ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

Shiroyeh Payrovi and Yasaman Sadatrasul

Abstract

Let R be a commutative ring, M be a Noetherian R-module, and N a 2-absorbing submodule of M such that $r\left(N:_{R} M\right)=\mathfrak{p}$ is a prime ideal of R. The main result of the paper states that if $N=$ $Q_{1} \cap \cdots \cap Q_{n}$ with $r\left(Q_{i}:_{R} M\right)=\mathfrak{p}_{i}$, for $i=1, \ldots, n$, is a minimal primary decomposition of N, then the following statements are true. (i) $\mathfrak{p}=\mathfrak{p}_{k}$ for some $1 \leq k \leq n$. (ii) For each $j=1, \ldots, n$ there exists $m_{j} \in M$ such that $\mathfrak{p}_{j}=\left(N:_{R}\right.$ m_{j}). (iii) For each $i, j=1, \ldots, n$ either $\mathfrak{p}_{i} \subseteq \mathfrak{p}_{j}$ or $\mathfrak{p}_{j} \subseteq \mathfrak{p}_{i}$.

Let $\Gamma_{E}(M)$ denote the zero-divisor graph of equivalence classes of zero divisors of M. It is shown that $\left\{Q_{1} \cap \cdots \cap Q_{n-1}, Q_{1} \cap \cdots \cap Q_{n-2}, \ldots, Q_{1}\right\}$ is an independent subset of $V\left(\Gamma_{E}(M)\right)$, whenever the zero submodule of M is a 2-absorbing submodule and $Q_{1} \cap \cdots \cap Q_{n}=0$ is its minimal primary decomposition. Furthermore, it is proved that $\Gamma_{E}(M)\left[\left(0:_{R} M\right)\right]$, the induced subgraph of $\Gamma_{E}(M)$ by $\left(0:_{R} M\right)$, is complete.

1. Introduction

Let R be a commutative ring. A proper ideal I of R is called a 2-absorbing ideal if whenever $a b c \in I$ for $a, b, c \in R$, then $a b \in I$ or $b c \in I$ or $a c \in I$. The concept of 2-absorbing ideals was introduced and studied in [3]. The basic properties of the set $\mathcal{A}=\left\{\operatorname{Ann}_{R}(x+I): I\right.$ is a 2 -absorbing ideal of R and $x \in$ R \} have been studied in [11], and in that paper it is shown $\operatorname{Ann}_{R}(x+I)$ is a prime or is a 2 -absorbing ideal of R, and \mathcal{A} is a totally ordered set or is union of two totally ordered sets. After that, the concept of 2-absorbing submodule was introduced in [10]. A proper submodule N of an R-module M is called a 2-absorbing submodule if whenever $a b m \in N$ for $a, b \in R$ and $m \in M$, then $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)$.

The zero-divisor graph of equivalence classes of zero divisors in a commutative ring was introduced and investigated in [7,14]. This kind of graph has some advantages comparing to the zero-divisor graph discussed in $[2,4]$. In many cases, the zero-divisor graph of equivalence classes of zero divisors in

[^0]a commutative ring is finite when the zero-divisor graph is infinite. Another important aspect of zero-divisor graph of equivalence classes of zero divisors is the connection to associated primes of the ring.

In Section 2, for a 2-absorbing submodule N of M with a primary decomposition $N=Q_{1} \cap \cdots \cap Q_{n}$ with $r\left(Q_{i}:_{R} M\right)=\mathfrak{p}_{i}$ for $i=1, \ldots, n$ it is shown that the set $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ is a totally ordered set or is union of two totally ordered sets. Furthermore, it is shown that if N is a 2 -absorbing submodule of M such that $r\left(N:_{R} M\right)=\mathfrak{p}$ is a prime ideal of R, then $\left\{\left(N:_{M} a\right): a \in R \backslash \mathfrak{p}\right\}=\{N=$ $\left.\cap_{i=1}^{n} Q_{i}, \cap_{i=1}^{n-1} Q_{i}, \ldots, Q_{1}\right\}$ is a totally ordered set. Let the zero submodule of M be a 2-absorbing submodule and $Q_{1} \cap \cdots \cap Q_{n}=0$ with $r\left(Q_{i}:_{R} M\right)=\mathfrak{p}_{i}$, for $i=1, \ldots, n$, be its minimal primary decomposition. In Section 3, we define the zero-divisor graph of equivalence classes of zero divisors of $M, \Gamma_{E}(M)$, and we show that $\left\{Q_{1} \cap \cdots \cap Q_{n-1}, Q_{1} \cap \cdots \cap Q_{n-2}, \ldots, Q_{1}\right\}$ is an independent subset of $V\left(\Gamma_{E}(M)\right)$.

Throughout, R denotes a commutative ring with a nonzero identity, M is a unitary Noetherian R-module, and $Z(M)$ the set of its zero divisors. Let $\operatorname{Ass}_{R}(M)=\left\{\mathfrak{p} \in \operatorname{Spec}(R): \mathfrak{p}=\operatorname{Ann}_{R}(m)\right.$ for some $\left.0 \neq m \in M\right\}$ denote the set of associated primes of M. Set $\left(0:_{M} a\right)=\operatorname{Ann}_{M}(a):=\{m \in M: a m=0\}$ for all $a \in R$. For notations and terminologies not given in this article, the reader is referred to [13].

