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MULTIPLICATION MODULES WHOSE ENDOMORPHISM
RINGS ARE INTEGRAL DOMAINS

Sang Cheol Lee

Abstract. In this paper, several properties of endomorphism rings of
modules are investigated. A multiplication module M over a commutative
ring R induces a commutative ring M∗ of endomorphisms of M and hence
the relation between the prime (maximal) submodules of M and the prime
(maximal) ideals of M∗ can be found. In particular, two classes of ideals
of M∗ are discussed in this paper: one is of the form GM∗ (M, N) =
{f ∈ M∗ | f(M) ⊆ N} and the other is of the form GM∗ (N, 0) = {f ∈
M∗ | f(N) = 0} for a submodule N of M .

0. Introduction

Throughout this paper, unless otherwise specified, we shall assume that all
rings are associative with identity and all modules are unitary left modules.

Let R be a ring and let M be an R-module. Then the set of all R-
homomorphisms from M into itself can be given the structure of a ring. We
call this ring the ring of endomorphisms of M and denote this by M∗.

Let L and N be any two submodules of M . Then the set

{f ∈ M∗ | f(L) ⊆ N}
will be considered. This set becomes an additive subgroup of the group (M∗, +).
So, we will denote this subgroup by GM∗(L,N).

If we make different choices of L and N , then GM∗(L,N) has different
algebraic structures. There are four cases to consider:

(1) L ⊇ N, (2) L ⊆ N, (3) L + N, (4) L * N.

In case of (1), GM∗(L, N) is a subring of the ring M∗. In particular,
GM∗(0, 0) = M∗, GM∗(M, 0) = 0, and GM∗(M, M) = M∗.

As special cases of (2), GM∗(M, M) = M∗ and for any submodule N of M ,
GM∗(0, N) = M∗.
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In cases of (3) and (4), we do not know the further algebraic structure of
GM∗(L,N).

Now, let N be a submodule of M . Then we get M ⊇ N ⊇ 0. So, by (1)
we get three subrings of M∗: GM∗(M,N), GM∗(N,N), and GM∗(N, 0). We
will discuss about these three subrings of M∗. Of course, they have inclusion
relation as follows:

GM∗(N, 0) ⊆ GM∗(N, N) ⊇ GM∗(M,N).

1. Endomorphism rings

Let R be a ring. Let M be an R-module. Define a ring homomorphism
ϕ : R → M∗ to be ϕ(r) = ϕr : M → M with ϕr(x) = rx. Then

R /AnnR(M) ∼= Im(ϕ) ⊆ M∗.

The ϕ may not be injective. The example of this is given below.

Example 1.1. Take R = Z, M = Z /2Z . Then 2 ∈ AnnR(M).

When M is a faithful R-module, however, ϕ is injective. If V is a non-zero
vector space over a field F , then V is faithful over F . So, ϕ : F → V ∗ is
injective. Hence, F can be embedded in V ∗. If M is a non-zero free module
over a commutative ring with identity with finite rank, then M is also faithful
over R. So, ϕ : R → M∗ is injective. Hence, R can be embedded in M∗.

Proposition 1.2. Let R be a ring. Let M be an R-module. If ϕ : R → M∗

is surjective and M∗ is a projective R-module with rank 1, then ϕ is injective
and hence R ∼= M∗.

Proof. The following exact sequence

0 −→ Ker(ϕ) −→ R
ϕ−→ M∗ −→ 0

splits. So, R = Ker(ϕ) ⊕M∗. Let p be any element of Spec(R). Then Rp =
Ker(ϕ)p ⊕M∗

p . Since M∗
p is Rp-free with rank 1, we have Ker(ϕ)p = 0. This

shows that Ker(ϕ) = 0. Hence ϕ is injective. �
While discussing projective modules [9] with Professor Satya Mandal, we

could see incidently that every projective module with positive rank over a
reduced Noetherian ring is faithful.

Lemma 1.3. If R is a reduced Noetherian ring, then every finitely generated
projective R-module with positive rank is faithful.

