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ON S-CLOSED SUBMODULES

Yılmaz Durğun and Salahattin Özdemir

Abstract. A submodule N of a module M is called S-closed (in M)
if M/N is nonsingular. It is well-known that the class Closed of short
exact sequences determined by closed submodules is a proper class in
the sense of Buchsbaum. However, the class S − Closed of short exact
sequences determined by S-closed submodules need not be a proper class.
In the first part of the paper, we describe the smallest proper class 〈S −
Closed〉 containing S −Closed in terms of S-closed submodules. We show
that this class coincides with the proper classes projectively generated
by Goldie torsion modules and coprojectively generated by nonsingular
modules. Moreover, for a right nonsingular ring R, it coincides with the
proper class generated by neat submodules if and only if R is a right
SI-ring. In abelian groups, the elements of this class are exactly torsion-
splitting. In the second part, coprojective modules of this class which
we call ec-flat modules are also investigated. We prove that injective
modules are ec-flat if and only if each injective hull of a Goldie torsion
module is projective if and only if every Goldie torsion module embeds
in a projective module. For a left Noetherian right nonsingular ring R of
which the identity element is a sum of orthogonal primitive idempotents,
we prove that the class 〈S −Closed〉 coincides with the class of pure-exact
sequences of modules if and only if R is a two-sided hereditary, two-
sided CS-ring and every singular right module is a direct sum of finitely
presented modules.

1. Introduction

Closed submodules have offered rich topics of research, especially in the
last 20 years, due to their important role played in ring and module theory
and relative homological algebra. In parallel, several generalizations of closed
submodules have been considered. For instance, neat submodules (see [20]),
coneat submodules (see [10]) and S-closed submodules (see [11]) are some of
these generalizations. The purpose of the present paper is to study S-closed
submodules which have been studied recently in [1, 27, 28].

All rings considered in this paper will be associative with an identity ele-
ment. Unless otherwise stated R denotes an arbitrary ring and all modules

Received July 5, 2016; Revised September 25, 2016.
2010 Mathematics Subject Classification. 16D40, 18G25.
Key words and phrases. S-closed submodules, nonsingular modules, ec-flat modules.

c©2017 Korean Mathematical Society

1281
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will be right unitary R-modules. Let R be a ring and M an R-module. De-
note by N ≤ M that N is a submodule of M or M is an extension of N .
The injective hull of M will be denoted by E(M). By M+ we shall denote
the character module HomZ(M,Q/Z) of M . A submodule N of M is es-

sential (or large) in M if for every nonzero submodule K ≤ M , we have
N ∩ K 6= 0. N is said to be closed in M if N has no proper essential ex-
tension in M . We also say in this case that N is a closed submodule. The
notion of nonsingularity was introduced in [11]. The singular submodule of M
is Z(M) = {x ∈ M |xI = 0 for some essential right ideal I of R}; this takes
the place of the torsion submodule in general setting. The module M is called
nonsingular if Z(M) = 0, and singular if M = Z(M), while the right singular

ideal of R is Zr(R) = Z(RR). The ring R is said to be right nonsingular if it is
nonsingular as a right R-module. The second singular (or Goldie torsion) sub-
module Z2(M) of M is defined by the equality Z2(M)/Z(M) = Z(M/Z(M)).
A module M is called Goldie torsion if Z2(M) = M .

As a generalization of closed submodules, Goodearl introduced S-closed sub-
modules in [11]. A submodule N ≤ M is called S-closed if M/N is nonsingular.
Every S-closed submodule is closed, and every closed submodule of a nonsin-
gular module is S-closed by [23, Lemma 2.3]. It is well-known that the class
Closed of short exact sequences determined by closed submodules is a proper
class in the sense of Buchsbaum (see [5, 10.5]). However, the class S−Closed of
short exact sequences determined by S-closed submodules need not be a proper
class (see Example 3.1). So we consider the smallest proper class 〈S − Closed〉
containing S−Closed. In Section 3, we describe the class 〈S −Closed〉 in terms
of S-closed submodules. We show that the class 〈S − Closed〉 coincides with
the proper classes projectively generated by Goldie torsion modules and copro-
jectively generated by nonsingular modules. Moreover, for a right nonsingular
ring R, we prove that 〈S − Closed〉 coincides with the proper class generated
by neat submodules if and only if R is a right SI-ring (i.e., every singular right
R-module is injective). In abelian groups, the elements of this class are exactly
torsion-splitting. In Section 4, we investigate 〈S − Closed〉-coprojective mod-
ules which we shall call ec-flat modules. We prove that injective modules are
ec-flat if and only if each injective hull of a Goldie torsion module is projective
if and only if every Goldie torsion module embeds in a projective module. We
also prove that R is a right nonsingular ring if and only if every principal right
ideal of R is ec-flat if and only if every ec-flat R-module is nonsingular if and
only if every submodule of an ec-flat R-module is ec-flat. For a right perfect
ring R, we show that every element in the class 〈S − Closed〉 splits if and
only if every finitely generated nonsingular R-module is projective. We prove
that a commutative artinian ring R is a QF -ring if and only if every injective
R-module is ec-flat, where R is called a quasi-Frobenius ring (or QF-ring for
short) if it is right Noetherian and right self-injective. We show that every
short exact sequence in 〈S − Closed〉 is pure if and only if every ec-flat module
is flat. Finally, for a left Noetherian, right nonsingular ring R of which the
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identity element is a sum of orthogonal primitive idempotents, we prove that
the class 〈S − Closed〉 and the class Pure of all pure-exact sequences coincide
if and only if R is a two-sided hereditary, two-sided CS-ring and every singular
right module is a direct sum of finitely presented modules. We refer the reader
to [5, 12, 24] for the undefined notions used in the text.

