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MULTIPLICATION MODULES WHOSE ENDOMORPHISM
RINGS ARE INTEGRAL DOMAINS

SANG CHEOL LEE

ABSTRACT. In this paper, several properties of endomorphism rings of
modules are investigated. A multiplication module M over a commutative
ring R induces a commutative ring M* of endomorphisms of M and hence
the relation between the prime (maximal) submodules of M and the prime
(maximal) ideals of M* can be found. In particular, two classes of ideals
of M* are discussed in this paper: one is of the form Gj+(M,N) =
{f € M*| f(M) C N} and the other is of the form Gps«(N,0) = {f €
M* | f(N) =0} for a submodule N of M.

0. Introduction

Throughout this paper, unless otherwise specified, we shall assume that all
rings are associative with identity and all modules are unitary left modules.

Let R be a ring and let M be an R-module. Then the set of all R-
homomorphisms from M into itself can be given the structure of a ring. We
call this ring the ring of endomorphisms of M and denote this by M™*.

Let L and N be any two submodules of M. Then the set

{feM | f(L)C N}

will be considered. This set becomes an additive subgroup of the group (M*, +).
So, we will denote this subgroup by G+ (L, N).

If we make different choices of L and N, then G+ (L,N) has different
algebraic structures. There are four cases to consider:

() LDN, (2)LCN, (3)LJN, (4)L¢N.

In case of (1), Gy+(L,N) is a subring of the ring M*. In particular,
Gup+(0,0) = M*, Gp+(M,0) =0, and G« (M, M) = M*.

As special cases of (2), Gy« (M, M) = M* and for any submodule N of M,
G+ (0,N) = M*.
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In cases of (3) and (4), we do not know the further algebraic structure of
Gy~ (L, N).

Now, let N be a submodule of M. Then we get M 2 N 2 0. So, by (1)
we get three subrings of M*: Gp+(M,N), Gy« (N, N), and Gpr+(N,0). We
will discuss about these three subrings of M*. Of course, they have inclusion
relation as follows:

G+ (N,0) € G- (N, N) 2 Gy (M, N).
1. Endomorphism rings

Let R be a ring. Let M be an R-module. Define a ring homomorphism
w:R— M* tobe p(r) =¢, : M — M with ¢,(z) = rz. Then

R /Anng(M) = TIm(p) C M*.
The ¢ may not be injective. The example of this is given below.
Example 1.1. Take R=7Z, M =Z /27Z. Then 2 € Anng(M).

When M is a faithful R-module, however, ¢ is injective. If V' is a non-zero
vector space over a field F, then V is faithful over F. So, ¢ : FF — V* is
injective. Hence, F' can be embedded in V*. If M is a non-zero free module
over a commutative ring with identity with finite rank, then M is also faithful
over R. So, ¢ : R — M is injective. Hence, R can be embedded in M*.

Proposition 1.2. Let R be a ring. Let M be an R-module. If ¢ : R — M*
is surjective and M™* is a projective R-module with rank 1, then ¢ is injective

and hence R = M*.
Proof. The following exact sequence
0 — Ker(p) — R 5 M* —0

splits. So, R = Ker(y) & M*. Let p be any element of Spec(R). Then R, =
Ker(p), ® M. Since M is Ry-free with rank 1, we have Ker(¢), = 0. This
shows that Ker(¢) = 0. Hence ¢ is injective. O

While discussing projective modules [9] with Professor Satya Mandal, we
could see incidently that every projective module with positive rank over a
reduced Noetherian ring is faithful.

Lemma 1.3. If R is a reduced Noetherian ring, then every finitely generated
projective R-module with positive rank is faithful.