2. Primary decomposition of a $\mathbf{2}$-absorbing submodule

In this section, R is a commutative ring and M is a Noetherian R-module. We study the properties of a minimal primary decomposition of a 2-absorbing submodule of M. A proper submodule Q of M is said to be primary if $r m \in Q$ for some $r \in R$ and $m \in M$, then $m \in Q$ or $r \in r\left(Q:_{R} M\right)=\left\{a \in R: a^{t} M \subseteq\right.$ Q for some $t \in \mathbb{N}\}$.

Lemma 2.1. Let \mathfrak{p} be a prime ideal of R and Q be a \mathfrak{p}-primary submodule of M. Then the following statements are true.
(i) If $m \in M \backslash Q$, then $\left(Q:_{R} m\right)$ is a \mathfrak{p}-primary ideal of R.
(ii) If $a \in R \backslash \mathfrak{p}$, then $\left(Q:_{M} a\right)=Q$.

Recall that a proper submodule N of M is called 2-absorbing if whenever $a b m \in N$ for $a, b \in R$ and $m \in M$, then $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)$. In the sequel, we suppose that $N=Q_{1} \cap \cdots \cap Q_{n}$ with $r\left(Q_{i}:_{R} M\right)=\mathfrak{p}_{i}$, for $i=1, \ldots, n$, is a minimal primary decomposition of N.

Theorem 2.2. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R} M\right)=$ \mathfrak{p} is a prime ideal of R. Then the following statements are true.
(i) $\mathfrak{p}=\mathfrak{p}_{j}$ for some j with $1 \leq j \leq n$.
(ii) For each $j=1, \ldots, n$ there exists $m_{j} \in M$ such that $\mathfrak{p}_{j}=\left(N:_{R} m_{j}\right)$.
(iii) For each $i, j=1, \ldots, n$ either $\mathfrak{p}_{i} \subseteq \mathfrak{p}_{j}$ or $\mathfrak{p}_{j} \subseteq \mathfrak{p}_{i}$.

Proof. (i) By the assumption

$$
\mathfrak{p}=r\left(N:_{R} M\right)=r\left(\cap_{i=1}^{n} Q_{i}:_{R} M\right)=r\left(\cap_{i=1}^{n}\left(Q_{i}:_{R} M\right)\right)=\cap_{i=1}^{n} \mathfrak{p}_{i} .
$$

Thus there exists j with $1 \leq j \leq n$ such that $\mathfrak{p}=\mathfrak{p}_{j}$, see [13, Corollary 3.57].
(ii) By the assumption there is $m_{j} \in \cap_{i=1, i \neq j}^{n} Q_{i} \backslash Q_{j}$ thus $\left(N:_{R} m_{j}\right)=$ $\left(Q_{j}:_{R} m_{j}\right)$ so by Lemma 2.1(i), $r\left(N:_{R} m_{j}\right)=r\left(Q_{j}:_{R} m_{j}\right)=\mathfrak{p}_{j}$. In view of [10, Theorem 2.5], either ($N:_{R} m_{j}$) is a prime ideal of R or there exists $a \in R$ such that $\left(N:_{R} a m_{j}\right)$ is prime. If $\left(N:_{R} m_{j}\right)$ is prime, then $\left(N:_{R} m_{j}\right)=\mathfrak{p}_{j}$ and we are done. Now, suppose that $\left(N:_{R} m_{j}\right) \subset \mathfrak{p}_{j}$ and $a \in \mathfrak{p}_{j} \backslash\left(N:_{R} m_{j}\right)$. Thus $a m_{j} \in \cap_{i=1, i \neq j}^{n} Q_{i} \backslash Q_{j}$ as above $\left(N:_{R} a m_{j}\right)$ is a \mathfrak{p}_{j}-primary ideal of R. By [10, Theorem 2.4] and [3, Theorem 2.4] it follows that $\mathfrak{p}_{j}^{2} \subseteq\left(N:_{R} m_{j}\right)$. Hence, $\mathfrak{p}_{j} \subseteq\left(N:_{R} a m_{j}\right) \subseteq \mathfrak{p}_{j}$ and $\left(N:_{R} a m_{j}\right)=\mathfrak{p}_{j}$.
(iii) In view of [10, Theorem 2.6(ii)], the assertion follows.

Corollary 2.3. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R}\right.$ $M)=\mathfrak{p}$ is a prime ideal of R. Then $\operatorname{Ass}_{R}(M / N)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ is a totally ordered set.

Proof. This is an immediate consequence of Theorem 2.2(iii).
Remark 2.4. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R} M\right)=\mathfrak{p}$ is a prime ideal of R. Suppose that $N=Q_{1} \cap \cdots \cap Q_{n}$ with $r\left(Q_{i}:_{R} M\right)=\mathfrak{p}_{i}$, for $i=1, \ldots, n$, is a minimal primary decomposition of N. In the rest of this section, we suppose that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ have been numbered (renumbered if necessary) such that $\mathfrak{p}=\mathfrak{p}_{1}$ and $\mathfrak{p}_{1} \subset \mathfrak{p}_{2} \subset \cdots \subset \mathfrak{p}_{n}$.

A proper submodule P of M is said to be prime if $r m \in P$ for some $r \in R$ and $m \in M$, then $m \in P$ or $r \in\left(P:_{R} M\right)=\{a \in R: a M \subseteq P\}$.

