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ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR

GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

Shiroyeh Payrovi and Yasaman Sadatrasul

Abstract. Let R be a commutative ring, M be a Noetherian R-module,

and N a 2-absorbing submodule of M such that r(N :R M) = p is
a prime ideal of R. The main result of the paper states that if N =

Q1 ∩ · · · ∩ Qn with r(Qi :R M) = pi, for i = 1, . . . , n, is a minimal

primary decomposition of N , then the following statements are true.
(i) p = pk for some 1 ≤ k ≤ n.

(ii) For each j = 1, . . . , n there exists mj ∈ M such that pj = (N :R
mj).

(iii) For each i, j = 1, . . . , n either pi ⊆ pj or pj ⊆ pi.

Let ΓE(M) denote the zero-divisor graph of equivalence classes of zero
divisors of M . It is shown that {Q1∩· · ·∩Qn−1, Q1∩· · ·∩Qn−2, . . . , Q1} is

an independent subset of V (ΓE(M)), whenever the zero submodule of M

is a 2-absorbing submodule and Q1 ∩ · · · ∩Qn = 0 is its minimal primary
decomposition. Furthermore, it is proved that ΓE(M)[(0 :R M)], the

induced subgraph of ΓE(M) by (0 :R M), is complete.

1. Introduction

Let R be a commutative ring. A proper ideal I of R is called a 2-absorbing
ideal if whenever abc ∈ I for a, b, c ∈ R, then ab ∈ I or bc ∈ I or ac ∈ I.
The concept of 2-absorbing ideals was introduced and studied in [3]. The basic
properties of the set A = {AnnR(x+ I) : I is a 2-absorbing ideal of R and x ∈
R} have been studied in [11], and in that paper it is shown AnnR(x + I) is a
prime or is a 2-absorbing ideal of R, and A is a totally ordered set or is union
of two totally ordered sets. After that, the concept of 2-absorbing submodule
was introduced in [10]. A proper submodule N of an R-module M is called a
2-absorbing submodule if whenever abm ∈ N for a, b ∈ R and m ∈ M , then
am ∈ N or bm ∈ N or ab ∈ (N :R M).

The zero-divisor graph of equivalence classes of zero divisors in a commu-
tative ring was introduced and investigated in [7, 14]. This kind of graph has
some advantages comparing to the zero-divisor graph discussed in [2, 4]. In
many cases, the zero-divisor graph of equivalence classes of zero divisors in
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a commutative ring is finite when the zero-divisor graph is infinite. Another
important aspect of zero-divisor graph of equivalence classes of zero divisors is
the connection to associated primes of the ring.

In Section 2, for a 2-absorbing submodule N of M with a primary decompo-
sition N = Q1∩· · ·∩Qn with r(Qi :R M) = pi for i = 1, . . . , n it is shown that
the set {p1, . . . , pn} is a totally ordered set or is union of two totally ordered
sets. Furthermore, it is shown that if N is a 2-absorbing submodule of M such
that r(N :R M) = p is a prime ideal of R, then {(N :M a) : a ∈ R \ p} = {N =
∩ni=1Qi,∩n−1i=1 Qi, . . . , Q1} is a totally ordered set. Let the zero submodule of M
be a 2-absorbing submodule and Q1 ∩ · · · ∩Qn = 0 with r(Qi :R M) = pi, for
i = 1, . . . , n, be its minimal primary decomposition. In Section 3, we define the
zero-divisor graph of equivalence classes of zero divisors of M , ΓE(M), and we
show that {Q1 ∩ · · · ∩Qn−1, Q1 ∩ · · · ∩Qn−2, . . . , Q1} is an independent subset
of V (ΓE(M)).

Throughout, R denotes a commutative ring with a nonzero identity, M is
a unitary Noetherian R-module, and Z(M) the set of its zero divisors. Let
AssR(M) = {p ∈ Spec(R) : p = AnnR(m) for some 0 6= m ∈M} denote the set
of associated primes of M . Set (0 :M a) = AnnM (a) := {m ∈M : am = 0} for
all a ∈ R. For notations and terminologies not given in this article, the reader
is referred to [13].

