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ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR
GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

SHIROYEH PAYROVI AND YASAMAN SADATRASUL

ABSTRACT. Let R be a commutative ring, M be a Noetherian R-module,
and N a 2-absorbing submodule of M such that (N :g M) = p is
a prime ideal of R. The main result of the paper states that if N =
Q1N - NQp with 7(Q; :g M) = p;, for i = 1,...,n, is a minimal
primary decomposition of N, then the following statements are true.

(i) p=1pg for some 1 <k < n.

(ii) For each j = 1,...,n there exists m; € M such that p; = (N :p

m;).

(iii) For each i,j =1,...,n either p; C p; or p; C p;.
Let T'g(M) denote the zero-divisor graph of equivalence classes of zero
divisors of M. It is shown that {Q1N: - NQn—1,Q1N - NQn—2,...,Q1}is
an independent subset of V(I'g(M)), whenever the zero submodule of M
is a 2-absorbing submodule and Q1 N---NQyn = 0 is its minimal primary
decomposition. Furthermore, it is proved that I'g(M)[(0 :r M)], the
induced subgraph of I'g (M) by (0 :g M), is complete.

1. Introduction

Let R be a commutative ring. A proper ideal I of R is called a 2-absorbing
ideal if whenever abc € I for a,b,c € R, then ab € I or bc € I or ac € I.
The concept of 2-absorbing ideals was introduced and studied in [3]. The basic
properties of the set A = {Anng(z +I) : I is a 2-absorbing ideal of R and x €
R} have been studied in [11], and in that paper it is shown Anng(x + I) is a
prime or is a 2-absorbing ideal of R, and A is a totally ordered set or is union
of two totally ordered sets. After that, the concept of 2-absorbing submodule
was introduced in [10]. A proper submodule N of an R-module M is called a
2-absorbing submodule if whenever abm € N for a,b € R and m € M, then
am € N orbme N orabe (N :g M).

The zero-divisor graph of equivalence classes of zero divisors in a commu-
tative ring was introduced and investigated in [7,14]. This kind of graph has
some advantages comparing to the zero-divisor graph discussed in [2,4]. In
many cases, the zero-divisor graph of equivalence classes of zero divisors in
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a commutative ring is finite when the zero-divisor graph is infinite. Another
important aspect of zero-divisor graph of equivalence classes of zero divisors is
the connection to associated primes of the ring.

In Section 2, for a 2-absorbing submodule N of M with a primary decompo-
sition N = @Q1N---NQ,, with r(Q; :g M) =p; for i =1,...,nitis shown that
the set {p1,...,pn} is a totally ordered set or is union of two totally ordered
sets. Furthermore, it is shown that if N is a 2-absorbing submodule of M such
that #(N :g M) = p is a prime ideal of R, then {(N :ps a):a € R\p} ={N =
N, Qs ﬂ?;llQi, ..., Q1} is a totally ordered set. Let the zero submodule of M
be a 2-absorbing submodule and @1 N --- N Q,, = 0 with r(Q; :r M) = p;, for
i=1,...,n, be its minimal primary decomposition. In Section 3, we define the
zero-divisor graph of equivalence classes of zero divisors of M, I'g(M), and we
show that {Q1 N - NQp-1,Q1 N NQp_2,...,Q1} is an independent subset
of V(Tg(M)).

Throughout, R denotes a commutative ring with a nonzero identity, M is
a unitary Noetherian R-module, and Z (M) the set of its zero divisors. Let
Asspr(M) = {p € Spec(R) : p = Anng(m) for some 0 # m € M} denote the set
of associated primes of M. Set (0:3; a) = Annys(a) := {m € M : am = 0} for
all @ € R. For notations and terminologies not given in this article, the reader
is referred to [13].

2. Primary decomposition of a 2-absorbing submodule

In this section, R is a commutative ring and M is a Noetherian R-module.
We study the properties of a minimal primary decomposition of a 2-absorbing
submodule of M. A proper submodule @ of M is said to be primary if rm € Q
for some r € Rand m € M, thenm e Qorre€r(Q:g M)={a€ R:a'M C
Q for some t € N}.

Lemma 2.1. Let p be a prime ideal of R and Q be a p-primary submodule of
M. Then the following statements are true.

(i) If m € M\ Q, then (Q :g m) is a p-primary ideal of R.
(ii) Ifa € R\ p, then (Q :m a) = Q.