Theorem 2.5. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R} M\right)=$ \mathfrak{p} is a prime ideal of R. Then the following statements are true.
(i) $Q_{1}=\left(N:_{M} a\right)$ for some $a \in R$.
(ii) Q_{1} is a prime submodule of M whenever $\left(N:_{R} M\right)=\mathfrak{p}$.
(iii) Assume that $\left(N:_{R} M\right)=\mathfrak{p}$ and $b \in R$. If $P=\left(N:_{M} b\right)$ is a prime submodule of M with $\mathfrak{p}^{\prime}=\left(P:_{R} M\right)$, then \mathfrak{p}^{\prime} is a minimal element of $\operatorname{Ass}_{R}(M / N)$ and $Q_{1}=P$.

Proof. (i) By Remark 2.4, $\mathfrak{p}_{1}=r\left(Q_{1}:_{R} M\right)$ is a minimal element of $\operatorname{Ass}_{R}(M / N)$. Then $\cap_{i=2}^{n}\left(Q_{i}:_{R} M\right) \nsubseteq \mathfrak{p}_{1}$. Suppose that $a \in \cap_{i=2}^{n}\left(Q_{i}:_{R} M\right) \backslash \mathfrak{p}_{1}$. We show that $Q_{1}=\left(\begin{array}{ll}N:_{M} & a\end{array}\right)$. By the assumption $\left(N:_{M} a\right)=\left(\cap_{i=1}^{n} Q_{i}:_{M} a\right)=$ $\cap_{i=1}^{n}\left(Q_{i}:_{M} a\right)=\left(Q_{1}:_{M} a\right)$. It is clear that $Q_{1} \subseteq\left(Q_{1}:_{M} a\right)$. If there exists $m \in\left(Q_{1}:_{M} a\right) \backslash Q_{1}$, then there is $t \in \mathbb{N}$ such that $a^{t} M \subseteq Q_{1}$ which implies that $a \in \mathfrak{p}_{1}$ that is a contradiction. Hence, $Q_{1}=\left(N:_{M} a\right)$.
(ii) From (i) it follows that $Q_{1}=N:_{M} a$ for some $a \in \cap_{i=2}^{n} \mathfrak{p}_{i} \backslash \mathfrak{p}_{1}$. We show that Q_{1} is a prime submodule. Suppose that $b \in R, m \in M \backslash Q_{1}$ and $b m \in Q_{1}$. Thus there is $t \in \mathbb{N}$ such that $b^{t} M \subseteq Q_{1}$. So $(a b)^{t} M \subseteq Q_{1}$. On the other hand,
$a b \in \cap_{i=2}^{n} \mathfrak{p}_{i}$ thus $(a b)^{t} M \subseteq \cap_{i=2}^{n} Q_{i}$. Hence, $(a b)^{t} M \subseteq \cap_{i=1}^{n} Q_{i}=N$. Therefore, by the hypothesis $a b M \subseteq N$ so $b M \subseteq Q_{1}$ and Q_{1} is prime.
(iii) Let $b \in R$ and $P=\left(N:_{M} b\right)$ be a prime submodule of M. Then one can see that $\left(\left(N:_{M} b\right):_{R} M\right)=\mathfrak{p}^{\prime}$ is a prime ideal of R. It is easy to see that $\mathfrak{p}^{\prime}=\left(N:_{R} b M\right)$. Let $m \in M$ and $b m \notin N$. We show that $\mathfrak{p}^{\prime}=\left(N:_{R} b m\right)$. It is obvious that $\mathfrak{p}^{\prime} \subseteq\left(N:_{R} b m\right)$. Assume that $r \in R$ and $r b m \in N$. Thus $r m \in P=\left(N:_{M} b\right)$ and $m \notin P=\left(N:_{M} b\right)$ so $r b M \subseteq N$ and $r \in\left(N:_{R} b M\right)=\mathfrak{p}^{\prime}$. Hence, $\mathfrak{p}^{\prime}=\left(N:_{R} b m\right) \in \operatorname{Ass}_{R}(M / N)$. If $b \in \cap_{i=1}^{n} \mathfrak{p}_{i}$, then there is $t \in \mathbb{N}$ such that $b^{t} \in \cap_{i=1}^{n}\left(Q_{i}:_{R} M\right)$ so $b^{t} M \subseteq \cap_{i=1}^{n} Q_{i}=N$. Therefore, $b^{t} M \subseteq N$ and $b M \subseteq N$ which is a contradiction. Thus $b \notin \mathfrak{p}_{1}$. Assume that $r \in \mathfrak{p}^{\prime}$. Thus $r b M \subseteq N$ and so $r b M \subseteq \cap_{i=1}^{n} Q_{i}$. Hence, $r b \in\left(\cap_{i=1}^{n} Q_{i}:_{R} M\right) \subseteq$ $\cap_{i=1}^{n}\left(Q_{i}:_{R} M\right) \subseteq \cap_{i=1}^{n} \mathfrak{p}_{i}$. Therefore, from $r b \in \mathfrak{p}_{1}$ and $b \notin \mathfrak{p}_{1}$ it follows that $\mathfrak{p}^{\prime} \subseteq \mathfrak{p}_{1}$ so $\mathfrak{p}=\mathfrak{p}_{1}$. Now, we show that $P=Q_{1}$. Assume that $m \in Q_{1}$. Thus $a m \in N \subseteq P$. If $m \notin P$, then $a \in \mathfrak{p}^{\prime}=\mathfrak{p}_{1}$ which is a contradiction so $Q_{1} \subseteq P$. Assume that $m \in P$ so $b m \in N \subseteq Q_{1}$. If $m \notin Q_{1}$, then there is $s \in \mathbb{N}$ such that $b^{s} M \subseteq Q_{1}=\left(N:_{M} a\right)$. Hence, $a b^{s-1}(b M) \subseteq N$ so $a b^{s-1} \in \mathfrak{p}^{\prime}=\mathfrak{p}_{1}$ which implies that $b \in \mathfrak{p}^{\prime}=\mathfrak{p}_{1}$ since $a \notin \mathfrak{p}_{1}$. This means that $b^{2} M \subseteq N$ and $b \in r\left(N:_{R} M\right)=\left(N:_{R} M\right)$ which is a contradiction. Therefore, $m \in Q_{1}$ and so $P \subseteq Q_{1}$.