2. Primary decomposition of a 2-absorbing submodule

In this section, R is a commutative ring and M is a Noetherian R-module.
We study the properties of a minimal primary decomposition of a 2-absorbing
submodule of M . A proper submodule Q of M is said to be primary if rm ∈ Q
for some r ∈ R and m ∈ M , then m ∈ Q or r ∈ r(Q :R M) = {a ∈ R : atM ⊆
Q for some t ∈ N}.

Lemma 2.1. Let p be a prime ideal of R and Q be a p-primary submodule of
M . Then the following statements are true.

(i) If m ∈M \Q, then (Q :R m) is a p-primary ideal of R.
(ii) If a ∈ R \ p, then (Q :M a) = Q.

Recall that a proper submodule N of M is called 2-absorbing if whenever
abm ∈ N for a, b ∈ R and m ∈M , then am ∈ N or bm ∈ N or ab ∈ (N :R M).
In the sequel, we suppose that N = Q1 ∩ · · · ∩ Qn with r(Qi :R M) = pi, for
i = 1, . . . , n, is a minimal primary decomposition of N .

Theorem 2.2. Let N be a 2-absorbing submodule of M such that r(N :R M) =
p is a prime ideal of R. Then the following statements are true.

(i) p = pj for some j with 1 ≤ j ≤ n.
(ii) For each j = 1, . . . , n there exists mj ∈M such that pj = (N :R mj).
(iii) For each i, j = 1, . . . , n either pi ⊆ pj or pj ⊆ pi.
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Proof. (i) By the assumption

p = r(N :R M) = r(∩ni=1Qi :R M) = r(∩ni=1(Qi :R M)) = ∩ni=1pi.

Thus there exists j with 1 ≤ j ≤ n such that p = pj , see [13, Corollary 3.57].
(ii) By the assumption there is mj ∈ ∩ni=1,i6=jQi \ Qj thus (N :R mj) =

(Qj :R mj) so by Lemma 2.1(i), r(N :R mj) = r(Qj :R mj) = pj . In view of
[10, Theorem 2.5], either (N :R mj) is a prime ideal of R or there exists a ∈ R
such that (N :R amj) is prime. If (N :R mj) is prime, then (N :R mj) = pj
and we are done. Now, suppose that (N :R mj) ⊂ pj and a ∈ pj \ (N :R mj).
Thus amj ∈ ∩ni=1,i6=jQi \ Qj as above (N :R amj) is a pj-primary ideal of R.

By [10, Theorem 2.4] and [3, Theorem 2.4] it follows that p2j ⊆ (N :R mj).
Hence, pj ⊆ (N :R amj) ⊆ pj and (N :R amj) = pj .

(iii) In view of [10, Theorem 2.6(ii)], the assertion follows. �

Corollary 2.3. Let N be a 2-absorbing submodule of M such that r(N :R
M) = p is a prime ideal of R. Then AssR(M/N) = {p1, . . . , pn} is a totally
ordered set.

Proof. This is an immediate consequence of Theorem 2.2(iii). �

Remark 2.4. Let N be a 2-absorbing submodule of M such that r(N :R M) = p
is a prime ideal of R. Suppose that N = Q1 ∩ · · · ∩Qn with r(Qi :R M) = pi,
for i = 1, . . . , n, is a minimal primary decomposition of N . In the rest of
this section, we suppose that p1, . . . , pn have been numbered (renumbered if
necessary) such that p = p1 and p1 ⊂ p2 ⊂ · · · ⊂ pn.

A proper submodule P of M is said to be prime if rm ∈ P for some r ∈ R
and m ∈M , then m ∈ P or r ∈ (P :R M) = {a ∈ R : aM ⊆ P}.

Theorem 2.5. Let N be a 2-absorbing submodule of M such that r(N :R M) =
p is a prime ideal of R. Then the following statements are true.

(i) Q1 = (N :M a) for some a ∈ R.
(ii) Q1 is a prime submodule of M whenever (N :R M) = p.
(iii) Assume that (N :R M) = p and b ∈ R. If P = (N :M b) is a prime

submodule of M with p′ = (P :R M), then p′ is a minimal element of
AssR(M/N) and Q1 = P .