2. Proper class

Throughout this section, let P be a class of short exact sequences of modules
and module homomorphisms. If a short exact sequence

E : 0 // A
f

// B
g

// C // 0

belongs to P , then f is said to be a P-monomorphism and g is said to be
a P-epimorphism. A short exact sequence E is determined by each of the
monomorphisms f and the epimorphisms g uniquely up to isomorphism.

Definition 2.1. The class P is said to be proper (in the sense of Buchsbaum)
if it satisfies the following conditions (see, for example, [5]):

P-1) If a short exact sequence E is in P , then P contains every short exact
sequence isomorphic to E.

P-2) P contains all splitting short exact sequences.
P-3) The composite of two P-monomorphisms (respectively P-epimorph-

isms) is a P-monomorphism (respectively P-epimorphism) if this com-
posite is defined.

P-4) If g and f are monomorphisms and g ◦ f is a P-monomorphism, then
f is a P-monomorphism. If g and f are epimorphisms and g ◦ f is a
P-epimorphism, then g is a P-epimorphism.

The class Split of all splitting short exact sequences of modules is the small-
est proper class and the class Abs of all short exact sequences of modules is the
largest proper class. Another important example is Pure, the class of all pure
short exact sequences in the sense of Cohn [6], that is, the class of all short
exact sequences E such that E⊗M is exact for every left R-module M . We will
identify a class of isomorphic short exact sequences with any of its elements.

The intersection of all proper classes containing the class P is clearly a proper
class, denoted by 〈P〉. The class 〈P〉 is the smallest proper class containing P ,
called the proper class generated by P . A moduleM is called P-projective if it is
projective with respect to all short exact sequences in P , that is, Hom(M,E) is
exact for every E in P . Notice that the proper class 〈P〉 has the same projective
modules as P (see [18]). A module M is called P-coprojective if every short
exact sequence of the form 0 → A → B → M → 0 is in P . For a given class M
of modules, denote by k(M) the smallest proper class for which each M ∈ M

is k(M)-coprojective; it is called the proper class coprojectively generated by
M. The largest proper class P for which each M ∈ M is P-projective is called
the proper class projectively generated by M. For a homomorphism f : A → B
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and a module C, the induced homomorphisms Ext1R(1C , f) : Ext1R(C,A) →
Ext1R(C,B) and Ext1R(f, 1C) : Ext1R(B,C) → Ext1R(A,C) will denoted by f∗
and f∗, respectively.

Throughout by a short exact sequence we mean a short exact sequence of
modules and module homomorphisms. See [24] and [14] for further details on
proper classes.

3. Proper classes relative to Goldie torsion theory

The torsion theory generated by all singular modules is called the Goldie

torsion theory. Its torsion class consists of the Goldie torsion modules and its
torsion free class consists of the nonsingular modules. If R is right nonsingular,
then the Goldie torsion modules and the singular modules coincide. The torsion
class of the Goldie torsion theory is closed under homomorphic images, direct
sums, extensions, submodules and injective hulls, while the torsion free class is
closed under submodules, direct products, extensions and injective hulls.

It is known that S-closed submodules are always closed. However, closed
submodules need not be S-closed in general. For example, the zero submodule
0 is closed in any module M , but it is S-closed in M only if M is nonsingular.

Denote by S − Closed the class of all short exact sequences 0 → A
f
→ B →

C → 0 such that Im f is S-closed in B. In contrast to the class Closed of short
exact sequences determined by closed submodules, the class S − Closed need
not be a proper class in general as the following example shows.

Example 3.1. Let M be a module which is not nonsingular. Then the short
exact sequence E : 0 → 0 → M → M → 0 splits, but E is not S-closed exact
sequence since M/0 ∼= M is not nonsingular. Thus, by the condition P − 2) of
being a proper class, we see that S − Closed is not a proper class.

Note that the class S−Closed satisfies all conditions in Definition 2.1 except
P − 2) in general. Now we give some conditions for the class S − Closed to be
proper.

Proposition 3.2. For a ring R, the following statements are equivalent.

(1) S − Closed is a proper class.

(2) Every module is nonsingular.

(3) Abs = S − Closed
(4) R is semisimple.

Proof. (1) ⇒ (2) For a module M , the short exact sequence 0 → 0 → M →
M → 0 splits, so by assumption it is S-closed exact, that is, the zero submodule
0 is S-closed in M . We conclude that M is nonsingular.

(2) ⇒ (3), (3) ⇒ (1) and (4) ⇒ (2) are clear.
(2) ⇒ (4) For an essential right ideal I of R, R/I is nonsingular by assump-

tion, and so I = R which implies that R is a semisimple ring. �
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Kepka introduced in [14] certain conditions on a class of monomorphisms
which are needed to study new kind of proper classes. Since in an abelian cat-
egory any monomorphism induces an epimorphism and a short exact sequence,
these conditions lead to the new type of proper classes of such sequences. This
study motivates us to introduce extended S-closed submodules. A submod-
ule A of a module B is called extended S-closed in B if there is a submodule
S in B such that S ∩ A = 0 and B/(S ⊕ A) is nonsingular. S-closed sub-
modules are extended S-closed, but the converse is not true in general (see
Example 3.1). Denote by S − Closed the class of all short exact sequences

0 → A
f
→ B → C → 0 such that Im f is extended S-closed in B. It is known

that the class S − Closed forms a proper class (see [14, Theorem 2.1]). Now
we show that S − Closed is the smallest proper class generated by the class
S − Closed.