Proof. Let R be a reduced Noetherian ring and let P be any finitely generated
projective R-module with positive rank. Let p be any minimal prime ideal of
R. Let  be any element of AnngP. Then 2P = 0, and so (z/1)P, = 0. P, is
a non-zero free Ry,-module. Notice that every non-zero free module with finite
rank is faithful. Then x/1 = 0, so there exists an element s € R\p such that
st = 0. sz =0 € p. Hence, x € p. This shows that AnngP C p. Thus,
Anng P C Npemin(r)P =v/0 = 0. Therefore, AnngP = 0. (]
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Let R be a commutative ring with identity and let M be an R-module. Then
M is called a multiplication module if for every submodule N of M there exists
an ideal I of R such that N = IM. If R is a commutative ring with identity,
then R is a multiplication module over R. If V' is a vector space over a field k
and if the dimension of V over k is greater than 1, then V is not a multiplication
module over k. For otherwise, for a subspace W of V' with dimg (W) = 1, there
exists an ideal I of k such that W = IV. Since the only ideals of the field k
are 0 and k itself, we have W =0 or W = V. This is a contradiction.

Let R be a ring and let M be an R-module. Let f € M*. A submodule
N of M such that f(N) C N is called f-stable or f-invariant. Further, recall
that a submodule N of M is called fully invariant if for every f € M*, N is
f-invariant, or equivalently, if M* = Gz« (N, N).

Let R be a commutative ring with identity and let M be a multiplication
module. Let N be any submodule of M. Then there exists an ideal I of R such
that N = IM. Now, let f be any element of M*. Then

F(N) = f(IM) = If(M) C IM = N.

Hence N is f-invariant. Therefore N is fully invariant. We have proved the
following.

Lemma 1.4 ([6, Proposition 7] and [4, Lemma 1]). If M is a multiplication
module over a commutative ring with identity, then every submodule of M is
fully invariant.

Let R be a commutative ring with identity. For every R-module M, M* is
a ring with identity. Assume further that M is a multiplication module. Let
m be any element of M. Then by Lemma 1.4, Rm is fully invariant. Let f
be any element of M*. Then f(m) € f(Rm) C Rm. There exists an element
r € R such that f(m) = rm. If g is any element of M*, then by a similar proof
we can find an element s € R such that g(m) = sm. Hence

(fg)(m) = s(rm) = (sr)m = (rs)m = r(sm) = (gf)(m).

Hence fg = gf. Therefore, M* is a commutative ring with identity (see [3,
Lemma 2]).

Let R be a ring. An element r of R is called a zero-divisor if there exists a
non-zero element s in R such that rs = 0. From now on we denote the set of
all zero-divisors of a ring R by Z(R). A commutative ring R with identity is
called an integral domain if Z(R) = 0.

Theorem 1.5. If M is a faithful multiplication module over an integral do-
main, then M* is an integral domain.

Proof. M* is a commutative ring with identity. So, it is sufficient to prove: if
fg =0, where f,g € M*, then either f or g is zero.
There are ideals I,J of R such that f(M) = IM, g(M)

= JM. Then
0= (fg)(M)=JIM) = (JI)M = (IJ)M, so IJCAnnR( )=20

. Hence,
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IJ = 0. Since R is an integral domain, either I or J is zero. If I = 0, then
f(M)=0.If J=0, then g(M) = 0. Hence, either f or g is zero. O

Every integral domain is reduced. Hence the next result follows from Lemma
1.3 and Theorem 1.5.

Corollary 1.6. Let R be a Noetherian domain. If P is a finitely generated
projective multiplication R-module with positive rank, then P* is an integral
domain.

The following result was motivated by [12, Proposition 1.2] and [8, Theorem
2.4].

Lemma 1.7. Let R be a commutative ring with identity. Let M be a finitely
generated R-module.
(1) If f : M — M s an epimorphism, then f satisfies a polynomial of the
form
l+a X +a X%+ +a, X",
where the a; are in R.
(2) If f : M — M is an epimorphism, then f is a monomorphism.