Proof. Let R be a reduced Noetherian ring and let P be any finitely generated
projective R-module with positive rank. Let p be any minimal prime ideal of
R. Let x be any element of AnnRP . Then xP = 0, and so (x/1)Pp = 0. Pp is
a non-zero free Rp-module. Notice that every non-zero free module with finite
rank is faithful. Then x/1 = 0, so there exists an element s ∈ R\p such that
sx = 0. sx = 0 ∈ p. Hence, x ∈ p. This shows that AnnRP ⊆ p. Thus,
AnnRP ⊆ ∩p∈Min(R)p =

√
0 = 0. Therefore, AnnRP = 0. �
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Let R be a commutative ring with identity and let M be an R-module. Then
M is called a multiplication module if for every submodule N of M there exists
an ideal I of R such that N = IM . If R is a commutative ring with identity,
then R is a multiplication module over R. If V is a vector space over a field k
and if the dimension of V over k is greater than 1, then V is not a multiplication
module over k. For otherwise, for a subspace W of V with dimk(W ) = 1, there
exists an ideal I of k such that W = IV . Since the only ideals of the field k
are 0 and k itself, we have W = 0 or W = V . This is a contradiction.

Let R be a ring and let M be an R-module. Let f ∈ M∗. A submodule
N of M such that f(N) ⊆ N is called f -stable or f -invariant. Further, recall
that a submodule N of M is called fully invariant if for every f ∈ M∗, N is
f -invariant, or equivalently, if M∗ = GM∗(N, N).

Let R be a commutative ring with identity and let M be a multiplication
module. Let N be any submodule of M . Then there exists an ideal I of R such
that N = IM . Now, let f be any element of M∗. Then

f(N) = f(IM) = If(M) ⊆ IM = N.

Hence N is f -invariant. Therefore N is fully invariant. We have proved the
following.

Lemma 1.4 ([6, Proposition 7] and [4, Lemma 1]). If M is a multiplication
module over a commutative ring with identity, then every submodule of M is
fully invariant.

Let R be a commutative ring with identity. For every R-module M , M∗ is
a ring with identity. Assume further that M is a multiplication module. Let
m be any element of M . Then by Lemma 1.4, Rm is fully invariant. Let f
be any element of M∗. Then f(m) ∈ f(Rm) ⊆ Rm. There exists an element
r ∈ R such that f(m) = rm. If g is any element of M∗, then by a similar proof
we can find an element s ∈ R such that g(m) = sm. Hence

(fg)(m) = s(rm) = (sr)m = (rs)m = r(sm) = (gf)(m).

Hence fg = gf . Therefore, M∗ is a commutative ring with identity (see [3,
Lemma 2]).

Let R be a ring. An element r of R is called a zero-divisor if there exists a
non-zero element s in R such that rs = 0. From now on we denote the set of
all zero-divisors of a ring R by Z(R). A commutative ring R with identity is
called an integral domain if Z(R) = 0.

Theorem 1.5. If M is a faithful multiplication module over an integral do-
main, then M∗ is an integral domain.

Proof. M∗ is a commutative ring with identity. So, it is sufficient to prove: if
fg = 0, where f, g ∈ M∗, then either f or g is zero.

There are ideals I, J of R such that f(M) = IM , g(M) = JM . Then
0 = (fg)(M) = J(IM) = (JI)M = (IJ)M , so IJ ⊆ AnnR(M) = 0. Hence,
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IJ = 0. Since R is an integral domain, either I or J is zero. If I = 0, then
f(M) = 0. If J = 0, then g(M) = 0. Hence, either f or g is zero. �

Every integral domain is reduced. Hence the next result follows from Lemma
1.3 and Theorem 1.5.

Corollary 1.6. Let R be a Noetherian domain. If P is a finitely generated
projective multiplication R-module with positive rank, then P ∗ is an integral
domain.

The following result was motivated by [12, Proposition 1.2] and [8, Theorem
2.4].

Lemma 1.7. Let R be a commutative ring with identity. Let M be a finitely
generated R-module.

(1) If f : M → M is an epimorphism, then f satisfies a polynomial of the
form

1 + a1X + a2X
2 + · · ·+ anXn,

where the ai are in R.
(2) If f : M → M is an epimorphism, then f is a monomorphism.

Let R be a commutative ring with identity. Let E be an R-module. An
element e of E is said to be divisible if, for every r of R\Z(R), there exists
e′ ∈ E such that e = re′. If every element of E is divisible, then E is said to
be a divisible module. Alternatively, E is divisible if E = rE whenever r is an
element of R\Z(R).

Let R be an integral domain. If E is a non-zero divisible R-module, then
the ring homomorphism ϕ : R → E∗ which was discussed in the paragraph just
prior to Example 1.1 is injective. In other words, if multiplication by r is zero,
then r, as an element of R, is zero.

Theorem 1.8. If an integral domain admits a non-zero finitely generated in-
jective module, then it is a field.

