• Title/Summary/Keyword: scan chain

Search Result 68, Processing Time 0.031 seconds

A New Scan Chain Fault Simulation for Scan Chain Diagnosis

  • Chun, Sung-Hoon;Kim, Tae-Jin;Park, Eun-Sei;Kang, Sung-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.221-228
    • /
    • 2007
  • In this paper, we propose a new symbolic simulation for scan chain diagnosis to solve the diagnosis resolution problem. The proposed scan chain fault simulation, called the SF-simulation, is able to analyze the effects caused by faulty scan cells in good scan chains. A new scan chain fault simulation is performed with a modified logic ATPG pattern. In this simulation, we consider the effect of errors caused by scan shifting in the faulty scan chain. Therefore, for scan chain diagnosis, we use the faulty information in good scan chains which are not contaminated by the faults while unloading scan out responses. The SF-simulation can tighten the size of the candidate list and achieve a high diagnosis resolution by analyzing fault effects of good scan chains, which are ignored by most previous works. Experimental results demonstrate the effectiveness of the proposed method.

Boundary Scan Test Methodology for Multiple Clock Domains (다중 시스템 클럭 도메인을 고려한 경계 주사 테스트 기법에 관한 연구)

  • Jung, Sung-Won;Kim, In-Soo;Min, Hyoung-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1850-1851
    • /
    • 2007
  • To the Boundary Scan, this architecture in Scan testing of design under the control of boundary scan is used in boundary scan design to support the internal scan chain. The internal scan chain has single scan-in port and single scan-out port that multiple scan chain cannot be used. Internal scan design has multiple scan chains, those chains must be stitched to form a scan chain as this paper. We propose an efficient Boundary Scan test structure for multiple clock testing in design.

  • PDF

Test Methodology for Multiple Clocks in Systems (시스템 내에 존재하는 다중 클럭을 제어하는 테스트 기법에 관한 연구)

  • Lee, Il-Jang;Kim, In-Soo;Min, Hyoung-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1840-1841
    • /
    • 2007
  • To the Boundary Scan, this architecture in Scan testing of design under the control of boundary scan is used in boundary scan design to support the internal scan chain. The internal scan chain has single scan-in port and single scan-out port that multiple scan chain cannot be used. Internal scan design has multiple scan chains, those chains must be stitched to form a scan chain as this paper. We propose an efficient Boundary Scan test structure for multiple clock testing in design.

  • PDF

Test Methodology for Multiple Clocks Single Capture Scan Design based on JTAG IEEE1149.1 Standard (IEEE 1149.1 표준에 근거한 다중 클럭을 이용한 단일 캡쳐 스캔 설계에 적용되는 경계 주사 테스트 기법에 관한 연구)

  • Kim, In-Soo;Min, Hyoung-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.980-986
    • /
    • 2007
  • Boundary scan test structure(JTAG IEEE 1149.1 standard) that supports an internal scan chain is generally being used to test CUT(circuit under test). Since the internal scan chain can only have a single scan-in port and a single scan-out port; however, existing boundary test methods can not be used when multiple scan chains are present in CUT. Those chains must be stitched to form a single scan chain as shown in this paper. We propose an efficient boundary scan test structure that adds a circuit called Clock Group Register(CGR) for multiple clocks testing within the design of multiple scan chains. The proposed CGR has the function of grouping clocks. By adding CGR to a previously existing boundary scan design, the design is modified. This revised scan design overcomes the limitation of supporting a single scan-in port and out port, and it bolsters multiple scan-in ports and out ports. Through our experiments, the effectiveness of CGR is proved. With this, it is possible to test more complicated designs that have high density with a little effort. Furthermore, it will also benefit in designing those complicated circuits.

Scan Cell Grouping Algorithm for Low Power Design

  • Kim, In-Soo;Min, Hyoung-Bok
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.130-134
    • /
    • 2008
  • The increasing size of very large scale integration (VLSI) circuits, high transistor density, and popularity of low-power circuit and system design are making the minimization of power dissipation an important issue in VLSI design. Test Power dissipation is exceedingly high in scan based environments wherein scan chain transitions during the shift of test data further reflect into significant levels of circuit switching unnecessarily. Scan chain or cell modification lead to reduced dissipations of power. The ETC algorithm of previous work has weak points. Taking all of this into account, we therefore propose a new algorithm. Its name is RE_ETC. The proposed modifications in the scan chain consist of Exclusive-OR gate insertion and scan cell reordering, leading to significant power reductions with absolutely no area or performance penalty whatsoever. Experimental results confirm the considerable reductions in scan chain transitions. We show that modified scan cell has the improvement of test efficiency and power dissipations.