Let R be a commutative ring with identity. Let E be an R-module. An
element e of E is said to be divisible if, for every r of R\Z(R), there exists
e’ € E such that e = re/. If every element of F is divisible, then F is said to
be a divisible module. Alternatively, F is divisible if £ = rE whenever r is an
element of R\Z(R).

Let R be an integral domain. If E is a non-zero divisible R-module, then
the ring homomorphism ¢ : R — E* which was discussed in the paragraph just
prior to Example 1.1 is injective. In other words, if multiplication by r is zero,
then r, as an element of R, is zero.

Theorem 1.8. If an integral domain admits a non-zero finitely generated in-
jective module, then it is a field.

Proof. Let R be an integral domain and let E be a non-zero finitely generated
injective module. Then E is divisible by [11, Proposition 2.6]. Let r be a
non-zero element of R. Then rE = E. Hence, multiplication by r is an
epimorphism. By Theorem 1.7(1), r satisfies a polynomial of the form

I+aX +aX? 4+ +a, X",
where the a; are in R. Hence,
L+ arr+agr? + -+ a,r™ = 0.

This means that 14 a7 4+ aor? + - - - + a,r", as an element of E*, is zero. By
the argument just prior to Theorem 1.8, 1 + air + agr? + --- + a,r", as an
element of R, is zero. Hence, (—a; — agr — -+ — a,v™~)r = 1. Therefore, r is

invertible. O
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Corollary 1.9. If E is a non-zero finitely generated injective module over an
integral domain, E* is a field.

Proof. By [8, Theorem 2.1, p. 7], E* is integral over R. By Theorem 1.8, R is
a field. Hence, by [8, Lemma 1, p. 66], E* is a field. O

Let R be a ring and let M be an R-module. Then we can give M an M*-
module structure as follows:

where f € M* and m € M.

Let f be any element of Annps+(M). Then f(M) = f.M = 0 and hence
f = 0. This shows that Annys (M) = 0. Hence every R-module M can be
viewed as a faithful M*-module.

Lemma 1.10. Let R be a commutative ring with identity. Let M be an R-
module. If M is a multiplication module over R, then M is a faithful multipli-
cation module over M*.

Proof. Let M be a multiplication module over R. Let N be any M*-submodule
of the M*-module M. Then for any r € R and for any n € N, rn = ¢,(n) =
wr.n € N. Hence, N is an R-submodule of M. There exists an ideal I of R
such that N = IM. Let ¢; = {¢, |7 € I}. Then ¢;M* is an ideal of M*
(generated by o;r C M*) and

(prM*).M =@ (M".M)=¢;.M =@ (M)=1IM=N.
Hence, M is also a multiplication module over M*. ([

Every vector space over a field is injective. Hence the next result follows
from Corollary 1.9 and Lemma 1.10.

Corollary 1.11. If E is a non-zero, finitely generated, injective, multiplica-
tion module over an integral domain, then it is a non-zero, faithful, finitely
generated, injective, multiplication module over the field E*.

2. Gp- (M, N)

Let N be any submodule of M. The subring Gy« (M, N) of M* will be
considered. This is a right ideal of the ring M*. However, G+ (M, N) is not
always a left ideal of M*. The example of this is given below.

Example 2.1. Let R be a ring with identity # 0 and let M be a free R-
module with rank 2. Let {ej,es} be an R-free basis for M. Consider the
following submodule of M:

V = {ae; + aes | a € R}.

Then G+« (M, V) is not a left ideal of M*. In fact, define a map f: M — M
by f(aer + bes) = ae; + aea, where a,b € R. Then f € Gp+(M,V). Now,
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define a map « : M — M by a(aej +bes) = aeq, where a,b € R. Then oo € M*.
Further, af ¢ G+ (M, V). For otherwise,

V 3 (af)(e1) = aler + e2) = e;.
This is a contradiction. Therefore G- (M, V) is not a left ideal of M*.

Lemma 2.2. Let R be a ring and let M be an R-module. Then for every fully
invariant submodule N of M, Gy« (M, N) is a two-sided ideal of M*.