Proof. (i) By Remark 2.4, p1 =r(Q1 :R M) is a minimal element of AssR(M/N).
Then ∩ni=2(Qi :R M) 6⊆ p1. Suppose that a ∈ ∩ni=2(Qi :R M) \ p1. We show
that Q1 = (N :M a). By the assumption (N :M a) = (∩ni=1Qi :M a) =
∩ni=1(Qi :M a) = (Q1 :M a). It is clear that Q1 ⊆ (Q1 :M a). If there exists
m ∈ (Q1 :M a) \ Q1, then there is t ∈ N such that atM ⊆ Q1 which implies
that a ∈ p1 that is a contradiction. Hence, Q1 = (N :M a).

(ii) From (i) it follows that Q1 = N :M a for some a ∈ ∩ni=2pi \ p1. We show
that Q1 is a prime submodule. Suppose that b ∈ R,m ∈M \Q1 and bm ∈ Q1.
Thus there is t ∈ N such that btM ⊆ Q1. So (ab)tM ⊆ Q1. On the other hand,
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ab ∈ ∩ni=2pi thus (ab)tM ⊆ ∩ni=2Qi. Hence, (ab)tM ⊆ ∩ni=1Qi = N . Therefore,
by the hypothesis abM ⊆ N so bM ⊆ Q1 and Q1 is prime.

(iii) Let b ∈ R and P = (N :M b) be a prime submodule of M . Then
one can see that ((N :M b) :R M) = p′ is a prime ideal of R. It is easy
to see that p′ = (N :R bM). Let m ∈ M and bm 6∈ N . We show that
p′ = (N :R bm). It is obvious that p′ ⊆ (N :R bm). Assume that r ∈ R and
rbm ∈ N . Thus rm ∈ P = (N :M b) and m 6∈ P = (N :M b) so rbM ⊆ N and
r ∈ (N :R bM) = p′. Hence, p′ = (N :R bm) ∈ AssR(M/N). If b ∈ ∩ni=1pi, then
there is t ∈ N such that bt ∈ ∩ni=1(Qi :R M) so btM ⊆ ∩ni=1Qi = N . Therefore,
btM ⊆ N and bM ⊆ N which is a contradiction. Thus b 6∈ p1. Assume that
r ∈ p′. Thus rbM ⊆ N and so rbM ⊆ ∩ni=1Qi. Hence, rb ∈ (∩ni=1Qi :R M) ⊆
∩ni=1(Qi :R M) ⊆ ∩ni=1pi. Therefore, from rb ∈ p1 and b 6∈ p1 it follows that
p′ ⊆ p1 so p = p1. Now, we show that P = Q1. Assume that m ∈ Q1. Thus
am ∈ N ⊆ P . If m 6∈ P , then a ∈ p′ = p1 which is a contradiction so Q1 ⊆ P .
Assume that m ∈ P so bm ∈ N ⊆ Q1. If m 6∈ Q1, then there is s ∈ N such
that bsM ⊆ Q1 = (N :M a). Hence, abs−1(bM) ⊆ N so abs−1 ∈ p′ = p1
which implies that b ∈ p′ = p1 since a /∈ p1. This means that b2M ⊆ N and
b ∈ r(N :R M) = (N :R M) which is a contradiction. Therefore, m ∈ Q1 and
so P ⊆ Q1. �

Theorem 2.6. Let N be a 2-absorbing submodule of M such that r(N :R
M) = p is a prime ideal of R. Then {(N :M a) : a ∈ R \ p} = {N =
∩ni=1Qi,∩n−1i=1 Qi, . . . , Q1} is a totally ordered set.

Proof. By [12, Corollary 2.4], (N :M a) is a 2-absorbing submodule of M for
all a ∈ R. If a 6∈ pn, then in view of Lemma 2.1(ii), (N :M a) = ∩ni=1(Qi :M
a) = ∩ni=1Qi = N . Suppose that there is j with 1 ≤ j < n such that a ∈
pj+1 \

⋃j
i=1 pi. Thus there is t ∈ N such that atM ⊆ ∩ni=j+1Qi and at /∈ pj .