Recall that a proper submodule N of M is called 2-absorbing if whenever
abm € N for a,b € R and m € M, then am € N or bm € N or ab € (N :p M).
In the sequel, we suppose that N = Q1 N---NQ, with r(Q; :r M) = p;, for
i=1,...,n,is a minimal primary decomposition of N.

Theorem 2.2. Let N be a 2-absorbing submodule of M such that r(N :g M) =
p is a prime ideal of R. Then the following statements are true.
(1) p=1p; for some j with1 < j <n.
(ii) For each j =1,...,n there exists mj € M such that p; = (N :g m;).
(i) For eachi,j=1,...,n either p, Cp; orp; Cp;.
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Proof. (i) By the assumption
p=7(N:g M) =r(01Qi:r M) =r(MiLi(Qi :r M)) = Miips.

Thus there exists j with 1 < j < n such that p = p;, see [13, Corollary 3.57].

(ii) By the assumption there is m; € N, ;,.Q; \ Q; thus (N :gr m;) =
(Q; :r m;) so by Lemma 2.1(i), (N :g m;) = r(Q; :r m;) = p;. In view of
[10, Theorem 2.5], either (N :g m;) is a prime ideal of R or there exists a € R
such that (N :g am;) is prime. If (N :g m;) is prime, then (N :g m;) = p;
and we are done. Now, suppose that (N :g m;) C p; and a € p; \ (N :g m;).
Thus am; € NIy ;.,Q; \ Q; as above (N :p am;) is a p;-primary ideal of R.
By [10, Theorem 2.4] and [3, Theorem 2.4] it follows that p? C (N g my).
Hence, p; C (N :g am;) C p; and (N :g am;) = p;.

(iii) In view of [10, Theorem 2.6(ii)], the assertion follows. O

Corollary 2.3. Let N be a 2-absorbing submodule of M such that (N :g
M) = p is a prime ideal of R. Then Assgr(M/N) = {p1,...,pn} is a totally
ordered set.

Proof. This is an immediate consequence of Theorem 2.2(iii). O

Remark 2.4. Let N be a 2-absorbing submodule of M such that r(N :p M) =p
is a prime ideal of R. Suppose that N = Q1 N---NQ, with r(Q; :r M) = p,,
for 4 = 1,...,n, is a minimal primary decomposition of N. In the rest of
this section, we suppose that pi,...,p, have been numbered (renumbered if
necessary) such that p =p; and p; Cps C -+ C py.

A proper submodule P of M is said to be prime if rm € P for some r € R
and m € M, thenme Porre (P:g M)={ac R:aM C P}.

Theorem 2.5. Let N be a 2-absorbing submodule of M such that r(N :g M) =
p is a prime ideal of R. Then the following statements are true.

(i) @1 = (N :p a) for some a € R.
(ii) @1 is a prime submodule of M whenever (N :g M) = p.
(iii) Assume that (N :g M) =p andb € R. If P = (N :p; b) is a prime
submodule of M with p' = (P :g M), then p’ is a minimal element of
Assp(M/N) and Q1 = P.

Proof. (1) By Remark 2.4, py =7(Q1 :r M) is a minimal element of Assg(M/N).
Then NI, (Q; :r M) € p1. Suppose that a € NI ,(Q; :r M) \ p1. We show
that @1 = (N :am a). By the assumption (N :pr a) = (N,Q; v a) =
N 1 (Q; iy a) = (Q1 :ar a). It is clear that Q1 C (Q1 :ar a). If there exists
m € (Q1 :a a) \ Q1, then there is ¢ € N such that a’M C @ which implies
that a € p; that is a contradiction. Hence, Q1 = (N :p a).

(ii) From (i) it follows that Q1 = N :ps a for some a € NI_,p; \ p1. We show
that @ is a prime submodule. Suppose that b € R,m € M \ Q1 and bm € Q.
Thus there is ¢ € N such that *M C Q1. So (ab)!M C @Q;. On the other hand,
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ab € N™_yp; thus (ab)!M C N™_,Q;. Hence, (ab)!M C N™_,Q; = N. Therefore,
by the hypothesis abM C N so bM C @1 and @ is prime.