Proposition 3.3. 〈S − Closed〉 = S − Closed. In particular, S − Closed ⊆
Closed.

Proof. Since 〈S − Closed〉 is the smallest proper class containing S−Closed and
S−Closed ⊆ S−Closed, we have 〈S − Closed〉 ⊆ S−Closed. For the converse,

let 0 → A
f
→ B → C → 0 be an extended S-closed exact sequence. Then there

is a submodule S in B such that S ∩ A = 0 and B/(S ⊕ A) is nonsingular.
Now, in the following commutative diagram, α is a Split-monomorphism, and
so an 〈S − Closed〉-monomorphism by P − 2) of Definition 2.1. Moreover, β
is an 〈S − Closed〉-monomorphism by the nonsingularity of B/(S ⊕ A). Thus
f = βα is also an 〈S − Closed〉-monomorphism by P − 3) of Definition 2.1.
For the particular case, since B/(S ⊕ A) is nonsingular, we conclude by [23,
Lemma 2.3] that β is a Closed-monomorphism. Hence f = βα is also a Closed-
monomorphism.

0

��

0

��

0 // A
α

// S ⊕A //

β

��

(S ⊕A)/A //

��

0

0 // A
f

// B //

��

C //

��

0

B/(S ⊕A)

��

B/(S ⊕A)

��

0 0

�
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Proposition 3.4. A submodule A of a module B is extended S-closed in B if

and only if Hom(T,B) → Hom(T,B/A) → 0 is exact for each Goldie torsion

module T .

Proof. (⇒) Let E : 0 → A →֒ B → B/A → 0 be an extended S-closed exact
sequence and let f : T → B/A be a homomorphism with T a Goldie torsion
module. Then the sequence f∗(E) : 0 → A → X → T → 0 is extended S-
closed by the properties of a proper class. So there is a submodule S ≤ X such
that S ∩ A = 0 and X/(S ⊕ A) is nonsingular. But X/(S ⊕ A) is isomorphic
to a homomorphic image of a Goldie torsion module T , so X = S ⊕ A. Now
consider the following diagram:

0

��

0

��

f∗(E) : 0 // A
α

// X
π

//

β

��

T //

f

��
ww♣
♣

♣

♣

♣

♣

♣

♣
0

E : 0 // A
θ

// B
γ

//

��

B/A //

g

��

0

B/(S ⊕A)

��

B/(S ⊕A)

��

0 0

Since f∗(E) splits, there is a homomorphism π−1 : T → X such that ππ−1 = id.
So we find a homomorphism βπ−1 : T → B such that γ(βπ−1) = f as desired.

(⇐) Assume that Z2(B/A) = T/A for some submodule T ≤ B. Since
T/A is a Goldie torsion module, it is projective relatively to the short exact
sequence E : 0 → A →֒ B → B/A → 0 by assumption. So the inclusion
map T/A →֒ B/A can be extended to h : T/A → B with h necessarily monic.
Therefore there exists a submodule S ∼= T/A of B such that S ∩ A = 0, and
B/(S ⊕ A) ∼= B/T ∼= (B/A)/(T/A) is nonsingular. Thus A is an extended
S-closed submodule of B. �

Proposition 3.5. Let F be the class of all nonsingular modules. Then k(F) =
S − Closed.

Proof. Since all nonsingular modules are S − Closed-coprojective, we see that

k(F) ⊆ S−Closed. For the converse, let 0 → A
f
→ B → C → 0 be an extended

S-closed exact sequence. Then there is a submodule S ≤ B such that S∩A = 0
and B/(S ⊕A) is nonsingular. In the diagram in the proof of Proposition 3.3,
since B/(S ⊕ A) is nonsingular, β is a k(F)-monomorphism. Thus f = βα is

also a k(F)-monomorphism. �
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We collect all results obtained so far in the following corollary.

Corollary 3.6. Let E : 0 → A → B → M → 0 be a short exact sequence.

Then the following statements are equivalent.

(1) E is extended S-closed.
(2) HomR(T,E) is exact for each Goldie torsion module T .
(3) E ∈ k(F), where F is the class of all nonsingular modules.

(4) The sequence 0 → Z2(A) → Z2(B) → Z2(M) → 0 is splitting.

Proof. (1) ⇔ (2) by Proposition 3.4, (1) ⇔ (3) by Proposition 3.5 and (2) ⇔
(4) by [26, Theorem 3.4]. �

Remark 3.7. In case R = Z, it is known that an R-module A is singular if
and only if it is a torsion group, and that A is nonsingular if and only if it is
a torsion-free group. A short exact sequence E : 0 → A → B → C → 0 of
abelian groups is called torsion-splitting if E splits for the injection ι : T → C,
where T = T (C) is the torsion part of C. A short exact sequence of abelian
groups is torsion-splitting exactly if the torsion groups are projective relative
to it (see [9, Exercises 58.2]). So, a short exact sequence of abelian groups is
torsion-splitting exactly if it is an extended S-closed exact by Corollary 3.6.