Proof. We have already known that Gy« (M, N) is a right ideal of M*. Now,
let « € M* and f € Gp+(M,N). Then (af)(M) C a(N) C N. Hence

If M is a multiplication module over a commutative ring with identity, then
for every submodule N of M, G« (M, N) is a two-sided ideal of M* by Lemma
1.4.

Theorem 2.3. Let R be a commutative ring with identity. Let M be an R-
module. Assume that M is a multiplication R-module. Then P is a prime
submodule of M if and only if Gy« (M, P) is a prime ideal of M*.

Proof. Recall that M* is a commutative ring with identity.

Assume that P is a prime submodule of M. Suppose Gy« (M, P) = M*.
Consider the identity map 1 : M — M. Then 1y € M* = Gy (M, P),
so M = 1/(M) C P. Hence P = M, which implies a contradiction. Hence
G+ (M, P) # M*.

Now, assume that fg € Gy« (M, P), where f,g € M*. Then since M is a
multiplication R-module, there are ideals I and J of R such that f(M)=IM
and g(M) = JM. So,

(II)M = (JI)M = J(IM) = J(f(M)) = f(JM) = f(g(M)) C P.

This implies that IJ C (P :g M). Since P is a prime submodule of M, it is
well-known ([7, p. 2]) that (P :gr M) is a prime ideal of R. Hence

IC(P:gM)or JC (P:g M).

Assume that I C (P :g M). Then f(M)=1IM C P,so f € Gpy+(M, P). Or,
assume that J C (P :g M). Then g(M)=JM C P, so g € Gp~(M, P).

Therefore, G+ (M, P) is a prime ideal of M*.

Conversely, assume that Gz« (M, P) is a prime ideal of M*. Suppose that
P = M. Then Gy«(M,P) = Gpy+(M,M) = M*. This is a contradiction.
Hence P # M.

Assume that rm € P, where r € R and m € M. Since M is a multiplication
R-module, there exists an ideal I of R such that Rm = IM. So,

(rI)M =r(IM) = (rR)m C P.

Consider the ring homomorphism ¢ : R — M* which was discussed in the
paragraph just prior to Example 1.1. Since Gy« (M, P) is a prime ideal of M*,



MULTIPLICATION MODULES 1059

it follows that ¢=1(Gpr« (M, P)) is a prime ideal of R. Further, notice that
orr(M) = (rI)M C P. Then ¢(rl) = ¢,; € Gp+(M, P). This implies that
rl C o Y (Gp+ (M, P)). Hence r € o~ (G« (M, P)) or I C o~ (G« (M, P)).
Assume that r € @ 1 (Gp+(M,P)). Then o(r) € Guy+(M,P), so rM =
(M) C P. Hence r € (P :gp M). Or, assume that I C ¢~ }(G = (M, P)).
Then ¢(I) C Gp«(M, P), so Rm =IM = p;(M) C P. Hence m € P.
Therefore, P is a prime submodule of M. O

Lemma 2.4. Let R be a commutative ring with identity and let M be an R-
module. If M is a multiplication R-module, then for every submodule N of M,

N =2 recpm () f(M).

Proof. It is obvious that > . . arny f(M) S N.

Conversely, let x be any element of N. Since M is a multiplication R-
module, there exists an ideal I of R such that Rx = IM. Further, there are
ai,as,...,a, € I and mq,mo,...,m, € M such that = aym; + aams +
-+ a,m,. Let ¢ : R — M* be as before. Then for each i € {1,2,...,r},
©0a, (M) =a;M CIM = Rz C N and hence ¢,, € Gp~(M,N). Hence

r=aymi+asmo + -+ a,m,

€ o, (M) + oy (M) + - + 0, (M)
c D .