Proof. Let R be an integral domain and let E be a non-zero finitely generated
injective module. Then E is divisible by [11, Proposition 2.6]. Let r be a
non-zero element of R. Then rE = E. Hence, multiplication by r is an
epimorphism. By Theorem 1.7(1), r satisfies a polynomial of the form

1 + a1X + a2X
2 + · · ·+ anXn,

where the ai are in R. Hence,

1 + a1r + a2r
2 + · · ·+ anrn = 0.

This means that 1 + a1r + a2r
2 + · · ·+ anrn, as an element of E∗, is zero. By

the argument just prior to Theorem 1.8, 1 + a1r + a2r
2 + · · · + anrn, as an

element of R, is zero. Hence, (−a1 − a2r − · · · − anrn−1)r = 1. Therefore, r is
invertible. �
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Corollary 1.9. If E is a non-zero finitely generated injective module over an
integral domain, E∗ is a field.

Proof. By [8, Theorem 2.1, p. 7], E∗ is integral over R. By Theorem 1.8, R is
a field. Hence, by [8, Lemma 1, p. 66], E∗ is a field. �

Let R be a ring and let M be an R-module. Then we can give M an M∗-
module structure as follows:

f.m = f(m),

where f ∈ M∗ and m ∈ M .
Let f be any element of AnnM∗(M). Then f(M) = f.M = 0 and hence

f = 0. This shows that AnnM∗(M) = 0. Hence every R-module M can be
viewed as a faithful M∗-module.

Lemma 1.10. Let R be a commutative ring with identity. Let M be an R-
module. If M is a multiplication module over R, then M is a faithful multipli-
cation module over M∗.

Proof. Let M be a multiplication module over R. Let N be any M∗-submodule
of the M∗-module M . Then for any r ∈ R and for any n ∈ N , rn = ϕr(n) =
ϕr.n ∈ N . Hence, N is an R-submodule of M . There exists an ideal I of R
such that N = IM . Let ϕI = {ϕr | r ∈ I}. Then ϕIM

∗ is an ideal of M∗

(generated by ϕI ⊆ M∗) and

(ϕIM
∗).M = ϕI .(M∗.M) = ϕI .M = ϕI(M) = IM = N.

Hence, M is also a multiplication module over M∗. �

Every vector space over a field is injective. Hence the next result follows
from Corollary 1.9 and Lemma 1.10.

Corollary 1.11. If E is a non-zero, finitely generated, injective, multiplica-
tion module over an integral domain, then it is a non-zero, faithful, finitely
generated, injective, multiplication module over the field E∗.

2. GM∗(M, N)

Let N be any submodule of M . The subring GM∗(M,N) of M∗ will be
considered. This is a right ideal of the ring M∗. However, GM∗(M, N) is not
always a left ideal of M∗. The example of this is given below.

Example 2.1. Let R be a ring with identity 6= 0 and let M be a free R-
module with rank 2. Let {e1, e2} be an R-free basis for M . Consider the
following submodule of M :

∇ = {ae1 + ae2 | a ∈ R}.
Then GM∗(M,∇) is not a left ideal of M∗. In fact, define a map f : M → M
by f(ae1 + be2) = ae1 + ae2, where a, b ∈ R. Then f ∈ GM∗(M,∇). Now,
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define a map α : M → M by α(ae1+be2) = ae1, where a, b ∈ R. Then α ∈ M∗.
Further, αf /∈ GM∗(M,∇). For otherwise,

∇ 3 (αf)(e1) = α(e1 + e2) = e1.

This is a contradiction. Therefore GM∗(M,∇) is not a left ideal of M∗.

Lemma 2.2. Let R be a ring and let M be an R-module. Then for every fully
invariant submodule N of M , GM∗(M,N) is a two-sided ideal of M∗.

Proof. We have already known that GM∗(M,N) is a right ideal of M∗. Now,
let α ∈ M∗ and f ∈ GM∗(M, N). Then (αf)(M) ⊆ α(N) ⊆ N . Hence
αf ∈ GM∗(M,N). �

If M is a multiplication module over a commutative ring with identity, then
for every submodule N of M , GM∗(M,N) is a two-sided ideal of M∗ by Lemma
1.4.

Theorem 2.3. Let R be a commutative ring with identity. Let M be an R-
module. Assume that M is a multiplication R-module. Then P is a prime
submodule of M if and only if GM∗(M, P ) is a prime ideal of M∗.