Theorem 2.6. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R}\right.$ $M)=\mathfrak{p}$ is a prime ideal of R. Then $\left\{\left(N:_{M} a\right): a \in R \backslash \mathfrak{p}\right\}=\{N=$ $\left.\cap_{i=1}^{n} Q_{i}, \cap_{i=1}^{n-1} Q_{i}, \ldots, Q_{1}\right\}$ is a totally ordered set.
Proof. By [12, Corollary 2.4], $\left(N:_{M} a\right)$ is a 2-absorbing submodule of M for all $a \in R$. If $a \notin \mathfrak{p}_{n}$, then in view of Lemma 2.1(ii), $\left(N:_{M} a\right)=\cap_{i=1}^{n}\left(Q_{i}:_{M}\right.$ a) $=\cap_{i=1}^{n} Q_{i}=N$. Suppose that there is j with $1 \leq j<n$ such that $a \in$ $\mathfrak{p}_{j+1} \backslash \bigcup_{i=1}^{j} \mathfrak{p}_{i}$. Thus there is $t \in \mathbb{N}$ such that $a^{t} M \subseteq \cap_{i=j+1}^{n} Q_{i}$ and $a^{t} \notin \mathfrak{p}_{j}$. By Lemma 2.1(ii), we have $\left(N:_{M} a^{t}\right)=\left(\cap_{i=1}^{n} Q_{i}:_{M} a^{t}\right)=\cap_{i=1}^{n}\left(Q_{i}:_{M} a^{t}\right)=$ $\cap_{i=1}^{j} Q_{i}$. Now, it is enough to show that $\left(N:_{M} a^{t}\right)=\left(N:_{M} a\right)$. It is clear that $\left(N:_{M} a\right) \subseteq\left(N:_{M} a^{t}\right)$. For the reverse inclusion assume that $m \in\left(N:_{M} a^{t}\right)$. Thus $a^{t} m \in N$ since N is a 2-absorbing submodule $a m \in N$ or $a^{t-1} m \in N$ or $a^{t} \in\left(N:_{R} M\right) \subseteq \mathfrak{p}_{j}$. If $a m \in N$ the assertion follows. The third case is impossible. So assume that $a^{t-1} m \in N$. Now, by an easy induction one can show that $a m \in N$ as desired. Hence, $\left(N:_{M} a\right)=\left(N:_{M} a^{t}\right)=\cap_{i=1}^{j} Q_{i}$.

Corollary 2.7. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R}\right.$ $M)=\mathfrak{p}$ is a prime ideal of R. Then $\left(N:_{R} m\right)$ is a decomposable ideal of R for each $m \in M \backslash N$. Moreover, its primary decomposition is $\left(N:_{R} m\right)=$ $\cap_{i=j+1}^{n}\left(Q_{i}:_{R} m\right)$ for some j with $0 \leq j \leq n$.

Proof. (i) Let $m \in M \backslash N$ and let $m \in \cap_{i=1}^{j} Q_{i} \backslash \cup_{i=j+1}^{n} Q_{i}$ for some j with $1 \leq j<n$. Then by Lemma 2.1(i), $\left(N:_{R} m\right)=\left(\cap_{i=1}^{n} Q_{i}:_{R} m\right)=\cap_{i=j+1}^{n}\left(Q_{i}:_{R}\right.$ m).

Theorem 2.8. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R} M\right)=$ $\mathfrak{p} \cap \mathfrak{q}$, where $\mathfrak{p}, \mathfrak{q}$ are the only distinct prime ideals of R that are minimal over $\left(N:_{R} M\right)$. Then the following statements are true.
(i) $\mathfrak{p}=\mathfrak{p}_{k}, \mathfrak{q}=\mathfrak{p}_{s}$ for some k, s with $1 \leq k, s \leq n$ and $k \neq s$.
(ii) For each $j=1, \ldots, n$ there exists $m_{j} \in M$ such that $\left(N:_{R} m_{j}\right)=\mathfrak{p}_{j}$.