FEG N+ (M,N)
Hence N C 3> cqr, . arny f(M). Therefore N =3 o sy f(M). O

Consider the ring homomorphism ¢ : R — M™* which was discussed in the
paragraph just prior to Example 1.1. ¢~ 1(Gp+ (M, N)) will be denoted by
Gy~ (M, N)N R. Then we have the following result.

Proposition 2.5. For every submodule N of an R-module M,
(N ‘R M) = G]\/[*(M7N) NR.

Let M be a multiplication R-module and let N be any submodule of M.
Then there exists an ideal I of R such that N = IM. This implies that
I CN:g M)M. Hence N = IM C (N :g M)M. Also, (N :g M)M C N,
which is clear from the definition. Hence N = (N :g M)M. This is useful in
the proof of the following result.

Theorem 2.6. Let R be a commutative ring with an identity. Let M be a
finitely generated multiplication R-module. Then a submodule N of M is mazx-
imal if and only if (N :g M) is a mazimal ideal of R.

Proof. Let N be a maximal submodule of M. Assume that J is an ideal of R
such that (N :g M) C J C R. Since M is a multiplication R-module, it follows
from the above argument that

N=(N:x M)M CJMC M.
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By the maximality of N, either JM = N or JM = M. Assume that JM = N.
Then J C (N :g M). Hence J = (N :x M). Or, assume that JM = M. By
the Nakayama Lemma, there exists an element a € J such that (1 —a)M = 0.
So, (1 —a)M =0 C N. This implies that 1 —a € (N :g M) C J. Hence
l1=a+ (1—a) € J. Hence J = R. This shows that (N :g M) is a maximal
ideal of R.

Conversely, assume that (N :p M) is a maximal ideal of R. Let A be a
submodule of M such that N € A C M. Then

(N:g M)C(A:g M) CR.

By the maximality of (N :p M), either (A :g M) = (N :g M) or (A:g M) =
R. Assume that (A :g M) = (N :gp M). Since M is a multiplication module,
we have A = (A :g M)M = (N :g M)M = N. Or, if (A :g M) = R, then
M = A. This shows that IV is a maximal submodule of M. O

We have already known that if R is a commutative ring with identity and M
is a multiplication module over R, then M* is a commutative ring with identity.
If M, as an R-module, is finitely generated, then M, as an M*-module, is also
finitely generated. Compare the following result with Theorem 2.3.

Corollary 2.7. Let R be a commutative ring with identity. Let M be a finitely
generated multiplication module over R and let N be any submodule of M. Then
N is a mazimal M*-submodule of the M*-module M if and only if Gpr« (M, N)
is a maximal ideal of M*.

Proof. Note that Gps«(M,N) = (N :p« M). Then it suffices to prove that N
is a maximal M*-submodule of the M*-module M if and only if (N :p« M) is
a maximal ideal of M*. Use [5, Theorem 3.1, p. 768] to prove the ‘only if part’.
The remainder of the proof is almost the same as that of Theorem 2.6. (]

3. G- (N, 0)

Let R be ring and let N be a submodule of M. Then G+ (N,0) is a left
ideal of M*. However, this is not a right ideal of M*. The example of this is
given below.

Example 3.1. Use the same notation as in Example 1.1. Define a map g :
M — M by g(ae; + bes) = (a — b)ey, where a,b € R. Then g € Gy~ (V,0).
Further,

(ga)(e1 + e2) = glafer +e2)) = gle1) = e1 # 0.
Hence ga ¢ Gp+(V,0). Hence Gpr-(V,0) is not a right ideal of M*.

Compare the following lemma with Lemma 2.2.

Lemma 3.2. Let R be a ring with identity and let M be an R-module. Then
for every fully invariant submodule N of M, G+(N,0) is a two-sided ideal of
M*
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Proof. We have already known that Gz« (N, 0) is a left ideal of M*. Now,
let « € M* and f € Gp+(N,0). Then (fa)(N) C f(N) = 0. Hence fa €
G+ (N,0). O

If M is a multiplication module over a commutative ring with identity, then
for every submodule N of M, Gps-(N,0) is a two-sided ideal of M*.