Proof. Recall that M∗ is a commutative ring with identity.
Assume that P is a prime submodule of M . Suppose GM∗(M,P ) = M∗.

Consider the identity map 1M : M → M . Then 1M ∈ M∗ = GM∗(M, P ),
so M = 1M (M) ⊆ P . Hence P = M , which implies a contradiction. Hence
GM∗(M,P ) 6= M∗.

Now, assume that fg ∈ GM∗(M,P ), where f, g ∈ M∗. Then since M is a
multiplication R-module, there are ideals I and J of R such that f(M) = IM
and g(M) = JM . So,

(IJ)M = (JI)M = J(IM) = J(f(M)) = f(JM) = f(g(M)) ⊆ P.

This implies that IJ ⊆ (P :R M). Since P is a prime submodule of M , it is
well-known ([7, p. 2]) that (P :R M) is a prime ideal of R. Hence

I ⊆ (P :R M) or J ⊆ (P :R M).

Assume that I ⊆ (P :R M). Then f(M) = IM ⊆ P , so f ∈ GM∗(M, P ). Or,
assume that J ⊆ (P :R M). Then g(M) = JM ⊆ P , so g ∈ GM∗(M, P ).

Therefore, GM∗(M,P ) is a prime ideal of M∗.
Conversely, assume that GM∗(M, P ) is a prime ideal of M∗. Suppose that

P = M . Then GM∗(M,P ) = GM∗(M, M) = M∗. This is a contradiction.
Hence P 6= M .

Assume that rm ∈ P , where r ∈ R and m ∈ M . Since M is a multiplication
R-module, there exists an ideal I of R such that Rm = IM . So,

(rI)M = r(IM) = (rR)m ⊆ P.

Consider the ring homomorphism ϕ : R → M∗ which was discussed in the
paragraph just prior to Example 1.1. Since GM∗(M, P ) is a prime ideal of M∗,



MULTIPLICATION MODULES 1059

it follows that ϕ−1(GM∗(M,P )) is a prime ideal of R. Further, notice that
ϕrI(M) = (rI)M ⊆ P . Then ϕ(rI) = ϕrI ⊆ GM∗(M,P ). This implies that
rI ⊆ ϕ−1(GM∗(M,P )). Hence r ∈ ϕ−1(GM∗(M, P )) or I ⊆ ϕ−1(GM∗(M,P )).
Assume that r ∈ ϕ−1(GM∗(M, P )). Then ϕ(r) ∈ GM∗(M, P ), so rM =
ϕr(M) ⊆ P . Hence r ∈ (P :R M). Or, assume that I ⊆ ϕ−1(GM∗(M,P )).
Then ϕ(I) ⊆ GM∗(M, P ), so Rm = IM = ϕI(M) ⊆ P . Hence m ∈ P .

Therefore, P is a prime submodule of M . �
Lemma 2.4. Let R be a commutative ring with identity and let M be an R-
module. If M is a multiplication R-module, then for every submodule N of M ,
N =

∑
f∈GM∗ (M,N) f(M).

Proof. It is obvious that
∑

f∈GM∗ (M,N) f(M) ⊆ N .
Conversely, let x be any element of N . Since M is a multiplication R-

module, there exists an ideal I of R such that Rx = IM . Further, there are
a1, a2, . . . , ar ∈ I and m1,m2, . . . , mr ∈ M such that x = a1m1 + a2m2 +
· · · + armr. Let ϕ : R → M∗ be as before. Then for each i ∈ {1, 2, . . . , r},
ϕai

(M) = aiM ⊆ IM = Rx ⊆ N and hence ϕai
∈ GM∗(M, N). Hence

x = a1m1 + a2m2 + · · ·+ armr

∈ ϕa1(M) + ϕa2(M) + · · ·+ ϕar (M)

⊆
∑

f∈GM∗ (M,N)

f(M).

Hence N ⊆∑f∈GM∗ (M,N) f(M). Therefore N =
∑

f∈GM∗ (M,N) f(M). �

Consider the ring homomorphism ϕ : R → M∗ which was discussed in the
paragraph just prior to Example 1.1. ϕ−1(GM∗(M,N)) will be denoted by
GM∗(M,N) ∩R. Then we have the following result.

Proposition 2.5. For every submodule N of an R-module M ,

(N :R M) = GM∗(M, N) ∩R.

Let M be a multiplication R-module and let N be any submodule of M .
Then there exists an ideal I of R such that N = IM . This implies that
I ⊆ N :R M)M . Hence N = IM ⊆ (N :R M)M . Also, (N :R M)M ⊆ N ,
which is clear from the definition. Hence N = (N :R M)M . This is useful in
the proof of the following result.