Proof. (i) By the assumption $r\left(N:_{R} M\right)=r\left(\cap_{i=1}^{n} Q_{i}:_{R} M\right)=r\left(\cap_{i=1}^{n}\left(Q_{i}:_{R}\right.\right.$ $M))=\cap_{i=1}^{n} \mathfrak{p}_{i}=\mathfrak{p} \cap \mathfrak{q}$. Since \mathfrak{p} is a minimal prime ideal of $\left(N:_{R} M\right)$, there exists $1 \leq k \leq n$ such that $\mathfrak{p}=\mathfrak{p}_{k}$. Also, there exists $1 \leq s \leq n$ with $k \neq s$ such that $\mathfrak{p}=\mathfrak{p}_{s}$.
(ii) Let $m_{j} \in \cap_{i=1, i \neq j}^{n} Q_{i} \backslash Q_{j}$. Then $\left(N:_{R} m_{j}\right)=\left(\cap_{i=1}^{n} Q_{i}:_{R} m_{j}\right)=$ $\left(Q_{j}:_{R} m_{j}\right)$. Moreover, $r\left(N:_{R} m_{j}\right)=r\left(Q_{j}:_{R} m_{j}\right)=r\left(Q_{j}:_{R} M\right)=\mathfrak{p}_{j}$. By [10, Theorem 2.5] either ($N:_{R} m_{j}$) is a prime ideal of R or there exists $a \in R$ such that $\left(N:_{R} a m_{j}\right)$ is a prime ideal of R. If $\left(N:_{R} m_{j}\right)$ is a prime ideal, then $\left(Q_{j}:_{R} m_{j}\right)=\left(N:_{R} m_{j}\right)=r\left(N:_{R} m_{j}\right)=\mathfrak{p}_{j}$. Now, suppose that $\left(N:_{R}\right.$ $\left.m_{j}\right) \subset \mathfrak{p}_{j}$ and $a \in \mathfrak{p}_{j} \backslash\left(N:_{R} m_{j}\right)$. Thus $a m_{j} \in \cap_{i=1, i \neq j}^{n} Q_{i} \backslash Q_{j}$ as above $\left(N:_{R} a m_{j}\right)$ is a \mathfrak{p}_{j}-primary ideal of R. By [10, Theorem 2.4] and [3, Theorem $2.4]$ it follows that $\mathfrak{p}_{j}^{2} \subseteq\left(N:_{R} m_{j}\right)$. Hence, $\mathfrak{p}_{j} \subseteq\left(N:_{R} a m_{j}\right) \subseteq \mathfrak{p}_{j}$. Therefore, $\left(N:_{R} a m_{j}\right)=\mathfrak{p}_{j}$.

Corollary 2.9. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R} M\right)=$ $\mathfrak{p} \cap \mathfrak{q}$, where $\mathfrak{p}, \mathfrak{q}$ are the only distinct prime ideals of R that are minimal over $\left(N:_{R} M\right)$. Then $\operatorname{Ass}_{R}(M / N)$ is union of two totally ordered sets such as $\left\{\mathfrak{p}_{k}\right\} \cup\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{k-1}, \mathfrak{p}_{k+1}, \ldots, \mathfrak{p}_{n}\right\}$ or $\left\{\mathfrak{p}_{s}\right\} \cup\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{s-1}, \mathfrak{p}_{s+1}, \ldots, \mathfrak{p}_{n}\right\}$.
Proof. Let $N=\cap_{i=1}^{n} Q_{i}$ be a minimal primary decomposition of N with $r\left(Q_{i}:_{R}\right.$ $M)=\mathfrak{p}_{\mathfrak{i}}$ for each $1 \leq i \leq n$. Then by Theorem $2.8, \mathfrak{p}=\mathfrak{p}_{k}, \mathfrak{q}=\mathfrak{p}_{s}$ for some k, s with $1 \leq k, s \leq n$ and $k \neq s$. Without loss of generality we may assume that $\mathfrak{p}=\mathfrak{p}_{1}$ and $\mathfrak{q}=\mathfrak{p}_{2}$. Suppose that $3 \leq l, t \leq n$ and $l \neq t$. By the assumption there exist $m_{l} \in \cap_{i=1, i \neq l}^{n} Q_{i} \backslash Q_{l}$ and $m_{t} \in \cap_{i=1, i \neq t}^{n} Q_{i} \backslash Q_{t}$. Thus $r\left(N:_{R} m_{l}\right)=$ $r\left(\cap_{i=1}^{n} Q_{i}:_{R} m_{l}\right)=\cap_{i=1}^{n} r\left(Q_{i}:_{R} m_{l}\right)=r\left(Q_{l}:_{R} m_{l}\right)=r\left(Q_{l}:_{R} M\right)=\mathfrak{p}_{l}$ and $r\left(N:_{R} m_{t}\right)=\mathfrak{p}_{t}$. Let $\mathfrak{p}_{t} \nsubseteq \mathfrak{p}_{l}$; we show that $\mathfrak{p}_{l} \subseteq \mathfrak{p}_{t}$. By the hypotheses we may assume that $\mathfrak{p}_{1} \subseteq \mathfrak{p}_{l}$ moreover $\mathfrak{p}_{t} \nsubseteq \mathfrak{p}_{l} \cup \mathfrak{p}_{2}$. Suppose that $a \in \mathfrak{p}_{l}$ and $b \in \mathfrak{p}_{t} \backslash \mathfrak{p}_{l} \cup \mathfrak{p}_{2}$. So there exists $s \in \mathbb{N}$ such that $a^{s} m_{l} \in N, b^{s} m_{t} \in N$ and $b^{s} m_{l} \notin N$. If $a^{s}\left(m_{l}+m_{t}\right) \in N$, then $a \in \mathfrak{p}_{t}$ and the proof is completed. Now, let $a^{s}\left(m_{l}+m_{t}\right) \notin N$. Then $a^{s} b^{s} \in\left(N:_{R} M\right)$ since $b^{s}\left(m_{l}+m_{t}\right) \notin N$ and $a^{s} b^{s}\left(m_{l}+m_{t}\right) \in N$. So $a b \in \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$. Since $b \notin \mathfrak{p}_{1} \cup \mathfrak{p}_{2}$, we have $a \in \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$. So $a^{s} M \subseteq N$ and $a^{s} m_{t} \in N$ which implies that $a \in \mathfrak{p}_{t}$. Hence, $\operatorname{Ass}_{R}(M / N)$ is the union of two totally ordered sets such as $\operatorname{Ass}_{R}(M / N)=\left\{\mathfrak{p}=\mathfrak{p}_{1}\right\} \cup$ $\left\{\mathfrak{p}_{2}, \mathfrak{p}_{3}, \ldots, \mathfrak{p}_{n}\right\}$ or $\operatorname{Ass}_{R}(M / N)=\left\{\mathfrak{q}=\mathfrak{p}_{2}\right\} \cup\left\{\mathfrak{p}_{1}, \mathfrak{p}_{3}, \ldots, \mathfrak{p}_{n}\right\}$.