Let R be a ring. Let M be an R-module and let N be a submodule of M.
Then for each f € G+ (N,0), Ker(f) contains N. Hence

ﬂfegM*(N,O)Ker(f) 2 N.
A submodule N of an R-module M is called to be tight closed if

Nfecy- (V0 Ker(f) = N.

In papers [1] and [2], the name of the submodule in the definition was a
“closed submodule”, however we call it to be a tight closed submodule to avoid
confusion with the name in [10]. Moreover, in view of the following Proposition
3.4, it seems like to be reasonable for us to call the submodule a tight closed
submodule.

Proposition 3.3. Let R be a ring and let M be an R-module. Let N be a
submodule of M. If there exists an element f € M* such that Ker(f) = N,
then N is tight closed.

Proof. Assume that there exists an element f € M* such that Ker(f) = N.
Then N C Nyeq,,- (v,0)Ker(g) € Ker(f) = N. Hence Nyeg,,. (nv,0)Ker(g) = N.
Therefore N is tight closed. O

Let R be a ring and let M be an R-module. Then Ker(1p;) = 0 and
Ker(0p;) = M. Hence, by Proposition 3.3, the zero submodule of M and
M itself are tight closed and for any f € M*, Ker(f) is tight closed.

Let V be a finite-dimensional vector space over a field. Let W be any
subspace of V. Then there exists a subspace W' of V such that V =W & W',
So, we can define a map f : V — V such that flyy = 0 and f|lw = ly-.
Then f € V* and Ker(f) = W. Hence W is tight closed in V. Therefore every
subspace of a finite-dimensional vector space V over a field is tight closed in V.

Now, let A be an algebra over a field k. Let P be a finitely generated
projective A-module. Then there exists an A-module @) and an integer n such
that P ® @Q = A™. So, we can define a map f : A" — A™ such that f|p =0
and f|lg = 1g. Then f € (A™)* and Ker(f) = P. Hence, P is tight closed in a
free A-module. Therefore every finitely generated projective A-module is tight
closed in a free R-module.

Let R be a ring. A submodule K of an R-module M is called closed [10,
p. 548] if K has no proper essential extension in M.

Proposition 3.4. Let R be a ring and let M be an R-module such that Z(M) =
0. If N is tight closed in M, then N is closed in M.
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Proof. Suppose that N has a proper essential extension F in M. Then there
exists an element e € E\N. So, 0 # Re C E. Since N is essential in F,
Re N N # 0. There exists a non-zero element n such that n € ReN N. There
exists an element r € R such that n = re.

Now, let f be any element in Gy« (N, 0). Then n € Ker(f). So, 0= f(n) =
rf(e). Since Z(M) = 0, we have f(e) = 0. Hence e € Ker(f). This shows that

e € Nrea - (N0 Ker(f).

Since N is tight closed in M, we have e € N. This contradiction shows that N
has no proper essential extension. O

Theorem 3.5. Let R be a ring. Let N be a submodule of an R-module K. If
no proper extension of N in K is essential in K, then N is essential in K.

Proof. Suppose that N is not essential in K. Then there exists a non-zero
submodule L of K such that N N L = 0. By Zorn’s lemma, we may assume
that L is maximal among such. By assumption, N @& L is not essential in K.
Then there exists a non-zero submodule F' of K such that (N @ L)NF = 0.
Hence NN (L @ F) = 0. By the maximality of L, L = L& F 2 F, so
F =LNF =0. This is a contradiction. Hence NN is essential in K. (]

Corollary 3.6. Let R be a ring. Let N be a submodule of K and let K be a
submodule of M. If no proper extension of N in K is essential in K and if N
is closed in M, then N = K.

Let R be a ring and let N be a submodule of M. Let

K = Nfeq . (v,0)Ker(f).

