• Title/Summary/Keyword: read voltage margin

Search Result 17, Processing Time 0.027 seconds

Dynamic Reference Scheme with Improved Read Voltage Margin for Compensating Cell-position and Background-pattern Dependencies in Pure Memristor Array

  • Shin, SangHak;Byeon, Sang-Don;Song, Jeasang;Truong, Son Ngoc;Mo, Hyun-Sun;Kim, Deajeong;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.685-694
    • /
    • 2015
  • In this paper, a new dynamic reference scheme is proposed to improve the read voltage margin better than the previous static reference scheme. The proposed dynamic reference scheme can be helpful in compensating not only the background pattern dependence but also the cell position dependence. The proposed dynamic reference is verified by simulating the CMOS-memristor hybrid circuit using the practical CMOS SPICE and memristor Verilog-A models. In the simulation, the percentage read voltage margin is compared between the previous static reference scheme and the new dynamic reference scheme. Assuming that the critical percentage of read voltage margin is 5%, the memristor array size with the dynamic scheme can be larger by 60%, compared to the array size with the static one. In addition, for the array size of $64{\times}64$, the interconnect resistance in the array with the dynamic scheme can be increased by 30% than the static reference one. For the array size of $128{\times}128$, the interconnect resistance with the proposed scheme can be improved by 38% than the previous static one, allowing more margin on the variation of interconnect resistance.

FinFET SRAM Cells with Asymmetrical Bitline Access Transistors for Enhanced Read Stability

  • Salahuddin, Shairfe Muhammad;Kursun, Volkan;Jiao, Hailong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.293-302
    • /
    • 2015
  • Degraded data stability, weaker write ability, and increased leakage power consumption are the primary concerns in scaled static random-access memory (SRAM) circuits. Two new SRAM cells are proposed in this paper for achieving enhanced read data stability and lower leakage power consumption in memory circuits. The bitline access transistors are asymmetrically gate-underlapped in the proposed SRAM cells. The strengths of the asymmetric bitline access transistors are weakened during read operations and enhanced during write operations, as the direction of current flow is reversed. With the proposed hybrid asymmetric SRAM cells, the read data stability is enhanced by up to 71.6% and leakage power consumption is suppressed up to 15.5%, while displaying similar write voltage margin and maintaining identical silicon area as compared to the conventional memory cells in a 15 nm FinFET technology.

A low voltage SRAM using double boosting scheme (이중 부스팅 회로를 이용한 저전압 SRAM)

  • Jung, Sang-Hoon;Eom, Yoon-Joo;Chung, Yeon-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.647-650
    • /
    • 2005
  • In this paper, a low voltage SRAM using double boosting scheme is described. A low supply voltage deteriorates the static noise margin (SNM) and the cell read-out current. For read/write operation, a selected word line and cell VDD bias are boosted in a different level using double boosting scheme. This increases not only the static noise margin but also the cell readout current at a low supply voltage. A low voltage SRAM with 32K ${\times}$ 8bit implemented in a 0.18um CMOS technology shows an access time of 26.1ns at 0.8V supply voltage.

  • PDF

An Experimental 0.8 V 256-kbit SRAM Macro with Boosted Cell Array Scheme

  • Chung, Yeon-Bae;Shim, Sang-Won
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.457-462
    • /
    • 2007
  • This work presents a low-voltage static random access memory (SRAM) technique based on a dual-boosted cell array. For each read/write cycle, the wordline and cell power node of selected SRAM cells are boosted into two different voltage levels. This technique enhances the read static noise margin to a sufficient level without an increase in cell size. It also improves the SRAM circuit speed due to an increase in the cell read-out current. A 0.18 ${\mu}m$ CMOS 256-kbit SRAM macro is fabricated with the proposed technique, which demonstrates 0.8 V operation with 50 MHz while consuming 65 ${\mu}W$/MHz. It also demonstrates an 87% bit error rate reduction while operating with a 43% higher clock frequency compared with that of conventional SRAM.

  • PDF

Influence of Parasitic Resistances and Transistor Asymmetries on Read Operation of High-Resistor SRAM Cells (기생저항 및 트랜지스터 비대칭이 고저항 SRAM 셀의 읽기동작에 미치는 영향)

  • Choi, Jin-Young;Choi, Won-Sang
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.11-18
    • /
    • 1997
  • By utilizing the technique to monitor the DC cell node voltages through circuit simulation, degradation of the static read operating margin In high load-resistor SRAM cell was examined, which is caused by parasitic resistances and transistor asymmetries in this cell structure. By selectively adding the parasitic resistances to an ideal cell, the influence of each parasitic resistance on the operating margin was examined, and then the cases with parasitic resistances in pairs were also examined. By selectively changing the channel width of cell transistors to generate cell asymmetry, the influence of cell asymmetry on the operating margin was also examined. Analyses on the operating margins were performed by comparing the supply voltage values at which two cell node voltages merge to a single value and the differences of cell node voltages at VDD=5V in the simulated node voltage characteristics. By determining the parasitic resistances and the transistor asymmetries which give the most serious effect on the static read-operation of SRAM cell from this analysis based on circuit simulated, a criteria was provided, which can be referred in the design of new SRAM cell structures.