Theorem 2.6. Let R be a commutative ring with an identity. Let M be a
finitely generated multiplication R-module. Then a submodule N of M is max-
imal if and only if (N :R M) is a maximal ideal of R.

Proof. Let N be a maximal submodule of M . Assume that J is an ideal of R
such that (N :R M) ⊆ J ⊆ R. Since M is a multiplication R-module, it follows
from the above argument that

N = (N :R M)M ⊆ JM ⊆ M.
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By the maximality of N , either JM = N or JM = M . Assume that JM = N .
Then J ⊆ (N :R M). Hence J = (N :R M). Or, assume that JM = M . By
the Nakayama Lemma, there exists an element a ∈ J such that (1− a)M = 0.
So, (1 − a)M = 0 ⊆ N . This implies that 1 − a ∈ (N :R M) ⊆ J . Hence
1 = a + (1 − a) ∈ J . Hence J = R. This shows that (N :R M) is a maximal
ideal of R.

Conversely, assume that (N :R M) is a maximal ideal of R. Let A be a
submodule of M such that N ⊆ A ⊆ M . Then

(N :R M) ⊆ (A :R M) ⊆ R.

By the maximality of (N :R M), either (A :R M) = (N :R M) or (A :R M) =
R. Assume that (A :R M) = (N :R M). Since M is a multiplication module,
we have A = (A :R M)M = (N :R M)M = N . Or, if (A :R M) = R, then
M = A. This shows that N is a maximal submodule of M . �

We have already known that if R is a commutative ring with identity and M
is a multiplication module over R, then M∗ is a commutative ring with identity.
If M , as an R-module, is finitely generated, then M , as an M∗-module, is also
finitely generated. Compare the following result with Theorem 2.3.

Corollary 2.7. Let R be a commutative ring with identity. Let M be a finitely
generated multiplication module over R and let N be any submodule of M . Then
N is a maximal M∗-submodule of the M∗-module M if and only if GM∗(M,N)
is a maximal ideal of M∗.

Proof. Note that GM∗(M, N) = (N :M∗ M). Then it suffices to prove that N
is a maximal M∗-submodule of the M∗-module M if and only if (N :M∗ M) is
a maximal ideal of M∗. Use [5, Theorem 3.1, p. 768] to prove the ‘only if part’.
The remainder of the proof is almost the same as that of Theorem 2.6. �

3. GM∗(N, 0)

Let R be ring and let N be a submodule of M . Then GM∗(N, 0) is a left
ideal of M∗. However, this is not a right ideal of M∗. The example of this is
given below.

Example 3.1. Use the same notation as in Example 1.1. Define a map g :
M → M by g(ae1 + be2) = (a − b)e1, where a, b ∈ R. Then g ∈ GM∗(∇, 0).
Further,

(gα)(e1 + e2) = g(α(e1 + e2)) = g(e1) = e1 6= 0.

Hence gα /∈ GM∗(∇, 0). Hence GM∗(∇, 0) is not a right ideal of M∗.

Compare the following lemma with Lemma 2.2.

Lemma 3.2. Let R be a ring with identity and let M be an R-module. Then
for every fully invariant submodule N of M , GM∗(N, 0) is a two-sided ideal of
M∗
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Proof. We have already known that GM∗(N, 0) is a left ideal of M∗. Now,
let α ∈ M∗ and f ∈ GM∗(N, 0). Then (fα)(N) ⊆ f(N) = 0. Hence fα ∈
GM∗(N, 0). �

If M is a multiplication module over a commutative ring with identity, then
for every submodule N of M , GM∗(N, 0) is a two-sided ideal of M∗.

Let R be a ring. Let M be an R-module and let N be a submodule of M .
Then for each f ∈ GM∗(N, 0), Ker(f) contains N . Hence

∩f∈GM∗ (N,0)Ker(f) ⊇ N.

A submodule N of an R-module M is called to be tight closed if

∩f∈GM∗ (N,0)Ker(f) = N.

In papers [1] and [2], the name of the submodule in the definition was a
“closed submodule”, however we call it to be a tight closed submodule to avoid
confusion with the name in [10]. Moreover, in view of the following Proposition
3.4, it seems like to be reasonable for us to call the submodule a tight closed
submodule.