Remark 2.10. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R} M\right)=$ $\mathfrak{p} \cap \mathfrak{q}$, where $\mathfrak{p}, \mathfrak{q}$ are the only distinct prime ideals of R that are minimal over $\left(N:_{R} M\right)$. In the rest of this paper, it will be supposed that $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ have been numbered (renumbered if necessary) such that $\mathfrak{p}=\mathfrak{p}_{1}, \mathfrak{q}=\mathfrak{p}_{2}$ and either $\mathfrak{p}_{1} \subset \mathfrak{p}_{3} \subset \cdots \subset \mathfrak{p}_{n}$ or $\mathfrak{p}_{2} \subset \mathfrak{p}_{3} \subset \cdots \subset \mathfrak{p}_{n}$.

Corollary 2.11. Let N be a 2-absorbing submodule of M such that $r\left(N:_{R} M\right)$ $=\mathfrak{p} \cap \mathfrak{q}$, where $\mathfrak{p}, \mathfrak{q}$ are the only distinct prime ideals of R that are minimal over $\left(N:_{R} M\right)$. Then $\left\{\left(N:_{M} a\right): a \in R \backslash \mathfrak{p}_{1} \cup \mathfrak{p}_{2}\right\}=\left\{N=\cap_{i=1}^{n} Q_{i}, \cap_{i=1}^{n-1} Q_{i}, \ldots, Q_{1} \cap\right.$ $\left.Q_{2}\right\}$ and $\left\{\left(N:_{M} a\right): a \in \mathfrak{p}_{2} \backslash \mathfrak{p}_{1}\right\}=\left\{\cap_{i=1, i \neq 2}^{n} Q_{i}, \cap_{i=1, i \neq 2}^{n-1} Q_{i}, \ldots, Q_{1} \cap Q_{3}, Q_{1}\right\}$ whenever $\mathfrak{p}_{1} \subset \mathfrak{p}_{3} \subset \cdots \subset \mathfrak{p}_{n}$.

Proof. The proof is similar to that of Theorem 2.6

3. Zero-divisor graph of equivalences classes of zero-divisors

Let R be a commutative ring and M be a Noetherian R-module. The zerodivisor graph of M, denoted by $\Gamma(M)$, is a simple undirected graph whose vertex set is $Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ and two distinct vertices a and b are adjacent if and only if $a b M=0$, see [8]. In the following we define the zero-divisor graph for equivalences classes of zero divisors of M. For $a, b \in R$, we say that $a \sim b$ if and only if $\operatorname{Ann}_{M}(a)=\operatorname{Ann}_{M}(b)$. It is clear that \sim is an equivalence relation. If $[a]$ denotes the class of a, then $[a]=\operatorname{Ann}_{R}(M)$ for all $a \in \operatorname{Ann}_{R}(M)$ and $[a]=R \backslash Z(M)$ for all $a \in R \backslash Z(M)$; the other equivalence classes form a partition of $Z(M) \backslash \operatorname{Ann}_{R}(M)$.

Definition. The zero-divisor graph of equivalence classes of zero divisors of M, denoted $\Gamma_{E}(M)$, is a simple graph associated to M whose vertices are the equivalence classes of the elements of $Z(M) \backslash \operatorname{Ann}_{R}(M)$, and each pair of distinct classes such as $[a]$ and $[b]$ are adjacent if and only if $a b M=0$.

Lemma 3.1. Let $x, y \in Z(M) \backslash \operatorname{Ann}_{R}(M)$. If $\operatorname{Ann}_{M}(x) \subset \operatorname{Ann}_{M}(y)$, then $\operatorname{deg}[x] \leq \operatorname{deg}[y]$.
Proof. If $[z] \in \Gamma_{E}(M)$ is such that $z x M=0$, then clearly $z y M=0$. So if $[z]$ is adjacent to $[x]$, then $[z]$ is adjacent to $[y]$. Thus $\operatorname{deg}[x] \leq \operatorname{deg}[y]$.

Let $G=(V, E)$ be a graph. A subset S of V is called an independent set of G if no two vertices in S are adjacent.