Then N C K. If no proper extension of N in K is essential in K and if N is
closed in M, then it follows from Corollary 3.6 that IV is tight closed in M.

It is well-known [4] that every epimorphism of a multiplication module onto
itself is an automorphism. If M is a non-zero multiplication R-module whose
endomorphism ring is an integral domain, then we show that every non-zero
endomorphism of M is a monomorphism.

Lemma 3.7. Let M be a non-zero multiplication R-module whose endomor-
phism ring M* is an integral domain. Then

(1) For every non-zero submodule N of M, Gpr+(N,0) = 0. Hence every

non-zero endomorphism of M is a monomorphism.
(2) The only tight closed submodule of M are 0 and M itself.

Proof. (1) Suppose on the contrary that there exists a non-zero submodule N
of M such that Gy« (N, 0) # 0. Then there exists a non-zero f in G« (N, 0).
Since M is a multiplication R-module, there exist ideals I, J of R such that
N =1IM and f(M) = JM. Hence we have

0=f(N)=f(IM)=If(M)=I(JM)=(IJ)M.
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This implies that IJ C Anng(M). Since M* is an integral domain, it follows
from the argument just prior to Example 1.1 that Anng (M) is a prime ideal
of R. So, we have I C Anng(M) or J C Anng(M). If I C Anng(M), then
N = IM = 0, a contradiction. Or, if J C Anng(M), then f(M)=JM =0
and hence f = 0, a contradiction. Therefore, for every non-zero submodule N
of M, Gp+(N,0) =0.

Assume that there exists an non-zero endomorphism f of M such that
Ker(f) # 0. Then by the previous argument we have f € G+ (Ker(f),0) = 0.
Thus f = 0, a contradiction. Hence every non-zero endomorphism of M is a
monomorphism.

(2) Let N be a non-zero tight closed submodule of M. Then by (1),
GM* (N, O) =0and so N = mfeGMx(N7O)Ker(f) = Ker(O) =M. (I

A submodule L of an R-module M is said to be M -cyclic if L is isomorphic
to M/N for some submodule N of M.

Let L be a submodule of an R-module M. Assume that L is M-cyclic.
Then there exists a submodule N of M such that L = M/N. There exists an
isomorphism g : M/N — L. Consider the composite map

fiM S M/N - L2

Then f € M* and f(M) = (incgn)(M) = L.

Conversely, assume that there exists f € M* such that L = f(M). Then by
the first isomorphism theorem for modules L = f(M) = M/Ker(f).

This shows that L is M-cyclic if and only if there exists f € M* such that
L= f(M).

An R-module M is said to be semi-injective if every homomorphism from an
M-cyclic submodule of M to M can be extended to M. Compare the following
lemma with [13, Lemma 2.2].

Lemma 3.8. Let R be a ring and let M be an R-module. Then M is semi-
injective if and only if for every f € M*, Gy« (Ker(f),0) is a cyclic left ideal
of M* generated by f.

Proof. Let f be any element of M*. For any g € M*,

(9f)(Ker(f)) = g(f(Ker(f))) = g(0) = 0.
Hence M*f C Gp+(Ker(f),0). Conversely, let h € G+ (Ker(f),0). Then
h(Ker(f)) = 0, so Ker(f) € Ker(h). Define a map ¢ : f(M) — M by
o(f(m)) = h(m), where m € M. Then

f(m)=0=m € Ker(f) C Ker(h) = h(m) =0.
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This shows that ¢ is well-defined. Further, ¢ is an R-homomorphism and
@ f = h. Now, assume that M is semi-injective. Consider the following diagram:

inc

0—f(M) —

d!
M
Then f(M) is M-cyclic, so there exists g € M* such that ginc = ¢. Hence

h=¢f=gncf=gf.
Thus h € M* f. This shows that G« (Ker(f),0) C M* f. Therefore
G- (Ker(f),0) = M* f.