Proposition 3.8. Every nonsingular module is projective if and only if every

extended S-closed exact sequence splits, that is, Split = S − Closed.

Proof. (⇒) Let 0 → A
f
→ B → C → 0 be an extended S-closed short exact

sequence. Then there is a submodule S ≤ B such that S∩A = 0 and B/(S⊕A)
is nonsingular. Now, consider the diagram in the proof of Proposition 3.3. Since
B/(S⊕A) is projective by assumption, α and β are Split-monomorphisms, and
so f = βα is also a Split-monomorphism.

(⇐) Let C be a nonsingular module. Let us consider the short exact sequence
E : 0 → K → P → C → 0 with P projective. Since C ∼= P/K is nonsingular,
E is an S-closed, and so an extended S-closed short exact sequence. Then E
splits by assumption, and so C is projective as a direct summand of P . �

Neat subgroups of abelian groups were introduced by Honda [13] in order to
characterize closed subgroups. A subgroup A of an abelian group B is called
neat in B if Ap = A ∩Bp for every prime p. It is known that a subgroup A of
an abelian group B is closed if and only if it is neat if and only if the sequence
Hom(S,B) → Hom(S,B/A) → 0 is exact for each simple abelian group S.
Neatness over arbitrary rings are considered by Renault [20]. A submodule A of
a module B is called neat in B if the sequence Hom(S,B) → Hom(S,B/A) → 0
is exact for each simple module S. Closed submodules are neat, but the converse
is true exactly for C-rings, where R is called a C-ring if the socle of R/I is
nonzero for every proper essential right ideal I of R. So, in particular, extended
S-closed submodules are neat. For the converse, we have the following result.

A ring R is a right SC-ring if every singular right R-module is semisimple
(see [21, Theorem 3.2]).
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Lemma 3.9. Let R be a ring. Neat submodules are extended S-closed if and

only if each Goldie torsion module T can be represented as T = S ⊕ P , where

S is a semisimple module and P is a projective module. In particular, R is a

right SC-ring.

Proof. (⇒) Let T be Goldie torsion module, and let E : 0 → A → B →
B/A → 0 be a neat exact sequence. Then E is an extended S-closed sequence
by assumption. So, the sequence Hom(T,B) → Hom(T,B/A) → 0 is exact
by Proposition 3.4, that is, T is neat projective. Thus, T is a direct sum of a
projective module and a semisimple module by [10, Theorem 2.6].

(⇐) By assumption, we see that every Goldie torsion module T is neat-
projective. Then every neat exact sequence is extended S-closed by Proposition
3.4.

For the particular case, let Z be a singular right module. Since Z is a Goldie
torsion module, it follows by assumption that Z = S⊕P with S semisimple and
P projective. Moreover, since singular modules are closed under submodules
and singular projective modules are zero, we have P = 0. Thus Z is semisimple,
and hence R is a right SC-ring. �

Since a nonsingular SC-ring is an SI-ring, we have the following result.

Corollary 3.10. Let R be a right nonsingular ring. Then the following state-

ments are equivalent.

(1) Neat submodules are extended S-closed.
(2) Closed submodules are extended S-closed and R is right C-ring.

(3) R is a right SI-ring.

4. ec-flat modules

A module M is called flat if the short exact sequence 0 → A → B → M → 0
is pure exact for any modules A and B (see, for example, [22]). Motivated
by the relation between flat modules and pure submodules, some classes of
modules that are defined via closed submodules and neat submodules have
been studied recently (see, for example, [3, 29]). A module M is said to be
weakly-flat (respectively neat-flat) if the kernel of any epimorphism Y → M
is closed (respectively neat) in Y . These concepts lead us to investigate the
modules M for which any short exact sequence ending with M is extended S-
closed. We call M an extended S-closed flat module (or ec-flat for short) if the
kernel of any epimorphism Y → M is extended S-closed in Y . By Proposition
3.4, we infer that M is ec-flat if and only if for any epimorphism Y → M , the
induced map Hom(T, Y ) → Hom(T,M) is surjective for each Goldie torsion
module T .

For the following proposition we refer to [16, Propositions 1.12 and 1.13].
The proof is included for completeness.

Proposition 4.1. The following statements are equivalent for a module M .
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(1) M is ec-flat.

(2) There exists an extended S-closed sequence 0 → K → F → M → 0
with F projective.

(3) There exists an extended S-closed sequence 0 → K → F → M → 0
with F ec-flat.

Proof. (1) ⇒ (2) ⇒ (3) are clear.

(3) ⇒ (1) Let 0 → A → B
g
→ M → 0 be a short exact sequence. By

assumption, there exists an extended S-closed exact sequence 0 → K → F
α
→

M → 0 with F ec-flat. Considering the pullback of g and α, we obtain the
following commutative diagram with exact rows:

0 // A // B′

f

��

β
// F //

α

��

0

0 // A // B
g

// M // 0

Since F is ec-flat, β is an extended S-closed epimorphism. Then gf = αβ
is also an extended S-closed epimorphism, and so g is an extended S-closed
epimorphism by P −4) of Definition 2.1. This means that Ker g is an extended
S-closed submodule of B, that is, M is ec-flat. �

Remark 4.2. (1) Nonsingular modules and projective modules are ec-flat.
(2) ec-flat modules are weakly-flat, by Proposition 3.3.
(3) A Goldie torsion module T is ec-flat if and only if it is projective, by

Proposition 3.4. So, R is a semisimple ring if and only if every right
(or left) R-module is ec-flat.