Proposition 3.3. Let R be a ring and let M be an R-module. Let N be a
submodule of M . If there exists an element f ∈ M∗ such that Ker(f) = N ,
then N is tight closed.

Proof. Assume that there exists an element f ∈ M∗ such that Ker(f) = N .
Then N ⊆ ∩g∈GM∗ (N,0)Ker(g) ⊆ Ker(f) = N . Hence ∩g∈GM∗ (N,0)Ker(g) = N .
Therefore N is tight closed. �

Let R be a ring and let M be an R-module. Then Ker(1M ) = 0 and
Ker(0M ) = M . Hence, by Proposition 3.3, the zero submodule of M and
M itself are tight closed and for any f ∈ M∗, Ker(f) is tight closed.

Let V be a finite-dimensional vector space over a field. Let W be any
subspace of V . Then there exists a subspace W ′ of V such that V = W ⊕W ′.
So, we can define a map f : V → V such that f |W = 0 and f |W ′ = 1W ′ .
Then f ∈ V ∗ and Ker(f) = W . Hence W is tight closed in V . Therefore every
subspace of a finite-dimensional vector space V over a field is tight closed in V .

Now, let A be an algebra over a field k. Let P be a finitely generated
projective A-module. Then there exists an A-module Q and an integer n such
that P ⊕ Q = An. So, we can define a map f : An → An such that f |P = 0
and f |Q = 1Q. Then f ∈ (An)∗ and Ker(f) = P . Hence, P is tight closed in a
free A-module. Therefore every finitely generated projective A-module is tight
closed in a free R-module.

Let R be a ring. A submodule K of an R-module M is called closed [10,
p. 548] if K has no proper essential extension in M .

Proposition 3.4. Let R be a ring and let M be an R-module such that Z(M) =
0. If N is tight closed in M , then N is closed in M .
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Proof. Suppose that N has a proper essential extension E in M . Then there
exists an element e ∈ E\N . So, 0 6= Re ⊆ E. Since N is essential in E,
Re ∩N 6= 0. There exists a non-zero element n such that n ∈ Re ∩N . There
exists an element r ∈ R such that n = re.

Now, let f be any element in GM∗(N, 0). Then n ∈ Ker(f). So, 0 = f(n) =
rf(e). Since Z(M) = 0, we have f(e) = 0. Hence e ∈ Ker(f). This shows that

e ∈ ∩f∈GM∗ (N,0)Ker(f).

Since N is tight closed in M , we have e ∈ N . This contradiction shows that N
has no proper essential extension. �

Theorem 3.5. Let R be a ring. Let N be a submodule of an R-module K. If
no proper extension of N in K is essential in K, then N is essential in K.

Proof. Suppose that N is not essential in K. Then there exists a non-zero
submodule L of K such that N ∩ L = 0. By Zorn’s lemma, we may assume
that L is maximal among such. By assumption, N ⊕ L is not essential in K.
Then there exists a non-zero submodule F of K such that (N ⊕ L) ∩ F = 0.
Hence N ∩ (L ⊕ F ) = 0. By the maximality of L, L = L ⊕ F ⊇ F , so
F = L ∩ F = 0. This is a contradiction. Hence N is essential in K. �

Corollary 3.6. Let R be a ring. Let N be a submodule of K and let K be a
submodule of M . If no proper extension of N in K is essential in K and if N
is closed in M , then N = K.

Let R be a ring and let N be a submodule of M . Let

K = ∩f∈GM∗ (N,0)Ker(f).

Then N ⊆ K. If no proper extension of N in K is essential in K and if N is
closed in M , then it follows from Corollary 3.6 that N is tight closed in M .

It is well-known [4] that every epimorphism of a multiplication module onto
itself is an automorphism. If M is a non-zero multiplication R-module whose
endomorphism ring is an integral domain, then we show that every non-zero
endomorphism of M is a monomorphism.

Lemma 3.7. Let M be a non-zero multiplication R-module whose endomor-
phism ring M∗ is an integral domain. Then

(1) For every non-zero submodule N of M , GM∗(N, 0) = 0. Hence every
non-zero endomorphism of M is a monomorphism.

(2) The only tight closed submodule of M are 0 and M itself.