Theorem 3.2. Let the zero submodule of M be a 2-absorbing submodule such that $r\left(0:_{R} M\right)=\mathfrak{p}$ is a prime ideal of R. Then $\Gamma_{E}(M)$ has an independent set of vertices such as $\left\{\left[a_{1}\right], \ldots,\left[a_{n-1}\right]\right\}$, where $\operatorname{deg}\left[a_{n-1}\right] \leq \cdots \leq \operatorname{deg}\left[a_{1}\right]$.
Proof. Suppose that $0=Q_{1} \cap \cdots \cap Q_{n}(n \geq 2)$ with $r\left(Q_{i}:_{R} M\right)=\mathfrak{p}_{i}$ for $i=1, \ldots, n$, is a minimal primary decomposition of the zero submodule of M. By Theorem 2.6, there is a subset of elements of $Z(M) \backslash \operatorname{Ann}(M)$ such as $\left\{a_{1}, \ldots, a_{n-1}\right\}$, where $\left\{\operatorname{Ann}_{M}\left(a_{n-1}\right)=\cap_{i=1}^{n-1} Q_{i}, \ldots, \operatorname{Ann}_{M}\left(a_{1}\right)=Q_{1}\right\}$. Thus the set $\left\{\left[a_{1}\right], \ldots,\left[a_{n-1}\right]\right\}$ is an independent set of vertices of $\Gamma_{E}(M)$. Since if $a_{k} a_{j} M=0$ for some k and j with $1 \leq k<j \leq n-1$, then $a_{j} M \subseteq \operatorname{Ann}_{M}\left(a_{k}\right)=$ $\cap_{i=1}^{k} Q_{i}$ which implies that $a_{j} M \subseteq Q_{1}$ so $a_{j} \in \mathfrak{p}_{1}$, contrary to choose of a_{j} in Theorem 2.6. The second assertion follows by Lemma 3.1.

The graph $H=\left(V_{0}, E_{0}\right)$ is a subgraph of $G=(V, E)$ if $V_{0} \subseteq V$ and $E_{0} \subseteq E$. Moreover, H is called an induced subgraph by V_{0}, denoted by $G\left[V_{0}\right]$, if $V_{0} \subseteq V$ and $E_{0}=\left\{\{u, v\} \in E \mid u, v \in V_{0}\right\}$.
Theorem 3.3. Let the zero submodule of M be a 2-absorbing submodule such that $r\left(0:_{R} M\right)=\mathfrak{p}$ is a prime ideal of R. Then $\Gamma_{E}(M)\left[r\left(0:_{R} M\right)\right]$, the induced subgraph of $\Gamma_{E}(M)$ by $r\left(0:_{R} M\right)$, is complete.
Proof. In view of [10, Theorem 2.4], $\left(0:_{R} M\right)$ is a 2 -absorbing ideal of R and by [3, Theorem 2.4], $\mathfrak{p}^{2} \subseteq\left(0:_{R} M\right)$. Now, suppose that $x, y \in \mathfrak{p} \backslash \operatorname{Ann}_{R}(M)$ and $\operatorname{Ann}_{M}(x) \neq \operatorname{Ann}_{M}(y)$. Thus $x y M=0$ so $[x]$ and $[y]$ are adjacent in $\Gamma_{E}(M)$ and the results follows.
Remark 3.4. If $m \in \cap_{i=1}^{k-1} Q_{i} \backslash Q_{k}, 2 \leq k \leq n-1$ and $a \in \mathfrak{p}_{k} \backslash \mathfrak{p}_{1}$, then $a^{t} m \in$ $\cap_{i=1}^{k} Q_{i}$ for some positive integer t, but $m \notin \cap_{i=1}^{k} Q_{i}$ and $a \notin \mathfrak{p}_{1}=r\left(\cap_{i=1}^{k} Q_{i}:_{R}\right.$ $M) \supseteq\left(\cap_{i=1}^{k} Q_{i}:_{R} M\right)$. Thus $\operatorname{Ann}_{M}\left(a_{i}\right), i=2, \ldots, n-1$, is not a prime submodule. Hence, non of element of $\left\{\operatorname{Ann}_{M}\left(a_{2}\right)=Q_{1} \cap Q_{2}, \ldots, \operatorname{Ann}_{M}\left(a_{n-1}\right)=\right.$ $\left.\cap_{i=1}^{n-1} Q_{i}\right\}$ is a prime submodule, see the proof of Theorem 3.2.

Let $\operatorname{Spec}_{R}(M)$ denote the set of all prime submodules of M and $\mathrm{m}-$ $\operatorname{Ass}_{R}(M)=\left\{P \in \operatorname{Spec}_{R}(M): P=\operatorname{Ann}_{M}(a)\right.$ for some $\left.a \in Z(M) \backslash \operatorname{Ann}_{R}(M)\right\}$. The properties of prime submodules and $\mathrm{m}-\operatorname{Ass}_{R}(M)$ are studied in $[1,5,6]$. By [5, Proposition 3.2], any maximal element of $\Delta=\left\{\operatorname{Ann}_{M}(a): a \in Z(M) \backslash\right.$ $\left.\operatorname{Ann}_{R}(M)\right\}$ is a prime submodule of M. Thus for a Noetherian R-module M, $\mathrm{m}-\operatorname{Ass}_{R}(M)$ is a nonempty set.
Corollary 3.5. Let the zero submodule of M be a 2-absorbing submodule such that $r\left(0:_{R} M\right)=\mathfrak{p}$ is a prime ideal of R. Then the following statements are true.
(i) If $\mathrm{m}-\operatorname{Ass}_{R}(M)=\left\{Q_{1}\right\}$, then $V\left(\Gamma_{E}(M)\right)=\left\{\left[a_{1}\right], \ldots,\left[a_{n-1}\right]\right\}$ and $\Gamma_{E}(M)$ is a disconnected graph.
(ii) If $Q_{1} \in \mathrm{~m}-\operatorname{Ass}_{R}(M)$, then $\Gamma_{E}(M)\left[r\left(0:_{R} M\right) \cup\left\{a_{1}\right\}\right]$, the induced subgraph of $\Gamma_{E}(M)$ by $r\left(0:_{R} M\right) \cup\left\{a_{1}\right\}$, is complete.
(iii) If $Q_{1}=\operatorname{Ann}_{M}\left(a_{1}\right) \notin \mathrm{m}-\operatorname{Ass}_{R}(M)$, then $\operatorname{deg}\left[a_{1}\right] \leq 2$.