By Lemma 2.1(ii), we have (N :M at) = (∩ni=1Qi :M at) = ∩ni=1(Qi :M at) =

∩ji=1Qi. Now, it is enough to show that (N :M at) = (N :M a). It is clear that
(N :M a) ⊆ (N :M at). For the reverse inclusion assume that m ∈ (N :M at).
Thus atm ∈ N since N is a 2-absorbing submodule am ∈ N or at−1m ∈ N
or at ∈ (N :R M) ⊆ pj . If am ∈ N the assertion follows. The third case is
impossible. So assume that at−1m ∈ N . Now, by an easy induction one can
show that am ∈ N as desired. Hence, (N :M a) = (N :M at) = ∩ji=1Qi. �

Corollary 2.7. Let N be a 2-absorbing submodule of M such that r(N :R
M) = p is a prime ideal of R. Then (N :R m) is a decomposable ideal of R
for each m ∈ M \ N . Moreover, its primary decomposition is (N :R m) =
∩ni=j+1(Qi :R m) for some j with 0 ≤ j ≤ n.

Proof. (i) Let m ∈ M \ N and let m ∈ ∩ji=1Qi \ ∪ni=j+1Qi for some j with
1 ≤ j < n. Then by Lemma 2.1(i), (N :R m) = (∩ni=1Qi :R m) = ∩ni=j+1(Qi :R
m). �
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Theorem 2.8. Let N be a 2-absorbing submodule of M such that r(N :R M) =
p ∩ q, where p, q are the only distinct prime ideals of R that are minimal over
(N :R M). Then the following statements are true.

(i) p = pk, q = ps for some k, s with 1 ≤ k, s ≤ n and k 6= s.
(ii) For each j = 1, . . . , n there exists mj ∈M such that (N :R mj) = pj.

Proof. (i) By the assumption r(N :R M) = r(∩ni=1Qi :R M) = r(∩ni=1(Qi :R
M)) = ∩ni=1pi = p ∩ q. Since p is a minimal prime ideal of (N :R M), there
exists 1 ≤ k ≤ n such that p = pk. Also, there exists 1 ≤ s ≤ n with k 6= s
such that p = ps.

(ii) Let mj ∈ ∩ni=1,i6=jQi \ Qj . Then (N :R mj) = (∩ni=1Qi :R mj) =

(Qj :R mj). Moreover, r(N :R mj) = r(Qj :R mj) = r(Qj :R M) = pj . By
[10, Theorem 2.5] either (N :R mj) is a prime ideal of R or there exists a ∈ R
such that (N :R amj) is a prime ideal of R. If (N :R mj) is a prime ideal,
then (Qj :R mj) = (N :R mj) = r(N :R mj) = pj . Now, suppose that (N :R
mj) ⊂ pj and a ∈ pj \ (N :R mj). Thus amj ∈ ∩ni=1,i6=jQi \ Qj as above

(N :R amj) is a pj-primary ideal of R. By [10, Theorem 2.4] and [3, Theorem
2.4] it follows that p2j ⊆ (N :R mj). Hence, pj ⊆ (N :R amj) ⊆ pj . Therefore,
(N :R amj) = pj . �

Corollary 2.9. Let N be a 2-absorbing submodule of M such that r(N :R M) =
p ∩ q, where p, q are the only distinct prime ideals of R that are minimal over
(N :R M). Then AssR(M/N) is union of two totally ordered sets such as
{pk} ∪ {p1, . . . , pk−1, pk+1, . . . , pn} or {ps} ∪ {p1, . . . , ps−1, ps+1, . . . , pn}.
Proof. Let N = ∩ni=1Qi be a minimal primary decomposition of N with r(Qi :R
M) = pi for each 1 ≤ i ≤ n. Then by Theorem 2.8, p = pk, q = ps for some k, s
with 1 ≤ k, s ≤ n and k 6= s. Without loss of generality we may assume that
p = p1 and q = p2. Suppose that 3 ≤ l, t ≤ n and l 6= t. By the assumption
there exist ml ∈ ∩ni=1,i6=lQi \Ql and mt ∈ ∩ni=1,i6=tQi \Qt. Thus r(N :R ml) =