(4) If R is a right nonsingular ring, then ec-flat (weakly-flat) modules are
exactly nonsingular modules by [23, Lemma 2.3(a)].

(5) The class of ec-flat modules is closed under extensions and finite direct
sums.

Proposition 4.3. Let M and N be modules and f : N → M an epimorphism.

If M is an ec-flat module, then any Goldie torsion submodule of M is isomor-

phic to a Goldie torsion submodule of N . In particular, Z2(M) embeds in a

projective module.

Proof. Let T be a Goldie torsion submodule of M and ι : T → M be an inclu-
sion homomorphism. Since M is ec-flat, the map Hom(T, N) → Hom(T,M)
is surjective, so there is a homomorphism g : T → N such that fg = ι. Now,
since g is a monomorphism and Goldie torsion modules are closed under homo-
morphic images, it follows that g(T ) is a Goldie torsion submodule of N . The
particular case follows by taking an epimorphism h : P → M with P projective
and T = Z2(M). �

Theorem 4.4. An injective module E is ec-flat if and only if Z2(E) is a

projective module.
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Proof. (⇒) Suppose that E is ec-flat. Then by Proposition 4.3, Z2(E) embeds
in a projective module, say P . Since E/Z2(E) is a nonsingular module, Z2(E)
is an S-closed submodule, and so a closed submodule of E. Thus Z2(E) is a
direct summand of E, so it is an injective module. Hence Z2(E) is a direct
summand of the projective module P , so it is projective.

(⇐) Suppose that Z2(E) is a projective module. Let 0 → A → F
g
→

E → 0 be a short exact sequence with F projective, and let f : T → E be
a homomorphism with T a Goldie torsion module. We claim that there is a
homomorphism h : T → F such that gh = f . Since T is a Goldie torsion
module, f(T ) embeds in Z2(E), that is, there is an inclusion ι : f(T ) → Z2(E).
There is also an inclusion ι1 : f(T ) → E. Combining these maps, we obtain
the following diagram:

T

f1

��

f(T )
ι

//

ι1

��

Z2(E)

0 // A // F
g

// E // 0

By the injectivity of E, there is a homomorphism v : Z2(E) → E such that
vι = ι1 and so by the projectivity of Z2(E), there is a homomorphism u :
Z2(E) → F such that gu = v. Setting h = uιf1 : T → F , we obtain that
gh = f , as desired. Hence, E is an ec-flat module by Proposition 4.1. �

Recall that R is called a right Kasch ring if each simple right R-module
embeds in RR.

Theorem 4.5. The following statements are equivalent.

(1) Injective modules are ec-flat.

(2) The injective hull E(T ) of each Goldie torsion module T is projective.

(3) Every Goldie torsion module embeds in a projective module.

(4) Every injective module E can be represented as E = P ⊕N , where P
is a projective Goldie torsion module and N is a nonsingular module.

(5) For every free left R-module F , the character module F+ is ec-flat.

In particular, R is a right Kasch ring.

Proof. (1) ⇒ (2) The injective hull E(T ) of a Goldie torsion module T is
Goldie torsion. Since E(T ) is aslo ec-flat by assumption, it follows that E(T )
is projective by Remark 4.2(3).

(2) ⇒ (3) is clear.
(3) ⇒ (4) Let E be an injective module. Then E = Z2(E) ⊕ N , where

Z2(E) is the Goldie torsion submodule of E and N is a nonsingular module.
By assumption, Z2(E) embeds in a projective module, say in F . But since
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Z2(E) is injective as a direct summand of E, it is also a direct summand of F .
Thus Z2(E) is projective.

(4) ⇒ (5) For every free left R-module F , the character module F+ is
injective by [22, Theorem 3.52]. Then by assumption F+ = P ⊕ N , where P
is a projective Goldie torsion module and N is a nonsingular module. Since P
and N are ec-flat modules by Remark 4.2(1), it follows that F+ is ec-flat by
Remark 4.2(5).

(5) ⇒ (1) Let E be an injective module. There is a free left R-module
F and an epimorphism F → E+ from which we obtain an exact sequence
0 → E++ → F+. Since E is injective and E ≤ E++, E is a direct summand
of F+. Thus E is ec-flat since F+ is ec-flat by assumption.

Finally, since ec-flat modules are neat-flat, it follows by (1) that injective
modules are neat-flat. Thus, R is a right Kasch ring by [2, Theorem 4.9] �

For a ring R, a right R-module is projective if and only if it is injective
exactly when R is a QF -ring (see [15, Theorem 15.9]).

Corollary 4.6. The following statements hold for any ring R.

(1) If Z2(RR) = RR, then every injective module is ec-flat if and only if R
is a QF -ring.

(2) If Z2(RR) = 0, then every injective module is ec-flat if and only if R
is semisimple.

Proof. (1) If Z2(RR) = RR, then all nonsingular modules are zero. Assume
that every injective module is ec-flat. Then by Theorem 4.5(4), every injective
module is projective, that is, R is a QF ring. Conversely, if R is a QF -ring,
then all injective modules are projective, and so they are ec-flat.