Proof. (i) By the hypotheses $Q_{1}=\operatorname{Ann}_{M}\left(a_{1}\right)$ is the only maximal element of Δ. Thus for every $x \in \mathfrak{p}$ we have $\operatorname{Ann}_{M}(x) \subseteq \operatorname{Ann}_{M}\left(a_{1}\right)$. If for some $x \in \mathfrak{p}$, $\operatorname{Ann}_{M}(x) \subset \operatorname{Ann}_{M}\left(a_{1}\right)$, then $x M \subseteq \operatorname{Ann}_{M}(x) \subseteq \operatorname{Ann}_{M}\left(a_{1}\right)$ implies that $a_{1} \in \mathfrak{p}$ contrary to choose of a_{1} in Theorem 2.6. Hence, $\operatorname{Ann}_{M}(x)=\operatorname{Ann}_{M}\left(a_{1}\right)$ for all $x \in \mathfrak{p}$ so $V\left(\Gamma_{E}(M)\right)=\left\{\left[a_{1}\right], \ldots,\left[a_{n-1}\right]\right\}$ and $\Gamma_{E}(M)$ is a disconnected graph by Theorem 3.2.
(ii) By (i) it follows that for all $x \in \mathfrak{p}$ either $\operatorname{Ann}_{M}\left(a_{1}\right)=\operatorname{Ann}_{M}(x)$ or $\operatorname{Ann}_{M}(x) \nsubseteq \operatorname{Ann}_{M}\left(a_{1}\right)$. In the first case there is nothing to prove. If $\mathrm{Ann}_{M}(x)$ $\nsubseteq \operatorname{Ann}_{M}\left(a_{1}\right)$ for some $x \in \mathfrak{p}$, then there is $m \in \operatorname{Ann}_{M}(x) \backslash \operatorname{Ann}_{M}\left(a_{1}\right)=Q_{1}$ so $x m=0 \in Q_{1}$ implies that $a_{1} x M=0$. Thus $\left[a_{1}\right]$ is adjacent to $[x]$. Hence, in view of Theorem 3.3 the result follows.
(iii) The result follows by [9, Theorems 4.1, 4.4 and Corollary 4.3].

Acknowledgement. The authors would like to thank the referee for a careful reading of our paper and insightful comments which saved us from several errors.

References

[1] D. D. Anderson and S. Chun, The set of torsion elements of a module, Comm. Algebra 42 (2014), no. 4, 1835-1843. https://doi.org/10.1080/00927872.2013.796555
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
[3] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. https://doi.org/10.1017/S0004972700039344
[4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https: //doi.org/10.1016/0021-8693(88)90202-5
[5] C.-P. Lu, Unions of prime submodules, Houston J. Math. 23 (1997), no. 2, 203-213.
[6] R. L. McCasland, M. E. Moore, and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), no. 1, 79-103. https://doi.org/10. 1080/00927879708825840
[7] S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 3533-3558. https://doi.org/10.1081/AGB-120004502
[8] K. Nozari and Sh. Payrovi, A generalization of the zero-divisor graph for modules, Publ. Inst. Math. (Beograd) (N.S.) 106(120) (2019), 39-46. https://doi.org/10.2298/ pim1920039n
[9] K. Nozari and Sh. Payrovi, The annihilator graph for modules over commutative rings, J. Algebr. Syst. 9 (2021), no. 1, 1-12, 1 unnumbered page.
[10] Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Colloq. 19 (2012), Special Issue no. 1, 913-920. https://doi.org/10.1142/S1005386712000776
[11] Sh. Payrovi and S. Babaei, On the 2-absorbing ideals in commutative rings, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 4, 895-900.
[12] Sh. Payrovi and S. Babaei, On the 2-absorbing submodules, Iran. J. Math. Sci. Inform. 10 (2015), no. 1, 131-137, 167.
[13] R. Y. Sharp, Steps in Commutative Algebra, second edition, Cambridge University Press, Cambridge, 2000.
[14] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348. https://doi.org/10.1080/ 00927872.2010 .488675

Shiroyef Payrovi
Department of Mathematics
Imam Khomeini International University
P. O. Box: 34149-1-6818, Qazvin - Iran

Email address: shpayrovi@sci.ikiu.ac.ir
Yasaman Sadatrasul
Department of Mathematics
Imam Khomeini International University
P. O. Box: 34149-1-6818, Qazvin - Iran

Email address: yasamansadatrasul@gmail.com

[^0]: Received November 21, 2021; Revised April 30, 2022; Accepted July 28, 2022.
 2020 Mathematics Subject Classification. Primary 13C99; Secondary 05C25.
 Key words and phrases. 2-absorbing submodule, zero-divisor graph.