  • PDF

Design of an eFuse OTP Memory of 8bits Based on a Generic Process ($0.18{\mu}m$ Generic 공정 기반의 8비트 eFuse OTP Memory 설계)

  • Jang, Ji-Hye;Kim, Kwang-Il;Jeon, Hwang-Gon;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.687-691
    • /
    • 2011
  • In this paper, we design an 8-bit eSuse OTP (one-time programmable) memory in consideration of EM (electro-migration) and eFuse resistance variation based on a $0.18{\mu}m$ generic process, which is used for an analog trimming application. First, we use an external program voltage to increase the program power applied an eFuse. Secondly, we apply a scheme of precharging BL to VSS prior to RWL (read word line) activation and optimize read NMOS transistors to reduce the read current flowing through a non-programmed cell. Thirdly, we design a sensing margin test circuit with a variable pull-up load out of consideration for the eFuse resistance variation of a programmed eFuse. Finally, we increase program yield of eFuse OTP memory by splitting the length of an eFuse link.

  • PDF

A Study on the Stability of High Density SRAM Cell) (고집적 SRAM Cell의 동작안정화에 관한 연구)

  • Choi, Jin-Young
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.71-78
    • /
    • 1995
  • Based on the popular 4-transistor SRAM cell, an analytical expression of the minimum cell ratio was derived by modeling the static read operation. By analyzing the relatively simple expression for the minimum cell ratio, which was derived assuming the ideal transistor characteristics, effects of the changes in supply voltage and process parameters on the minimum cell ratio was predicted, and the minimum power supply voltage for read operation was determined. The results were verified by simulations utilizing the suggested simulation method, which is suitable for monitoring the lower limit of supply voltage for proper cell operation. From the analysis, it was shown that the worst condition for cell operation is low temperature and low supply voltage, and that the operation margin can be effectively improved by reducing the threshold voltage of the cell transistors.

  • PDF

A 0.8-V Static RAM Macro Design utilizing Dual-Boosted Cell Bias Technique (이중 승압 셀 바이어스 기법을 이용한 0.8-V Static RAM Macro 설계)

  • Shim, Sang-Won;Jung, Sang-Hoon;Chung, Yeon-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • In this paper, an ultra low voltage SRAM design method based on dual-boosted cell bias technique is described. For each read/write cycle, the wordline and cell power node of the selected SRAM cells are boosted into two different voltage levels. This enhances SNM(Static Noise Margin) to a sufficient amount without an increase of the cell size, even at sub 1-V supply voltage. It also improves the SRAM circuit speed owing to increase of the cell read-out current. The proposed design technique has been demonstrated through 0.8-V, 32K-byte SRAM macro design in a $0.18-{\mu}m$ CMOS technology. Compared to the conventional cell bias technique, the simulation confirms an 135 % enhancement of the cell SNM and a 31 % faster speed at 0.8-V supply voltage. This prototype chip shows an access time of 23 ns and a power dissipation of $125\;{\mu}W/Hz$.

Sense Amplifier Design for A NOR Type Non-Volatile Memory

  • Yang, Yil-Suk;Yu, Byoung-Gon;Roh, Tae-Moon;Koo, Jin-Gun;Kim, Jongdae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1555-1557
    • /
    • 2002
  • We have investigated the precharge type sense amplifier, it is suitable fur voltage sensing in a NOR type single transistor ferroelectric field effect transistor (1T FeFET) memory read operation. The proposed precharge type sense amplifier senses the bit line voltage of 1T FeFET memory. Therefore, the reference celt is not necessary compared to current sensing in 1T FeFET memory, The high noise margin is wider than the low noise margin in the first inverter because requires tile output of precharge type sense amplifier high sensitivity to transition of input signal. The precharge type sense amplifier has very simple structure and can sense the bit line signal of the 1T FeFET memory cell at low voltage.

  • PDF

A New Pre-Emphasis Driver Circuit for a Packet-Based DRAM (패킷 방식의 DRAM에 적용하기 위한 새로운 강조 구동회로)

  • Kim, Jun-Bae;Kwon, Oh-Kyong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.176-181
    • /
    • 2001
  • As the data rate between chip-to-chip gets high, the skin effect and load of pins deteriorate noise margin. With these, noise disturbances on the bus channel make it difficult for receiver circuits to read the data signal. This paper has proposed a new pre-emphasis driver circuit which achieves wide noise margin by enlarging the signal voltage range during data transition. When data is transferred from a memory chip to a controller, the output boltage of the driver circuit reaches the final values through the intermediate voltage level. The proposed driver supplies more currents applicable to a packet-based memory system, because it needs no additional control signal and realizes very small area. The circuit has been designed in a 0.18 ${\mu}m$ CMOS process, and HSPICE simulation results have shown that the data rate of 1.32 Gbps be achieved. Due to its result, the proposed driver can achieved higher speed than conventional driver by 10%.

  • PDF