r(∩ni=1Qi :R ml) = ∩ni=1r(Qi :R ml) = r(Ql :R ml) = r(Ql :R M) = pl and
r(N :R mt) = pt. Let pt 6⊆ pl; we show that pl ⊆ pt. By the hypotheses we
may assume that p1 ⊆ pl moreover pt 6⊆ pl ∪ p2. Suppose that a ∈ pl and
b ∈ pt \ pl ∪ p2. So there exists s ∈ N such that asml ∈ N, bsmt ∈ N and
bsml /∈ N . If as(ml + mt) ∈ N , then a ∈ pt and the proof is completed. Now,
let as(ml + mt) 6∈ N . Then asbs ∈ (N :R M) since bs(ml + mt) 6∈ N and
asbs(ml + mt) ∈ N . So ab ∈ p1 ∩ p2. Since b /∈ p1 ∪ p2, we have a ∈ p1 ∩ p2.
So asM ⊆ N and asmt ∈ N which implies that a ∈ pt. Hence, AssR(M/N)
is the union of two totally ordered sets such as AssR(M/N) = {p = p1} ∪
{p2, p3, . . . , pn} or AssR(M/N) = {q = p2} ∪ {p1, p3, . . . , pn}. �

Remark 2.10. Let N be a 2-absorbing submodule of M such that r(N :R M) =
p ∩ q, where p, q are the only distinct prime ideals of R that are minimal over
(N :R M). In the rest of this paper, it will be supposed that p1, . . . , pn have
been numbered (renumbered if necessary) such that p = p1, q = p2 and either
p1 ⊂ p3 ⊂ · · · ⊂ pn or p2 ⊂ p3 ⊂ · · · ⊂ pn.
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Corollary 2.11. Let N be a 2-absorbing submodule of M such that r(N :R M)
= p∩q, where p, q are the only distinct prime ideals of R that are minimal over
(N :R M). Then {(N :M a) : a ∈ R\p1∪p2} = {N = ∩ni=1Qi,∩n−1i=1 Qi, . . . , Q1∩
Q2} and {(N :M a) : a ∈ p2 \ p1} = {∩ni=1,i6=2Qi,∩n−1i=1,i6=2Qi, . . . , Q1 ∩Q3, Q1}
whenever p1 ⊂ p3 ⊂ · · · ⊂ pn.

Proof. The proof is similar to that of Theorem 2.6 �

3. Zero-divisor graph of equivalences classes of zero-divisors

Let R be a commutative ring and M be a Noetherian R-module. The zero-
divisor graph of M , denoted by Γ(M), is a simple undirected graph whose
vertex set is ZR(M) \AnnR(M) and two distinct vertices a and b are adjacent
if and only if abM = 0, see [8]. In the following we define the zero-divisor graph
for equivalences classes of zero divisors of M . For a, b ∈ R, we say that a ∼ b if
and only if AnnM (a) = AnnM (b). It is clear that ∼ is an equivalence relation.
If [a] denotes the class of a, then [a] = AnnR(M) for all a ∈ AnnR(M) and
[a] = R \ Z(M) for all a ∈ R \ Z(M); the other equivalence classes form a
partition of Z(M) \AnnR(M).

Definition. The zero-divisor graph of equivalence classes of zero divisors of
M , denoted ΓE(M), is a simple graph associated to M whose vertices are
the equivalence classes of the elements of Z(M) \ AnnR(M), and each pair of
distinct classes such as [a] and [b] are adjacent if and only if abM = 0.

Lemma 3.1. Let x, y ∈ Z(M) \ AnnR(M). If AnnM (x) ⊂ AnnM (y), then
deg[x] ≤ deg[y].

Proof. If [z] ∈ ΓE(M) is such that zxM = 0, then clearly zyM = 0. So if [z]
is adjacent to [x], then [z] is adjacent to [y]. Thus deg[x] ≤ deg[y]. �

Let G = (V,E) be a graph. A subset S of V is called an independent set of
G if no two vertices in S are adjacent.

Theorem 3.2. Let the zero submodule of M be a 2-absorbing submodule such
that r(0 :R M) = p is a prime ideal of R. Then ΓE(M) has an independent set
of vertices such as {[a1], . . . , [an−1]}, where deg[an−1] ≤ · · · ≤ deg[a1].

