such that $\varphi f=g f$. Hence, for any $m \in M$,

$$
(g \operatorname{inc})(f(m))=(g \operatorname{inc} f)(m)=(\varphi f)(m)=\varphi(f(m))
$$

This shows that g inc $=\varphi$. Therefore M is semi-injective.
Lemma 3.9. Let R be a ring. Let M be an R-module such that $Z\left(M^{*}\right)=0$. If f and g are elements of M^{*} such that $f g=1_{M}$, then $g f=1_{M}$.
Proof. Assume $f g=1_{M}$. Then $g \neq 0$. Further, $\left(g f-1_{M}\right) g=0$. Hence $g f-1_{M}=0$ and thus $g f=1_{M}$.

Theorem 3.10. Let R be a ring. Let M be a multiplication R-module such that $Z\left(M^{*}\right)=0$. Then M is semi-injective if and only if M^{*} is a division ring.

Proof. Assume that M is semi-injective. Let f be any non-zero element of M^{*}. Then by Lemma $3.7(1), \operatorname{Ker}(f)=0$. So,

$$
M^{*} f=G_{M^{*}}(\operatorname{Ker}(f), 0)=G_{M^{*}}(0,0)=M^{*}
$$

By Lemma 3.9, f is an epimorphism. Therefore M^{*} is a division ring.
Conversely, assume that M^{*} is a division ring. Let f be any non-zero element of M^{*}. Then f is an automorphism. Hence

$$
G_{M^{*}}(\operatorname{Ker}(f), 0)=G_{M^{*}}(0,0)=M^{*}=(f) .
$$

By Lemma 3.8, M is semi-injective.

An R-module M is said to be self-cogenerated if every submodule of M is tight closed. If M is a simple R-module, then by the statement just posterior to Proposition 3.3, M is self-cogenerated.
Theorem 3.11. Let R be a commutative ring with identity. Let M be a multiplication R-module such that $Z\left(M^{*}\right)=0$. Then the following statements are equivalent.
(1) M is self-cogenerated;
(2) For any non-zero $f \in M^{*}$, f is an epimorphism;
(3) M is simple.

Proof. We have already known that M^{*} is a commutative ring with identity. Hence by our hypothesis M^{*} is an integral domain.
$(1) \Rightarrow(2)$. Assume (1). Let f be any non-zero element of M^{*}. Then $\operatorname{Im}(f)(\subseteq M)$ is tight closed. By Lemma $3.7(2), \operatorname{Im}(f)=M$. Hence f is an epimorphism. Hence (2) follows.
$(2) \Rightarrow(3)$. Assume (2). By the statement just prior to Lemma 3.7, M^{*} is a field.

Now, let N be any non-zero submodule of M. Since M is a multiplication R-module, there exists an ideal I of R such that $N=I M$. Then

$$
N=I M=\varphi_{I}(M)=\varphi(I)(M)
$$

Hence $\varphi(I) \neq 0$. There exists an element $r \in I$ such that $\varphi(r) \neq 0 . \varphi_{r}=\varphi(r) \neq$ 0 . By our assumption, φ_{r} has an inverse φ_{r}^{-1} in M^{*}. Further, $\varphi_{r}^{-1} \in M^{*}$. By Lemma 1.4, N is fully invariant. So,

$$
M=\varphi_{r}^{-1} \varphi_{r}(M) \subseteq \varphi_{r}^{-1}\left(\varphi_{I}(M)\right)=\varphi_{r}^{-1}(N) \subseteq N
$$

Hence $N=M$. Thus, M is simple. Therefore (3) follows.
$(3) \Rightarrow(1)$. Assume (3). Let N be any submodule of M. Then $N=0$ or $N=M$. By the statement just posterior to Proposition 3.3, 0 and M are tight closed. Hence N is tight closed. Thus M is self-cogenerated. Therefore, (1) follows.

Corollary 3.12. Let R be a commutative ring with identity. Let M be a multiplication R-module such that $Z\left(M^{*}\right)=0$. Then the following statements are equivalent.
(1) M is semi-injective;
(2) M^{*} is a field;
(3) M is self-cogenerated;
(4) For any non-zero $f \in M^{*}$, f is an epimorphism;
(5) M is simple.

Proof. M^{*} is a commutative ring with identity.
$(5) \Rightarrow(2)$ follows from Schur's Lemma. $(2) \Rightarrow(5)$ follows from the proof of Theorem $3.11(2) \Rightarrow(3)$. The remainder of the proof follows from Theorem 3.10 and Theorem 3.11.

References

[1] S.-S. Bae, On submodules inducing prime ideals of endomorphism ring, East Asian Math. J. 16 (2000), no. 1, 33-48.
[2] , Modules with prime endomorphism rings, J. Korean Math. Soc. 38 (2001), no. 5, 987-1030.
[3] C. W. Choi, Multiplication modules and endomorphisms, Math. J. Toyama Univ. 18 (1995), 1-8.
[4] C. W. Choi and P. F. Smith, On endomorphisms of multiplication modules, J. Korean Math. Soc. 31 (1994), no. 1, 89-95.
[5] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779.
[6] E. S. Kim and C. W. Choi, On multiplication modules, Kyungpook Math. J. 32 (1992), no. 1, 97-102.
[7] S. C. Lee, Finitely generated modules, J. Korean Math. Soc. 28 (1991), no. 1, 1-11.
[8] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1989.
[9] S. Mandal, Projective Modules and Complete Intersections, Springer-Verlag, Berlin, 1997.
[10] E. Mermut, C. Santa-Clara, and P. F. Smith, Injectivity relative to closed submodules, J. Algebra 321 (2009), no. 2, 548-557.
[11] D. W. Sharpe and P. Vámos, Injective Modules, Cambridge University Press, LondonNew York, 1972.
[12] W. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505-512.
[13] S. Wongwai, On the endomorphism ring of a semi-injective module, Acta Math. Univ. Comenian. (N.S.) 71 (2002), no. 1, 27-33.

Department of Mathematics Education
Chonbuk National University
Chonju 561-756, Korea
AND
Department of Mathematics
The University of Colorado at Boulder

395 UCB

Boulder, Colorado 80309-0395, USA
E-mail address: scl@chonbuk.ac.kr; Sang.C.Lee@Colorado.EDU