(2) If Z2(RR) = 0, then all projective modules are nonsingular. Assume that
every injective module is ec-flat. Since nonsingular modules are closed under
submodules, every singular module is zero by Theorem 4.5(3). In particular,
every simple module is projective, that is, R is semisimple. Conversely, if R
is semisimple, then all injective modules are projective, and so they are ec-
flat. �

Note that if the injective hull of a finitely generated module is projective,
then it is also finitely generated [17, Lemma 3.70].

Corollary 4.7. Assume that R satisfies one of the equivalent conditions of

Theorem 4.5. Then, injective hulls of finitely generated Goldie torsion modules

are finitely generated. In particular, the module E(S) is finitely generated for

each singular simple module S.

A ring R is right Artinian if and only if every injective module is a direct
sum of injective hulls of simple R-modules [15, Exercises-42,§3].

Corollary 4.8. Let R be a right Artinian ring whose maximal right ideals are

essential, that is, every simple module is singular. Then R is a QF -ring if and

only if every injective right R-module is ec-flat.
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Lemma 4.9. Let R be a commutative Artinian ring. Then, R is a QF -ring if

and only if every injective module is ec-flat.

Proof. (⇒) If R is a QF -ring, then every injective module is projective, and so
ec-flat.

(⇐) Assume that every injective module is ec-flat. Note that if R is commu-
tative and E is an injective cogenerator, then Hom(S,E) ∼= S. Let E be any
injective module. Then E =

⊕
i∈I E(Si) for some index set I, where E(Si)

is the injective hull of simple module Si for each i. It is well known that ev-
ery simple module is either projective or singular. In the former case, since
Si

∼= S+
i , Si is injective by [22, Theorem 3.52], and so E(Si) = Si is projective.

In the later case, E(Si) is projective by Theorem 4.5(2). Thus in both cases,
E(Si) is projective for each i ∈ I. Thus E is projective as a direct sum of
projective modules. Hence R is a QF -ring. �

Theorem 4.10 ([4, Theorem 4.2]). For a right nonsingular ring R, every

nonsingular R-module is projective if and only if R is Artinian hereditary serial.

By Proposition 3.8 and Theorem 4.10, we obtain the following result.

Corollary 4.11. Let R be a right nonsingular ring. Then every ec-flat module

is projective if and only if R is an Artinian hereditary serial ring.

Proposition 4.12. Every cyclic nonsingular module is projective if and only

if every cyclic ec-flat module is projective.

Proof. (⇒) Let M be a cyclic ec-flat module. Then M ∼= R/I for some right
ideal I of R, and so I is an extended S-closed ideal of R. Therefore, there is a
right ideal J of R such that J ∩ I = 0 and R/(J ⊕ I) is nonsingular. Now, we
have the following commutative diagram:

0

��

0

��

0 // I
α

// J ⊕ I //

β

��

(J ⊕ I)/I //

��

0

0 // I
θ

// R //

��

R/I //

g

��

0

R/(J ⊕ I)

��

R/(J ⊕ I)

��

0 0

Since R/(J ⊕ I) is nonsingular, it is projective by assumption. So β is a
Split-monomorphism. Moreover, since α is a Split-monomorphism, θ = βα is
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also a Split-monomorphism. Thus R/I is projective as a direct summand of
R.

(⇐) It follows by the fact that every nonsingular module is ec-flat. �

The following implications will be useful in the sequel:

nonsingular ⇒ ec-flat ⇒ weakly flat ⇒ neat-flat

Proposition 4.13. The following statements are equivalent for a ring R.

(1) Every principal right ideal is ec-flat.

(2) Every principal right ideal is weakly-flat.

(3) R is a right nonsingular ring.

Proof. (1) ⇒ (2) and (3) ⇒ (1) are clear.
(2) ⇒ (3) Let m be a nonzero element of R. Consider the short exact

sequence 0 → Annr(m) → R → mR → 0 of R-modules, where the map R →
mR is a left multiplication by m. Since (mR)R is weakly-flat by assumption,
the sequence is closed exact. Thus Annr(m) is a proper closed submodule of R,
so it cannot be essential in R. Hence Z(RR) = 0, that is, R a right nonsingular
ring. �

Proposition 4.14. The following statements are equivalent for a ring R.

(1) Every weakly-flat module is nonsingular.

(2) Every ec-flat module is nonsingular.

(3) Every submodule of an ec-flat module is ec-flat.

(4) R is right nonsingular ring.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are clear.
(3) ⇒ (4) The singular submodule Z(RR) of R is ec-flat by assumption. But

Z(RR) is projective relative to the extended S-closed short exact sequences by
Proposition 3.4. Then Z(RR) is projective, and so it is zero. That is, R is a
right nonsingular ring.

(4) ⇒ (1) Let M be a weakly-flat module. Then there is a closed exact
sequence 0 → A → P → M → 0 with P projective. Moreover, every projective
module must be nonsingular by assumption. Thus M is nonsingular by [23,
Lemma 2.3]. �

Proposition 4.15. The following statements are equivalent.

(1) Every extended S-closed submodule is pure.

(2) Every ec-flat module is flat.

(3) Every nonsingular module is flat.

(4) Every finitely generated nonsingular module is flat.

Proof. The implications (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (4) are clear.
(4) ⇒ (1) Firstly, we recall that if every finitely generated submodule of a

module is flat, then it is flat by [22, Corollary 3.49]. Hence, every nonsingular
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module is flat by assumption. Let 0 → A
f
→ B → C → 0 be an extended S-

closed exact sequence. Then there is a submodule S ≤ B such that S ∩A = 0
and B/(S ⊕ A) is nonsingular. Now, consider the diagram in the proof of
Proposition 3.3. Since B/(S⊕A) is flat, β is a Pure-monomorphism, and thus
f = βα is also a Pure-monomorphism. �

It is well known that a ring R is right perfect if and only if every flat module
is projective. So, by Propositions 3.8 and 4.15, we have the following result.