(iii) Let b € R and P = (N :p b) be a prime submodule of M. Then
one can see that (N :p b) :p M) = p’ is a prime ideal of R. It is easy
to see that p’ = (N :g bM). Let m € M and bm ¢ N. We show that
p’ = (N :g bm). It is obvious that p’ C (N :g bm). Assume that r € R and
rbm € N. Thus rm € P= (N :py b) and m & P = (N :p; b) so rbM C N and
r € (N :g bM) =yp'. Hence, p' = (N :g bm) € Assg(M/N). If b € NI p;, then
there is ¢t € N such that b € N (Q; :r M) so b'M C N, Q; = N. Therefore,
b'M C N and bM C N which is a contradiction. Thus b € p;. Assume that
r € p’. Thus rbM C N and so rbM C NP, Q;. Hence, rb € (N7_1Q; :r M) C
N1 (Q; :r M) C NI_,p,;. Therefore, from rb € p; and b & p; it follows that
p’ C p1 so p = p1. Now, we show that P = ;. Assume that m € @Q;. Thus
am € N CP. f m ¢ P, then a € p’ = p; which is a contradiction so Q1 C P.
Assume that m € P so bm € N C Q1. If m € 1, then there is s € N such
that M C Q; = (N :p a). Hence, ab* ' (bM) C N so ab*~! € p' = p;
which implies that b € p’ = p; since a ¢ p;. This means that b>M C N and
ber(N:g M)= (N :g M) which is a contradiction. Therefore, m € Q; and
so P C Q. O

Theorem 2.6. Let N be a 2-absorbing submodule of M such that r(N :g
M) = p is a prime ideal of R. Then {(N :p a) : a € R\ p} = {N =
N, Q;, ﬂ?:_ll iy, @1} s a totally ordered set.

Proof. By [12, Corollary 2.4], (N :ps a) is a 2-absorbing submodule of M for
all a € R. If a & p,, then in view of Lemma 2.1(ii), (N :ps a) = N1 (Q; i
a) = N ,Q; = N. Suppose that there is j with 1 < j < n such that a €
pit1 \ U/_; pi- Thus there is ¢ € N such that a'M C N7, ,Q; and a' ¢ p;.
By Lemma 2.1(ii), we have (N :p a') = (NP1 Q; i a') = NP1 (Q; :nr a') =
N?_,Qi. Now, it is enough to show that (N :ps a') = (N :as a). It is clear that
(N :pa) C (N iy at). For the reverse inclusion assume that m € (N :pr at).
Thus a'm € N since N is a 2-absorbing submodule am € N or a'!~'m € N
ora® € (N :g M) C p;. If am € N the assertion follows. The third case is
impossible. So assume that a'~'m € N. Now, by an easy induction one can
show that am € N as desired. Hence, (N :ps a) = (N 1 o) = N)_, Q. O

Corollary 2.7. Let N be a 2-absorbing submodule of M such that r(N
M) = p is a prime ideal of R. Then (N :g m) is a decomposable ideal of
for each m € M \ N. Moreover, its primary decomposition is (N :g m)
Nz j+1(Qi :r m) for some j with 0 < j < n.

Il ==

Proof. (i) Let m € M \ N and let m € ﬂglei \ Uit ;11 Qs for some j with
1 < j <n. Then by Lemma 2.1(i), (N :g m) = (N}L,Q; :r m) = N7 ;1 (Qi :r
m). O
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Theorem 2.8. Let N be a 2-absorbing submodule of M such that r(N :p M) =
p N q, where p,q are the only distinct prime ideals of R that are minimal over
(N :g M). Then the following statements are true.

(i) p =pk, q = ps for some k,s with 1 < k,s <n and k # s.

(ii) For each j =1,...,n there exists mj € M such that (N :gr m;) = p;.
Proof. (i) By the assumption (N :g M) = r(N_,Q; :r M) = r(N_1(Q; :r
M)) = N_,p; = pNgq. Since p is a minimal prime ideal of (N :x M), there
exists 1 < k < n such that p = py. Also, there exists 1 < s < n with k # s
such that p = p;.

(ii) Let m; € ﬂ?:l,i;ﬁjQi\Qj' Then (N ‘R mj) = (ﬂ?lei ‘R mj) =
(Q; :r mj;). Moreover, r(N :gm;) = r(Q; :r m;) = 7(Q; :r M) = p;. By
[10, Theorem 2.5] either (N :p m;) is a prime ideal of R or there exists a € R
such that (N :p am;) is a prime ideal of R. If (N :g m;) is a prime ideal,
then (Q; :r m;) = (N :g m;) = r(N :g m;) = p;. Now, suppose that (N :r
m;) C p;j and a € p; \ (N :g m;). Thus am; € N, ,,,Q; \ @; as above
(N :g am;) is a p;-primary ideal of R. By [10, Theorem 2.4] and [3, Theorem
2.4] it follows that p% C (N :g m;). Hence, p; C (N :g am;) C p;. Therefore,
(N ‘R amj):pj. (I

