• Title/Summary/Keyword: r-Noetherian ring

Search Result 115, Processing Time 0.02 seconds

THE DIMENSION GRAPH FOR MODULES OVER COMMUTATIVE RINGS

  • Shiroyeh Payrovi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.733-740
    • /
    • 2023
  • Let R be a commutative ring and M be an R-module. The dimension graph of M, denoted by DG(M), is a simple undirected graph whose vertex set is Z(M) ⧵ Ann(M) and two distinct vertices x and y are adjacent if and only if dim M/(x, y)M = min{dim M/xM, dim M/yM}. It is shown that DG(M) is a disconnected graph if and only if (i) Ass(M) = {𝖕, 𝖖}, Z(M) = 𝖕 ∪ 𝖖 and Ann(M) = 𝖕 ∩ 𝖖. (ii) dim M = dim R/𝖕 = dim R/𝖖. (iii) dim M/xM = dim M for all x ∈ Z(M) ⧵ Ann(M). Furthermore, it is shown that diam(DG(M)) ≤ 2 and gr(DG(M)) = 3, whenever M is Noetherian with |Z(M) ⧵ Ann(M)| ≥ 3 and DG(M) is a connected graph.

ON 𝑺-CLOSED SUBMODULES

  • Durgun, Yilmaz;Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1299
    • /
    • 2017
  • A submodule N of a module M is called ${\mathcal{S}}$-closed (in M) if M/N is nonsingular. It is well-known that the class Closed of short exact sequences determined by closed submodules is a proper class in the sense of Buchsbaum. However, the class $\mathcal{S}-Closed$ of short exact sequences determined by $\mathcal{S}$-closed submodules need not be a proper class. In the first part of the paper, we describe the smallest proper class ${\langle}\mathcal{S-Closed}{\rangle}$ containing $\mathcal{S-Closed}$ in terms of $\mathcal{S}$-closed submodules. We show that this class coincides with the proper classes projectively generated by Goldie torsion modules and coprojectively generated by nonsingular modules. Moreover, for a right nonsingular ring R, it coincides with the proper class generated by neat submodules if and only if R is a right SI-ring. In abelian groups, the elements of this class are exactly torsionsplitting. In the second part, coprojective modules of this class which we call ec-flat modules are also investigated. We prove that injective modules are ec-flat if and only if each injective hull of a Goldie torsion module is projective if and only if every Goldie torsion module embeds in a projective module. For a left Noetherian right nonsingular ring R of which the identity element is a sum of orthogonal primitive idempotents, we prove that the class ${\langle}\mathcal{S-Closed}{\rangle}$ coincides with the class of pure-exact sequences of modules if and only if R is a two-sided hereditary, two-sided $\mathcal{CS}$-ring and every singular right module is a direct sum of finitely presented modules.

GALOIS GROUPS OF MODULES AND INVERSE POLYNOMIAL MODULES

  • Park, Sang-Won;Jeong, Jin-Sun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.225-231
    • /
    • 2007
  • Given an injective envelope E of a left R-module M, there is an associative Galois group Gal$({\phi})$. Let R be a left noetherian ring and E be an injective envelope of M, then there is an injective envelope $E[x^{-1}]$ of an inverse polynomial module $M[x^{-1}]$ as a left R[x]-module and we can define an associative Galois group Gal$({\phi}[x^{-1}])$. In this paper we describe the relations between Gal$({\phi})$ and Gal$({\phi}[x^{-1}])$. Then we extend the Galois group of inverse polynomial module and can get Gal$({\phi}[x^{-s}])$, where S is a submonoid of $\mathbb{N}$ (the set of all natural numbers).

GALOIS GROUP OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Park, Sang-Won;Jeong, Jin-Sun
    • East Asian mathematical journal
    • /
    • v.24 no.2
    • /
    • pp.139-144
    • /
    • 2008
  • Given an injective envelope E of a left R-module M, there is an associative Galois group Gal($\phi$). Let R be a left noetherian ring and E be an injective envelope of M, then there is an injective envelope E[$x^{-1}$] of an inverse polynomial module M[$x^{-1}$] as a left R[x]-module and we can define an associative Galois group Gal(${\phi}[x^{-1}]$). In this paper we extend the Galois group of inverse polynomial module and can get Gal(${\phi}[x^{-s}]$), where S is a submonoid of $\mathds{N}$ (the set of all natural numbers).

  • PDF

Restrictions on the Entries of the Maps in Free Resolutions and $SC_r$-condition

  • Lee, Kisuk
    • Journal of Integrative Natural Science
    • /
    • v.4 no.4
    • /
    • pp.278-281
    • /
    • 2011
  • We discuss an application of 'restrictions on the entries of the maps in the minimal free resolution' and '$SC_r$-condition of modules', and give an alternative proof of the following result of Foxby: Let M be a finitely generated module of dimension over a Noetherian local ring (A,m). Suppose that $\hat{A}$ has no embedded primes. If A is not Gorenstein, then ${\mu}_i(m,A){\geq}2$ for all i ${\geq}$ dimA.

A Generalization of Formal Local Cohomology Modules

  • Rezaei, Shahram
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.737-743
    • /
    • 2016
  • Let a and b be two ideals of a commutative Noetherian ring R, M a finitely generated R-module and i an integer. In this paper we study formal local cohomology modules with respect to a pair of ideals. We denote the i-th a-formal local cohomology module M with respect to b by ${\mathfrak{F}}^i_{a,b}(M)$. We show that if ${\mathfrak{F}}^i_{a,b}(M)$ is artinian, then $a{\subseteq}{\sqrt{(0:{\mathfrak{F}}^i_{a,b}(M))$. Also, we show that ${\mathfrak{F}}^{\text{dim }M}_{a,b}(M)$ is artinian and we determine the set $Att_R\;{\mathfrak{F}}^{\text{dim }M}_{a,b}(M)$.