Assume that for every f € M*, G- (Ker(f),0) is a cyclic left ideal of M*
generated by f. Consider the following diagram:

0— L —2, M
|
M

where L is M-cyclic. Then there exists f € M* such that L = f(M). of €
M* and (¢f)(XKer(f)) = 0, so pf € Gu+(Ker(f),0). By our assumption,
G- (Ker(f),0) = M*f. So, there exists g € M* such that ¢pf = gf. Hence,
for any m € M,

(ginc)(f(m)) = (gincf)(m) = (@f)(m) = ¢ (f(m)).

This shows that ginc = . Therefore M is semi-injective. O

Lemma 3.9. Let R be a ring. Let M be an R-module such that Z(M*) = 0.
If f and g are elements of M* such that fg = 1pr, then gf = 1.

Proof. Assume fg = 1p. Then g # 0. Further, (g9f — 1p)g = 0. Hence
gf — 1y =0 and thus gf = 1. (|

Theorem 3.10. Let R be a ring. Let M be a multiplication R-module such
that Z(M*) = 0. Then M is semi-injective if and only if M* is a division ring.

Proof. Assume that M is semi-injective. Let f be any non-zero element of M™.
Then by Lemma 3.7 (1), Ker(f) = 0. So,
M*f = G- (Ker(f),0) = Gp+(0,0) = M*.

By Lemma 3.9, f is an epimorphism. Therefore M* is a division ring.
Conversely, assume that M* is a division ring. Let f be any non-zero element
of M*. Then f is an automorphism. Hence

G+ (Ker(f),0) = Gar-(0,0) = M™ = (f).

By Lemma 3.8, M is semi-injective. O
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An R-module M is said to be self-cogenerated if every submodule of M is
tight closed. If M is a simple R-module, then by the statement just posterior
to Proposition 3.3, M is self-cogenerated.

Theorem 3.11. Let R be a commutative ring with identity. Let M be a mul-
tiplication R-module such that Z(M*) = 0. Then the following statements are
equivalent.

(1) M is self-cogenerated;

(2) For any non-zero f € M*, f is an epimorphism,

(3) M is simple.

Proof. We have already known that M* is a commutative ring with identity.
Hence by our hypothesis M* is an integral domain.

(1) = (2). Assume (1). Let f be any non-zero element of M*. Then
Im(f)(C M) is tight closed. By Lemma 3.7 (2), Im(f) = M. Hence f is an
epimorphism. Hence (2) follows.

(2) = (3). Assume (2). By the statement just prior to Lemma 3.7, M* is a
field.

Now, let N be any non-zero submodule of M. Since M is a multiplication
R-module, there exists an ideal I of R such that N = IM. Then

N =IM = ¢;(M) = o(I)(M).
Hence ¢(I) # 0. There exists an element r € I such that () # 0. ¢, = o(r) #

0. By our assumption, ¢, has an inverse ¢, ! in M*. Further, ¢! € M*. By
Lemma 1.4, N is fully invariant. So,

M =g or (M) C o;  (or(M) = ¢ ' (N) € N.
Hence N = M. Thus, M is simple. Therefore (3) follows.
(3) = (1). Assume (3). Let N be any submodule of M. Then N = 0 or
N = M. By the statement just posterior to Proposition 3.3, 0 and M are tight

closed. Hence N is tight closed. Thus M is self-cogenerated. Therefore, (1)
follows. 0

Corollary 3.12. Let R be a commutative ring with identity. Let M be a
multiplication R-module such that Z(M*) = 0. Then the following statements
are equivalent.

(1) M is semi-injective;
(2) M* is a field;
(3) M is self-cogenerated;
(4) For any non-zero f € M*, f is an epimorphism;

(5) M is simple.
Proof. M* is a commutative ring with identity.

(5) = (2) follows from Schur’s Lemma. (2) = (5) follows from the proof

of Theorem 3.11 (2) = (3). The remainder of the proof follows from Theorem
3.10 and Theorem 3.11. O
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