A Design of FPGA Self-test Circuit Reusing FPGA Boundary Scan Chain (FPGA 경계 스캔 체인을 재활용한 FPGA 자가 테스트 회로 설계)

  • Yoon, Hyunsik;Kang, Taegeun;Yi, Hyunbean
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.70-76
    • /
    • 2015
  • This paper introduces an FPGA self-test architecture reusing FPGA boundary scan chain as self-test circuits. An FPGA boundary scan cell is two or three times bigger than a normal boundary scan cell because it is used for configuring the function of input/output pins functions as well as testing and debugging. Accordingly, we analyze the architecture of an FPGA boundary scan cell in detail and design a set of built-in self-test (BIST) circuits in which FPGA boundary scan chain and a small amount of FPGA logic elements. By reusing FPGA boundary scan chain for self-test, we can reduce area overhead and perform a processor based on-board FPGA testing/monitoring. Experimental results show the area overhead comparison and simulation results.

Low Power Scan Chain Reordering Method with Limited Routing Congestion for Code-based Test Data Compression

  • Kim, Dooyoung;Ansari, M. Adil;Jung, Jihun;Park, Sungju
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.582-594
    • /
    • 2016
  • Various test data compression techniques have been developed to reduce the test costs of system-on-a-chips. In this paper, a scan chain reordering algorithm for code-based test data compression techniques is proposed. Scan cells within an acceptable relocation distance are ranked to reduce the number of conflicts in all test patterns and rearranged by a positioning algorithm to minimize the routing overhead. The proposed method is demonstrated on ISCAS '89 benchmark circuits with their physical layout by using a 180 nm CMOS process library. Significant improvements are observed in compression ratio and test power consumption with minor routing overhead.

A Grouped Scan Chain Reordering Method for Wire Length Minimization (배선 길이 최소화를 위한 그룹화된 스캔 체인 재구성 방법)

  • Lee, Jeong-Hwan;Im, Jong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.74-83
    • /
    • 2002
  • In order to design a huge VLSI system, the scan testing methodology by employing scan flip-flops(cells) is a popular method to test those If chips. In this case, the connection order of scan cells are not important, and hence the order can be determined in the very final stage of physical design such as cell placement. Using this fact, we propose, in this paper, a scan cell reordering method which minimizes the length of wires for scan chain connections. Especially, our reordering method is newly proposed method in the case when the scan cells are grouped according to their clock domains. In fact, the proposed reordering method reduces the wire length about 13.6% more than that by previously proposed reordering method. Our method may also be applicable for reordering scan chains that have various constraints on the scan cell locations due to the chain grouping.

Transition Repression Architecture for scan CEll (TRACE) in a BIST environment (BIST 환경에서의 천이 억제 스캔 셀 구조)

  • Kim In-Cheol;Song Dong-Sup;Kim You-Bean;Kim Ki-Cheol;Kang Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.6 s.348
    • /
    • pp.30-37
    • /
    • 2006
  • This paper presents a modified scan cell architecture to reduce the power dissipation during testing. It not only eliminates switching activities in the combinational logic during scan shifting but also reduces switching activities in the scan chain during the time. Furthermore, it limits the transitions on capture cycles. It can be made for test-per-scan BIST and employed in both single scan style and multiple scan style. Experimental results demonstrate that the proposed structure achieves the same fault coverage with lower power consumption compared to other existing BIST schemes.

A Low Power scan Design Architecture (저전력을 고려한 스캔 체인 구조 변경)

  • Min, Hyoung-Bok;Kim, In-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.458-461
    • /
    • 2005
  • Power dissipated during test application is substantially higher than power dissipated during functional operation which can decrease the reliability and lead to yield loss. This paper presents a new technique for power minimization during test application in full scan sequential circuits. This paper shows freezing of combinational logic parts during scan shift operation in test mode. The freezing technique leads to power to minimization. Significant power reduction in the scan techniques is achieved on ISCAS 89 benchmarks.