COLOCALIZATION OF GENERALIZED LOCAL HOMOLOGY MODULES

  • Hatamkhani, Marziyeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.917-928
    • /
    • 2022
  • Let R be a commutative Noetherian ring and I an ideal of R. In this paper, we study colocalization of generalized local homology modules. We intend to establish a dual case of local-global principle for the finiteness of generalized local cohomology modules. Let M be a finitely generated R-module and N a representable R-module. We introduce the notions of the representation dimension rI(M, N) and artinianness dimension aI(M, N) of M, N with respect to I by rI(M, N) = inf{i ∈ ℕ0 : HIi(M, N) is not representable} and aI(M, N) = inf{i ∈ ℕ0 : HIi(M, N) is not artinian} and we show that aI(M, N) = rI(M, N) = inf{rIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)} ≥ inf{aIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)}. Also, in the case where R is semi-local and N a semi discrete linearly compact R-module such that N/∩t>0ItN is artinian we prove that inf{i : HIi(M, N) is not minimax}=inf{rIR𝔭 (M𝔭,𝔭N) : 𝔭 ∈ Spec(R)\Max(R)}.

ON FINITENESS PROPERTIES ON ASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES AND EXT-MODULES

  • Chu, Lizhong;Wang, Xian
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.239-250
    • /
    • 2014
  • Let R be a commutative Noetherian (not necessarily local) ring, I an ideal of R and M a finitely generated R-module. In this paper, by computing the local cohomology modules and Ext-modules via the injective resolution of M, we proved that, if for an integer t > 0, dim$_RH_I^i(M){\leq}k$ for ${\forall}i$ < t, then $$\displaystyle\bigcup_{i=0}^{j}(Ass_RH_I^i(M))_{{\geq}k}=\displaystyle\bigcup_{i=0}^{j}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$$ for ${\forall}j{\leq}t$ and ${\forall}n$ >0. This shows that${\bigcup}_{n>0}(Ass_RExt_R^i(R/I^n,M))_{{\geq}k}$ is a finite set for ${\forall}i{\leq}t$. Also, we prove that $\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1^{n_1},x_2^{n_2},{\ldots},x_i^{n_i})M)_{{\geq}k}=\displaystyle\bigcup_{i=1}^{r}(Ass_RM/(x_1,x_2,{\ldots},x_i)M)_{{\geq}k}$ if $x_1,x_2,{\ldots},x_r$ is M-sequences in dimension > k and $n_1,n_2,{\ldots},n_r$ are some positive integers. Here, for a subset T of Spec(R), set $T_{{\geq}i}=\{{p{\in}T{\mid}dimR/p{\geq}i}\}$.

ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

  • Shiroyeh Payrovi;Yasaman Sadatrasul
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.39-46
    • /
    • 2023
  • Let R be a commutative ring, M be a Noetherian R-module, and N a 2-absorbing submodule of M such that r(N :R M) = 𝖕 is a prime ideal of R. The main result of the paper states that if N = Q1 ∩ ⋯ ∩ Qn with r(Qi :R M) = 𝖕i, for i = 1, . . . , n, is a minimal primary decomposition of N, then the following statements are true. (i) 𝖕 = 𝖕k for some 1 ≤ k ≤ n. (ii) For each j = 1, . . . , n there exists mj ∈ M such that 𝖕j = (N :R mj). (iii) For each i, j = 1, . . . , n either 𝖕i ⊆ 𝖕j or 𝖕j ⊆ 𝖕i. Let ΓE(M) denote the zero-divisor graph of equivalence classes of zero divisors of M. It is shown that {Q1∩ ⋯ ∩Qn-1, Q1∩ ⋯ ∩Qn-2, . . . , Q1} is an independent subset of V (ΓE(M)), whenever the zero submodule of M is a 2-absorbing submodule and Q1 ∩ ⋯ ∩ Qn = 0 is its minimal primary decomposition. Furthermore, it is proved that ΓE(M)[(0 :R M)], the induced subgraph of ΓE(M) by (0 :R M), is complete.

COFINITENESS OF GENERAL LOCAL COHOMOLOGY MODULES FOR SMALL DIMENSIONS

  • Aghapournahr, Moharram;Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1341-1352
    • /
    • 2016
  • Let R be a commutative Noetherian ring, ${\Phi}$ a system of ideals of R and $I{\in}{\Phi}$. In this paper among other things we prove that if M is finitely generated and $t{\in}\mathbb{N}$ such that the R-module $H^i_{\Phi}(M)$ is $FD_{{\leq}1}$ (or weakly Laskerian) for all i < t, then $H^i_{\Phi}(M)$ is ${\Phi}$-cofinite for all i < t and for any $FD_{{\leq}0}$ (or minimax) submodule N of $H^t_{\Phi}(M)$, the R-modules $Hom_R(R/I,H^t_{\Phi}(M)/N)$ and $Ext^1_R(R/I,H^t_{\Phi}(M)/N)$ are finitely generated. Also it is shown that if cd I = 1 or $dimM/IM{\leq}1$ (e.g., $dim\;R/I{\leq}1$) for all $I{\in}{\Phi}$, then the local cohomology module $H^i_{\Phi}(M)$ is ${\Phi}$-cofinite for all $i{\geq}0$. These generalize the main results of Aghapournahr and Bahmanpour [2], Bahmanpour and Naghipour [6, 7]. Also we study cominimaxness and weakly cofiniteness of local cohomology modules with respect to a system of ideals.