Corollary 2.9. Let N be a 2-absorbing submodule of M such thatr(N :g M) =
p N q, where p,q are the only distinct prime ideals of R that are minimal over
(N :g M). Then Assg(M/N) is union of two totally ordered sets such as
{pk} U {pla e Pre—1,Prg1, .- 7pn} or {pS} U {pla vy Ps—1,Ps+1, - - apn}

Proof. Let N = NI'_;Q; be a minimal primary decomposition of N with 7(Q; :r
M) = p; for each 1 < i < n. Then by Theorem 2.8, p = pg, q = p; for some k, s
with 1 < k,s < n and k # s. Without loss of generality we may assume that
p = p1 and q = po. Suppose that 3 < [,t < n and [ # t. By the assumption
there exist m; € ﬂ?zl’#lQi \ @ and m; € ﬂ?zl,i#Qi \ Q¢ Thus r(N :g my) =
(M1 Qi tr my) = N r(Qi :r my) = r(Qr :r my) = r(Qr :r M) = p; and
r(N :gp my) = ps. Let pr € py; we show that p; C p;. By the hypotheses we
may assume that p; C p; moreover p; € p; U ps. Suppose that a € p; and
b € py\ prUpa. So there exists s € N such that a®*m; € N,b*m; € N and
b*m; ¢ N. If a®(m; +m;) € N, then a € p; and the proof is completed. Now,
let a®(my + my) ¢ N. Then a®b® € (N :g M) since b°(m; + my) ¢ N and
a*b*(m; +my) € N. So ab € p; Npy. Since b ¢ p; U pa, we have a € py N pa.
So a*M C N and a®m; € N which implies that a € p;. Hence, Assg(M/N)
is the union of two totally ordered sets such as Assgr(M/N) = {p = p1} U
{p2,ps, ... pn} or Assp(M/N) = {q=p2} U{p1,p3,...,pn}. O

Remark 2.10. Let N be a 2-absorbing submodule of M such that (N :p M) =
p N g, where p, q are the only distinct prime ideals of R that are minimal over
(N :g M). In the rest of this paper, it will be supposed that py,...,p, have
been numbered (renumbered if necessary) such that p = py,q = p2 and either
P1 CP3 C - CPpor Py Cps C oo C P
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Corollary 2.11. Let N be a 2-absorbing submodule of M such that r(N :g M)
= pNq, where p, q are the only distinct prime ideals of R that are minimal over
(N :g M). Then {(N :p a):a € R\p1Upa} = {N =N, Q;, N’ 'Qi, ..., Q1N
Q2} and {(N :pra) ta €pa\p1} = {ﬁ?zl,#gQi,m?:_ﬁiﬁQi, Q1N Q3,Q1}
whenever p1 CP3 C -+ C Py

Proof. The proof is similar to that of Theorem 2.6 O

3. Zero-divisor graph of equivalences classes of zero-divisors

Let R be a commutative ring and M be a Noetherian R-module. The zero-
divisor graph of M, denoted by I'(M), is a simple undirected graph whose
vertex set is Zg(M) \ Anng (M) and two distinct vertices a and b are adjacent
if and only if abM = 0, see [8]. In the following we define the zero-divisor graph
for equivalences classes of zero divisors of M. For a,b € R, we say that a ~ b if
and only if Annys(a) = Annp(b). It is clear that ~ is an equivalence relation.
If [a] denotes the class of a, then [a] = Anng(M) for all a € Anng(M) and
[a] = R\ Z(M) for all a € R\ Z(M); the other equivalence classes form a
partition of Z(M) \ Anng(M).

Definition. The zero-divisor graph of equivalence classes of zero divisors of
M, denoted T'g(M), is a simple graph associated to M whose vertices are
the equivalence classes of the elements of Z(M) \ Anngr (M), and each pair of
distinct classes such as [a] and [b] are adjacent if and only if abM = 0.

Lemma 3.1. Let x,y € Z(M) \ Anng(M). If Annps(x) C Annpy(y), then
degla] < degly].

Proof. If [z] € T'g(M) is such that zzM = 0, then clearly zyM = 0. So if [2]
is adjacent to [z], then [z] is adjacent to [y]. Thus deg[x] < deg[y]. O

Let G = (V, E) be a graph. A subset S of V is called an independent set of
G if no two vertices in S are adjacent.