Corollary 4.16. Let R be a right perfect ring. Then Split = S−Closed if and

only if every finitely generated nonsingular module is projective.

For a commutative nonsingular ring R, every nonsingular module is flat if
and only if R is semi-hereditary [11, Proposition 2.3]. So, we get the following
corollary.

Corollary 4.17. Let R be a commutative nonsingular ring. Then every ex-

tended S-closed submodule is pure if and only if R is semi-hereditary.

Remark 4.18. Let R be a ring and e be a central idempotent in R. Then for a
module M , we have M = Me⊕M(1 − e). So, it can be easily seen that M is
an ec-flat (flat) R-module if and only if Me is an ec-flat (flat) eR-module and
M(1− e) is an ec-flat (flat) (1 − e)R-module.

A module M is said to be extending or CS if every closed submodule of
M is a direct summand. A ring R is called a right CS-ring if R is CS as a
right module, (see [7]). It is clear that every cyclic weakly-flat R-module is
projective if and only if R is right CS-ring.

Proposition 4.19. Let R be a commutative ring. Then the following are

equivalent.

(1) Every cyclic ec-flat (nonsingular) module is projective.

(2) R ∼= A×B, where A is a ring with Z2(A) = A and B is a CS-ring.

Proof. (1) ⇒ (2) Since R/Z2(R) is ec-flat, it is projective by assumption. So,
the short exact sequence 0 → Z2(R) →֒ R → R/Z2(R) → 0 splits, that is,
Z2(R) is direct summand of R. Thus R ∼= A × B, where A = Z2(R) and B
is nonsingular. By Remark 4.18, we can assume that either R is a ring with
Z2(R) = R or R is nonsingular. For the later case, R is a CS-ring by [23,
Lemma 2.3] and by assumption.

(2) ⇒ (1) Assume that R ∼= A× B, where A is a ring with Z2(A) = A and
B is a CS-ring. Let M be a cyclic ec-flat module. Since M = MA ⊕ MB,
it follows that MA is a cyclic ec-flat A-module and MB is a cyclic ec-flat B-
module by Remark 4.18. So, MA is a projective A-module since Z2(A) = A,
and MB is a projective B-module since B is a CS-ring. Thus M is a projective
R-module. �

Proposition 4.20. Let R be a commutative ring. Assume that every cyclic

nonsingular module is projective. Then the following statements hold.
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(1) A module M is ec-flat if and only if M = P⊕N , where P is a projective

module with Z2(P ) = P and N is nonsingular.

(2) ec-flat modules are closed under extended S-closed submodules.

Proof. (1) Let M be an ec-flat R-module. Then by Proposition 4.19, we have
M = MA⊕MB, where A is a ring with Z2(A) = A and B is a CS-ring. So,
MA is an ec-flat A-module and MB is an ec-flat B-module, by Remark 4.18.
Since Z2(A) = A, every A-module is a Goldie torsion module, and so every
extended S-closed exact sequence of A-modules splits by Proposition 3.4. In
particular, MA is a projective A-module by Proposition 4.1. Moreover, it can
be observed by the proof of (1) ⇒ (2) of Proposition 4.19 that B is nonsingular.
So, MB is a nonsingular B-module by Proposition 4.14 as it is an ec-flat B-
module. ThereforeM = P⊕N where P is a projective module with Z2(P ) = P
and N is a nonsingular module. The converse is clear.

(2) Let M be an ec-flat module, and let K be an extended S-closed submod-
ule ofM . Then the short exact sequence 0 → Z2(K) → Z2(M) → Z2(M/K) →
0 is splitting by Corollary 3.6. This implies that Z2(M) ∼= Z2(K)⊕Z2(M/K).
Since M is ec-flat, it follows by (1) that M = P ⊕ N where P is a projective
module with Z2(P ) = P and N is a nonsingular module. Therefore, Z2(M) =
Z2(P ) = P is projective, and so Z2(K) is also projective as a direct summand
of Z2(M). Thus, Z2(K) is ec-flat. Finally, since Z2(K) and K/Z2(K) are ec-
flat modules in the short exact sequence 0 → Z2(K) →֒ K → K/Z2(K) → 0,
we conclude that K is an ec-flat module by Remark 4.2-(5). �

As a proper generalization of CS-modules, Tercan introduced the concept
of CLS-modules in [25]. A module M is called a CLS-module if every S-closed
submodule of M is a direct summand of M . Recently, CLS-modules have been
studied in [27].

Proposition 4.21. A module B is a CLS-module if and only if every extended

S-closed submodule of B is a direct summand of B.

Proof. (⇐) It is clear, because every S-closed submodule is extended S-closed.
(⇒) Suppose that B is a CLS-module and that A is an extended S-closed

submodule of B. Then there is a submodule S ≤ B such that S ∩ A = 0
and B/(S ⊕ A) is nonsingular. Now, consider the diagram in the proof of
Proposition 3.3. Since S ⊕A is S-closed in B, it is a direct summand of B by
assumption. Therefore, β is a Split-monomorphism, and so is f = βα. Thus,
A is a direct summand of B. �

Example 4.22. The Z-module Q ⊕ Zpn with p prime and n ≥ 2 is a CLS-
module, but not a CS-module by [27, Example 2.5]. So, by this example, we
observe that there are closed submodules which are not extended S-closed by
Proposition 4.21.