Proof. (1) Suppose on the contrary that there exists a non-zero submodule N
of M such that GM∗(N, 0) 6= 0. Then there exists a non-zero f in GM∗(N, 0).
Since M is a multiplication R-module, there exist ideals I, J of R such that
N = IM and f(M) = JM . Hence we have

0 = f(N) = f(IM) = If(M) = I(JM) = (IJ)M.
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This implies that IJ ⊆ AnnR(M). Since M∗ is an integral domain, it follows
from the argument just prior to Example 1.1 that AnnR(M) is a prime ideal
of R. So, we have I ⊆ AnnR(M) or J ⊆ AnnR(M). If I ⊆ AnnR(M), then
N = IM = 0, a contradiction. Or, if J ⊆ AnnR(M), then f(M) = JM = 0
and hence f = 0, a contradiction. Therefore, for every non-zero submodule N
of M , GM∗(N, 0) = 0.

Assume that there exists an non-zero endomorphism f of M such that
Ker(f) 6= 0. Then by the previous argument we have f ∈ GM∗(Ker(f), 0) = 0.
Thus f = 0, a contradiction. Hence every non-zero endomorphism of M is a
monomorphism.

(2) Let N be a non-zero tight closed submodule of M . Then by (1),
GM∗(N, 0) = 0 and so N = ∩f∈GM∗ (N,0)Ker(f) = Ker(0) = M. �

A submodule L of an R-module M is said to be M -cyclic if L is isomorphic
to M/N for some submodule N of M .

Let L be a submodule of an R-module M . Assume that L is M -cyclic.
Then there exists a submodule N of M such that L ∼= M/N . There exists an
isomorphism g : M/N → L. Consider the composite map

f : M
π−→ M/N

g−→ L
inc−→ M.

Then f ∈ M∗ and f(M) = (incgπ)(M) = L.
Conversely, assume that there exists f ∈ M∗ such that L = f(M). Then by

the first isomorphism theorem for modules L = f(M) ∼= M/Ker(f).
This shows that L is M -cyclic if and only if there exists f ∈ M∗ such that

L = f(M).
An R-module M is said to be semi-injective if every homomorphism from an

M -cyclic submodule of M to M can be extended to M . Compare the following
lemma with [13, Lemma 2.2].

Lemma 3.8. Let R be a ring and let M be an R-module. Then M is semi-
injective if and only if for every f ∈ M∗, GM∗(Ker(f), 0) is a cyclic left ideal
of M∗ generated by f .

Proof. Let f be any element of M∗. For any g ∈ M∗,

(gf)(Ker(f)) = g(f(Ker(f))) = g(0) = 0.

Hence M∗f ⊆ GM∗(Ker(f), 0). Conversely, let h ∈ GM∗(Ker(f), 0). Then
h(Ker(f)) = 0, so Ker(f) ⊆ Ker(h). Define a map ϕ : f(M) → M by
ϕ(f(m)) = h(m), where m ∈ M . Then

f(m) = 0 ⇒ m ∈ Ker(f) ⊆ Ker(h) ⇒ h(m) = 0.
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This shows that ϕ is well-defined. Further, ϕ is an R-homomorphism and
ϕf = h. Now, assume that M is semi-injective. Consider the following diagram:

0 → f(M) inc−−−−→ M

ϕ

y
M

Then f(M) is M -cyclic, so there exists g ∈ M∗ such that ginc = ϕ. Hence

h = ϕf = gincf = gf.

Thus h ∈ M∗f . This shows that GM∗(Ker(f), 0) ⊆ M∗f . Therefore

GM∗(Ker(f), 0) = M∗f.

Assume that for every f ∈ M∗, GM∗(Ker(f), 0) is a cyclic left ideal of M∗

generated by f . Consider the following diagram:

0 → L
inc−−−−→ M

ϕ

y
M

where L is M -cyclic. Then there exists f ∈ M∗ such that L = f(M). ϕf ∈
M∗ and (ϕf)(Ker(f)) = 0, so ϕf ∈ GM∗(Ker(f), 0). By our assumption,
GM∗(Ker(f), 0) = M∗f . So, there exists g ∈ M∗ such that ϕf = gf . Hence,
for any m ∈ M ,

(ginc)(f(m)) = (gincf)(m) = (ϕf)(m) = ϕ(f(m)).

This shows that ginc = ϕ. Therefore M is semi-injective. �

Lemma 3.9. Let R be a ring. Let M be an R-module such that Z(M∗) = 0.
If f and g are elements of M∗ such that fg = 1M , then gf = 1M .

Proof. Assume fg = 1M . Then g 6= 0. Further, (gf − 1M )g = 0. Hence
gf − 1M = 0 and thus gf = 1M . �

Theorem 3.10. Let R be a ring. Let M be a multiplication R-module such
that Z(M∗) = 0. Then M is semi-injective if and only if M∗ is a division ring.