Theorem 3.2. Let the zero submodule of M be a 2-absorbing submodule such
that r(0 :gp M) = p is a prime ideal of R. Then I'g(M) has an independent set
of vertices such as {[a1],...,[an—1]}, where deglan_1] < --- < deg[ay].

Proof. Suppose that 0 = Q1 N---NQ, (n > 2) with r(Q; :r M) = p; for
i = 1,...,n, is a minimal primary decomposition of the zero submodule of
M. By Theorem 2.6, there is a subset of elements of Z(M) \ Ann(M) such as
{a1,...,an—1}, where {Annps(a,—1) = ﬂ?;llQi, ...,Annys(a1) = Q1}. Thus
the set {[ai],...,[an—1]} is an independent set of vertices of I'g(M). Since if
ara; M = 0 for some k and j with 1 <k < j <n—1, then a; M C Anny(ax) =
N¥_,Q; which implies that a;M C @1 so a; € p1, contrary to choose of a; in
Theorem 2.6. The second assertion follows by Lemma 3.1. (|



ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR GRAPH 45

The graph H = (Vp, Ey) is a subgraph of G = (V, E) if V CV and Ey C E.
Moreover, H is called an induced subgraph by Vg, denoted by G[Vp], if Vo CV
and Ey = {{u,v} € F|u,v € Vp}.

Theorem 3.3. Let the zero submodule of M be a 2-absorbing submodule such
that (0 :g M) = p is a prime ideal of R. Then T g(M)[r(0:g M)], the induced
subgraph of Tg(M) by r(0:g M), is complete.

Proof. In view of [10, Theorem 2.4], (0 :gr M) is a 2-absorbing ideal of R and by
[3, Theorem 2.4], p? C (0 :g M). Now, suppose that z,y € p \ Anng(M) and
Annjps(z) # Annps(y). Thus zyM = 0 so [z] and [y] are adjacent in I'p(M)
and the results follows. O

Remark 3.4. If m € ﬂf;llQi \Qk,2<k<n-—1anda € p; \ p1, then a'm €
Nk_,Q; for some positive integer ¢, but m ¢ NF_,Q; and a & p; = r(NF_,Q; g
M) D (Nk_,Q; :r M). Thus Annjs(a;), i = 2,...,m — 1, is not a prime sub-
module. Hence, non of element of {Annys(az) = Q1 N Qa, ..., Annp(an—1) =
ﬁ?z_ll Q;} is a prime submodule, see the proof of Theorem 3.2.

Let Specy(M) denote the set of all prime submodules of M and m —
Assp(M) = {P € Specr(M) : P = Annyy(a) for some a € Z(M)\ Anng(M)}.
The properties of prime submodules and m — Assg(M) are studied in [1,5, 6].
By [5, Proposition 3.2], any maximal element of A = {Anny(a) : a € Z(M) \
Anng (M)} is a prime submodule of M. Thus for a Noetherian R-module M,
m — Assg(M) is a nonempty set.

Corollary 3.5. Let the zero submodule of M be a 2-absorbing submodule such
that (0 :g M) = p is a prime ideal of R. Then the following statements are
true.
(i) If m — Assgp(M) = {Q1}, then V(I'g(M)) = {[a1],-..,[an—1]} and
T'g(M) is a disconnected graph.
(ii) If @1 € m — Assg(M), then Tg(M)[r(0 :g M) U {a1}], the induced
subgraph of Tg(M) by r(0:5r M) U {a1}, is complete.
(i) If Q1 = Annps(ar) € m — Assp(M), then deglaq] < 2.

Proof. (i) By the hypotheses @1 = Annys(aq1) is the only maximal element of
A. Thus for every x € p we have Annys(x) C Annps(aq). If for some = € p,
Annys(z) C Annps(ay), then M C Annps(x) € Annps(aq) implies that a; € p
contrary to choose of a; in Theorem 2.6. Hence, Annjs(x) = Annpy(aq) for all
x €pso V(Ig(M)) = {[ai],...,[an—1]} and T'g(M) is a disconnected graph
by Theorem 3.2.

(ii) By (i) it follows that for all x € p either Annps(a;) = Annps(x) or
Annys(x) € Annps(aq). In the first case there is nothing to prove. If Anny,(z)
Z Annys(ay) for some z € p, then there is m € Annps(x) \ Annps(a;) = Q1 so
xm = 0 € @y implies that ayzM = 0. Thus [a1] is adjacent to [z]. Hence, in
view of Theorem 3.3 the result follows.

(iii) The result follows by [9, Theorems 4.1, 4.4 and Corollary 4.3]. O
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