Proposition 4.23. The following statements are equivalent.

(1) Every nonsingular module is projective.
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(2) Every ec-flat module is projective.

(3) Every projective module is a CLS-module.

Proof. (1) ⇒ (2) Let C be an ec-flat module. Then there is an extended S-

closed exact sequence 0 → A
f
→ B → C → 0 with B projective. So, there

is a submodule S ≤ B such that S ∩ A = 0 and B/(S ⊕ A) is nonsingular.
Now, consider the diagram in the proof of Proposition 3.3. Since B/(S ⊕ A)
is projective by assumption, β is a splitting monomorphism, and so f = βα is
also a splitting monomorphism. Thus C is projective as a direct summand of
B.

(2) ⇒ (3) Let B be a projective module and A an S-closed submodule of B.
Since we have an extended S-closed exact sequence E : 0 → A → B → C → 0
with B projective, it follows by Proposition 4.1 that C is ec-flat. Then C
is projective by assumption, and so the sequence E splits. Thus A is direct
summand of B.

(3) ⇒ (1) Let C be a nonsingular module. Then there is an S-closed se-
quence 0 → A → B → C → 0 with B projective. Sice B is a CLS-module
by assumption, A must be a direct summand of B. In fact, B ∼= A⊕ C which
implies that C is projective. �

The classes of flat and nonsingular right R-modules coincide if and only if R
is a left semi-hereditary ring without an infinite set of orthogonal idempotents
such that Qr is flat as a right R-module, where Qr denotes the maximal right
ring of quotients of R (see [1, Theorem 5.2]). Motivated by this result, we

investigate the structure of a ring over which the proper classes S −Closed and
Pure coincide.

An R-module M is said to be FP -injective or absolutely pure if it is pure in
every extension. Every FP -injective right R-module is injective if and only if
R is a right Noetherian ring (see [8, Exercises 6.2.3]).

Theorem 4.24. Let R be a left Noetherian right nonsingular ring. Assume

that the identity element of R is a sum of orthogonal primitive idempotents.

Then the following are equivalent.

(1) A submodule of a right R-module M is extended S-closed in M if and

only if it is pure in M . That is, S − Closed = Pure.
(2) R is a two-sided hereditary, two-sided CS-ring and every singular right

R-module is a direct sum of finitely presented modules.

Proof. (1) ⇒ (2) By assumption, every pure submodule is extended S-closed,
and so it is closed by Proposition 3.3. Then FP -injective modules are injective
which implies that R is a right Noetherian ring. Since R is a right nonsingular
ring, ec-flat modules are nonsingular, and so they coincide with flat modules
by assumption. It follows that every finitely generated nonsingular module is
projective by [22, Corollary 3.58]. Thus, R is a two-sided hereditary, two-sided
CS-ring by [4, Theorem 4.1]. Now, since R is a two-sided Noetherian hereditary
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ring and every singular module M is Pure-projective by (1), M is a direct sum
of finitely presented right R-modules by [19, Corollary 6.5].

(2) ⇒ (1) If R is a two-sided hereditary, two-sided CS-ring, then every
finitely generated nonsingular right R-module is projective by [4, Theorem 4.1].
So, every extended S-closed submodule is pure by Proposition 4.15. Conversely,
if every singular module is direct sum of finitely presented modules, then every
singular module is Pure-projective. This implies that every pure submodule is
extended S-closed. �

Proposition 4.25. Let R be a commutative nonsingular ring. Then S −
Closed = Pure if and only if R is a semi-hereditary ring and every singular

module is a direct sum of finitely presented modules.

Proof. (⇒) By assumption, every pure submodule is extended S-closed, and
so closed by Proposition 3.3. Then FP -injective modules are injective which
implies that R is a Noetherian ring. Moreover, R is a semi-hereditary ring by
Corollary 4.17, and so it is a hereditary ring. Now, since every singular module
M is Pure-projective by assumption, it is a direct sum of finitely presented
modules by [19, Corollary 6.5].

(⇐) It follows by Corollary 4.17 that S−Closed ⊆ Pure. Since every singular
module M is a direct sum of finitely presented modules by assumption, M is
Pure-projective. This implies that Pure ⊆ S − Closed. �

Remark 4.26. A right R-module M is called torsion-free if Tor1R(M,R/Rr) = 0
for all r ∈ R. In [1], the authors investigated the structure of a ring over which
nonsingular and torsion-free right R-modules coincide. This ring is in fact a
nonsingular ring over which ec-flat and torsion-free right R-modules coincide,
by Remark 4.2-(4).

Acknowledgement. The authors are grateful to the referee for carefully read-
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[2] E. Büyükaşık and Y. Durğun, Absolutely s-pure modules and neat-flat modules, Comm.

Algebra 43 (2015), no. 2, 384–399.
[3] , Neat-flat modules, Comm. Algebra 44 (2016), no. 1, 416–428.
[4] A. W. Chatters and S. M. Khuri, Endomorphism rings of modules over nonsingular CS

rings, J. London Math. Soc. (2) 21 (1980), no. 3, 434–444.
[5] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, Birkhäuser Verlag,
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