Proof. Suppose that 0 = Q1 ∩ · · · ∩ Qn (n ≥ 2) with r(Qi :R M) = pi for
i = 1, . . . , n, is a minimal primary decomposition of the zero submodule of
M . By Theorem 2.6, there is a subset of elements of Z(M) \ Ann(M) such as
{a1, . . . , an−1}, where {AnnM (an−1) = ∩n−1i=1 Qi, . . . ,AnnM (a1) = Q1}. Thus
the set {[a1], . . . , [an−1]} is an independent set of vertices of ΓE(M). Since if
akajM = 0 for some k and j with 1 ≤ k < j ≤ n−1, then ajM ⊆ AnnM (ak) =
∩ki=1Qi which implies that ajM ⊆ Q1 so aj ∈ p1, contrary to choose of aj in
Theorem 2.6. The second assertion follows by Lemma 3.1. �
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The graph H = (V0, E0) is a subgraph of G = (V,E) if V0 ⊆ V and E0 ⊆ E.
Moreover, H is called an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V
and E0 = {{u, v} ∈ E |u, v ∈ V0}.

Theorem 3.3. Let the zero submodule of M be a 2-absorbing submodule such
that r(0 :R M) = p is a prime ideal of R. Then ΓE(M)[r(0 :R M)], the induced
subgraph of ΓE(M) by r(0 :R M), is complete.

Proof. In view of [10, Theorem 2.4], (0 :R M) is a 2-absorbing ideal of R and by
[3, Theorem 2.4], p2 ⊆ (0 :R M). Now, suppose that x, y ∈ p \ AnnR(M) and
AnnM (x) 6= AnnM (y). Thus xyM = 0 so [x] and [y] are adjacent in ΓE(M)
and the results follows. �

Remark 3.4. If m ∈ ∩k−1i=1 Qi \ Qk, 2 ≤ k ≤ n − 1 and a ∈ pk \ p1, then atm ∈
∩ki=1Qi for some positive integer t, but m 6∈ ∩ki=1Qi and a 6∈ p1 = r(∩ki=1Qi :R
M) ⊇ (∩ki=1Qi :R M). Thus AnnM (ai), i = 2, . . . , n − 1, is not a prime sub-
module. Hence, non of element of {AnnM (a2) = Q1 ∩Q2, . . . ,AnnM (an−1) =
∩n−1i=1 Qi} is a prime submodule, see the proof of Theorem 3.2.

Let SpecR(M) denote the set of all prime submodules of M and m −
AssR(M) = {P ∈ SpecR(M) : P = AnnM (a) for some a ∈ Z(M) \AnnR(M)}.
The properties of prime submodules and m− AssR(M) are studied in [1, 5, 6].
By [5, Proposition 3.2], any maximal element of ∆ = {AnnM (a) : a ∈ Z(M) \
AnnR(M)} is a prime submodule of M . Thus for a Noetherian R-module M ,
m−AssR(M) is a nonempty set.

Corollary 3.5. Let the zero submodule of M be a 2-absorbing submodule such
that r(0 :R M) = p is a prime ideal of R. Then the following statements are
true.

(i) If m − AssR(M) = {Q1}, then V (ΓE(M)) = {[a1], . . . , [an−1]} and
ΓE(M) is a disconnected graph.

(ii) If Q1 ∈ m − AssR(M), then ΓE(M)[r(0 :R M) ∪ {a1}], the induced
subgraph of ΓE(M) by r(0 :R M) ∪ {a1}, is complete.

(iii) If Q1 = AnnM (a1) 6∈ m−AssR(M), then deg[a1] ≤ 2.

Proof. (i) By the hypotheses Q1 = AnnM (a1) is the only maximal element of
∆. Thus for every x ∈ p we have AnnM (x) ⊆ AnnM (a1). If for some x ∈ p,
AnnM (x) ⊂ AnnM (a1), then xM ⊆ AnnM (x) ⊆ AnnM (a1) implies that a1 ∈ p
contrary to choose of a1 in Theorem 2.6. Hence, AnnM (x) = AnnM (a1) for all
x ∈ p so V (ΓE(M)) = {[a1], . . . , [an−1]} and ΓE(M) is a disconnected graph
by Theorem 3.2.

(ii) By (i) it follows that for all x ∈ p either AnnM (a1) = AnnM (x) or
AnnM (x) 6⊆ AnnM (a1). In the first case there is nothing to prove. If AnnM (x)
6⊆ AnnM (a1) for some x ∈ p, then there is m ∈ AnnM (x) \AnnM (a1) = Q1 so
xm = 0 ∈ Q1 implies that a1xM = 0. Thus [a1] is adjacent to [x]. Hence, in
view of Theorem 3.3 the result follows.

(iii) The result follows by [9, Theorems 4.1, 4.4 and Corollary 4.3]. �
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