Proof. Assume that M is semi-injective. Let f be any non-zero element of M∗.
Then by Lemma 3.7 (1), Ker(f) = 0. So,

M∗f = GM∗(Ker(f), 0) = GM∗(0, 0) = M∗.

By Lemma 3.9, f is an epimorphism. Therefore M∗ is a division ring.
Conversely, assume that M∗ is a division ring. Let f be any non-zero element

of M∗. Then f is an automorphism. Hence

GM∗(Ker(f), 0) = GM∗(0, 0) = M∗ = (f).

By Lemma 3.8, M is semi-injective. �
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An R-module M is said to be self-cogenerated if every submodule of M is
tight closed. If M is a simple R-module, then by the statement just posterior
to Proposition 3.3, M is self-cogenerated.

Theorem 3.11. Let R be a commutative ring with identity. Let M be a mul-
tiplication R-module such that Z(M∗) = 0. Then the following statements are
equivalent.

(1) M is self-cogenerated;
(2) For any non-zero f ∈ M∗, f is an epimorphism;
(3) M is simple.

Proof. We have already known that M∗ is a commutative ring with identity.
Hence by our hypothesis M∗ is an integral domain.

(1) ⇒ (2). Assume (1). Let f be any non-zero element of M∗. Then
Im(f)(⊆ M) is tight closed. By Lemma 3.7 (2), Im(f) = M . Hence f is an
epimorphism. Hence (2) follows.

(2) ⇒ (3). Assume (2). By the statement just prior to Lemma 3.7, M∗ is a
field.

Now, let N be any non-zero submodule of M . Since M is a multiplication
R-module, there exists an ideal I of R such that N = IM . Then

N = IM = ϕI(M) = ϕ(I)(M).

Hence ϕ(I) 6= 0. There exists an element r ∈ I such that ϕ(r) 6= 0. ϕr = ϕ(r) 6=
0. By our assumption, ϕr has an inverse ϕ−1

r in M∗. Further, ϕ−1
r ∈ M∗. By

Lemma 1.4, N is fully invariant. So,

M = ϕ−1
r ϕr(M) ⊆ ϕ−1

r (ϕI(M)) = ϕ−1
r (N) ⊆ N.

Hence N = M . Thus, M is simple. Therefore (3) follows.
(3) ⇒ (1). Assume (3). Let N be any submodule of M . Then N = 0 or

N = M . By the statement just posterior to Proposition 3.3, 0 and M are tight
closed. Hence N is tight closed. Thus M is self-cogenerated. Therefore, (1)
follows. �

Corollary 3.12. Let R be a commutative ring with identity. Let M be a
multiplication R-module such that Z(M∗) = 0. Then the following statements
are equivalent.

(1) M is semi-injective;
(2) M∗ is a field;
(3) M is self-cogenerated;
(4) For any non-zero f ∈ M∗, f is an epimorphism;
(5) M is simple.

Proof. M∗ is a commutative ring with identity.
(5) ⇒ (2) follows from Schur’s Lemma. (2) ⇒ (5) follows from the proof

of Theorem 3.11 (2) ⇒ (3). The remainder of the proof follows from Theorem
3.10 and Theorem 3.11. �



1066 SANG CHEOL LEE

References

[1] S.-S. Bae, On submodules inducing prime ideals of endomorphism ring, East Asian
Math. J. 16 (2000), no. 1, 33–48.

[2] , Modules with prime endomorphism rings, J. Korean Math. Soc. 38 (2001), no.
5, 987–1030.

[3] C. W. Choi, Multiplication modules and endomorphisms, Math. J. Toyama Univ. 18
(1995), 1–8.

[4] C. W. Choi and P. F. Smith, On endomorphisms of multiplication modules, J. Korean
Math. Soc. 31 (1994), no. 1, 89–95.

[5] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no.
4, 755–779.

[6] E. S. Kim and C. W. Choi, On multiplication modules, Kyungpook Math. J. 32 (1992),
no. 1, 97–102.

[7] S. C. Lee, Finitely generated modules, J. Korean Math. Soc. 28 (1991), no. 1, 1–11.
[8] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge,

1989.
[9] S. Mandal, Projective Modules and Complete Intersections, Springer-Verlag, Berlin,

1997.
[10] E. Mermut, C. Santa-Clara, and P. F. Smith, Injectivity relative to closed submodules,

J. Algebra 321 (2009), no. 2, 548–557.
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