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GALOIS GROUPS OF MODULES AND INVERSE
POLYNOMIAL MODULES

SANGWON PARK AND JINSUN JEONG

ABSTRACT. Given an injective envelope E of a left R-module M, there is
an associative Galois group Gal(¢). Let R be a left noetherian ring and £
be an injective envelope of M, then there is an injective envelope E[z™}]
of an inverse polynomial module M[zx~!] as a left R{z]-module and we
can define an associative Galois group Gal(¢[z~!]). In this paper we
describe the relations between Gal(¢) and Gal(¢[x~1]). Then we extend
the Galois group of inverse polynomial module and can get Gal(¢[z~%}),
where S is a submonoid of N (the set of all natural numbers).

1. Introduction

Given an injective envelope M C FE, by the Galois group of this envelope we
mean all f € Hompg(E, E) such that f(z) = z for all € M or equivalently
such that

M—F

AN

E

is a commutative diagram. Any such f is an automorphism of E and we also
see that

M——F

NG

E

is commutative. So we easily see that the set of f form a group (using the
composition of functions as operation). If ¢ : M — FE denotes the canonical
injection then the group is denoted Gal(¢). Northcott ([4]) defined inverse
polynomial modules and used inverse polynomial modules to study the proper-
ties of injective modules and he studied K[z ~!] as K[z]-module on field K. And
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McKerraw ([2]) showed that if R is a left noetherian ring and F is an injective
left R-module, then E[z~!] is an injective envelope of M[z™!] as R[z]-module.
Inverse polynomial modules were studied in ([5]), ([6]) and recently in ([1]),

({71), (18]), (19])-

Definition 1.1 ([5]). Let R be a ring and M be a left R-module, then M [z~!]
is a left R|z|-module defined by

z(mo+miz ™t + - A mprT) =my +Fmez T 4+ M

and such that

n+1

r(mo+miz + -+ mpz ") = rmg +rmux 4 Frmuz "

where r € R. We call M[z™!] as an inverse polynomial module.

If R is left noetherian and if M C E is as above, then M[z™!] C E[z™]
is an injective envelope over R[x|. If ¢[z~!] : M[z~!] — E[z~!] denotes the
canonical injection, then the group is denoted Gal(¢[z™1]).

Lemma 1.2 ([5]). Let M and N be left R-modules, then
Homppa) (M[z™), N[e™1]) 2 Hom (M, N)[a].

Theorem 1.3. There is a ring isomorphism
Homp)(M[z™ '], Njz™']) 2 Homg(M, N)[[z]].

Proof. By the Lemma 1.2., we know that two groups are isomorphic. Let
0,7 € Hompp,(M[z~!'], N[z~1]), then o corresponds to fo+ fiz+ foz®+--- €
Hompg(M, N)|[z]] and T corresponds to go+g1x+goz?+- -+ € Homg(M, N)|[z]].
Then o o 7 corresponds to

oo

Y (D fiogja™.

n=0 i4+j=n

Hence, Hompp,)(M[z~ '], Njz71]) & Homg(M, N)|[z]]. O

2. Gal(¢) and Gal(¢[z—1])

Theorem 2.1. If R is a left noetherian ring and if M C E is an injective
envelope of R-module, then f = fo+ fix + fox? + fax® +--- € Endg(E)[[z]] is
in Gal(dlxz™1]) if and only if fo € Gal(¢) and f;(M) =0 for all i > 1.

Proof. Let m € M and f € Gal(¢[z™!]), then
fm+0z 1 +0z72+-.- 4+ 027

= (fo+ fiz+ for’ +-- )Y m+ 0z '+ 0z 2+ +0z7")

= (fo+ fix + fox® +---)

= fo(m) + film)x + fo(m)z* + - -

m
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Thus fo(m) = m for all m € M, so that fy € Gal(¢). And
f(m+ma™")
= (fo+ fiz + fax® + - )(m +ma™1)
= fo(m) + fo(m)z™! + fi(m)z + fr(m) + fa(m)z® + fa(m)z + - --
= (fo(m) + f1(m)) + fo(m)z™' + (fi(m) + fa(m))x + - - -
=m+mz ',
Since fo(m) =m, m+ f1(m) = m implies f;(m) = 0. Thus f1(m) = 0. And
f(m+mz~! + mz~?)
= (fo+ fiz + fox® + - )(m +ma~! + mz™?)
= fo(m) + fo(m)z™" + fi(m)x + f1(m) + fi(m)z~! + fa(m)z®
+ fa(m)x + fa(m) + - -
= (fo(m) + fi(m) + fa(m)) + (fo(m) + fr(m))z™" + fo(m)z™*
+(falm) + folm))z + -+

=1m <+ ma:_l + mx_Z.

Since fo(m) =m, fi(m) =0, fo(m) + f1(m) + fo(m) = m implies fo(m) = 0.
Thus f2(m) = 0. By the same process we can get f;(M) =0 for all > 1.

Conversely, let f = fo + fiz + fox® + faz® +--- with f € Gal(¢[z~!]) and
filtM) =0,i> 1. Let mo+miz~ +moz™2 +--- + myz™" € M[z~1]. We want
to show

fmo+miz  +maz ™+ -+ miz™8) =mo+miz L +mez 2+ +mz "
Then
flmo+miz= 4+ mez 2+ + miz ")
= (fo+ fiz+ fox* + - H(mo +myz™t +mez 2 4 -+ muz )
= fo(mo) + fo(m1)z™ + fo(ma)z ™2 + - + fo(mi)z ™
+ filmo)z + fi(m1) + fi(ma)z™ + - + fi(ma)z ™ + fa(mo)a®
+ fa(ma)z + fa(ma) + fa(ma)z™ + -+ + fo(my)z ™2 + - + fi(my)
= mop + mlzc_l + mzx_2 + 04 mz—x“i,
since fo € Gal(¢) and f;(M) = 0 for all 7 > 1. Therefore, f = fo+ fiz+ fox*+
f3z + -+ € Gal(d[z71)). O

There are natural group homomorphisms Gal(¢) — Gal(¢[z™!]) by g —
g+0x+0z°+ -+ and Gal(@[z1]) — Gal(¢) by fo+ fiz+ fox?+--- — fo. The
composition Gal(¢) — Gal(p{x™!]) — Gal(¢) is the identity map on Gal(¢).
The kernel of Gal(p[xz~']) — Gal(¢) consists of all idg + fix + fox? + -,
where f; € Homg(E,E) and f;(M) =0, for all 1 > 1.
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Lemma 2.2. Let ¢ : Gal(¢) — Gal(¢lz™1]) be defined by ¥(f) = f + 0x +
0z®+---. If End(E) is a commutative ring, then Im(v) is a normal subgroup

of Gal(lz)).

Proof. Let fo+0x+0z24--- € Im(v), and go+ g1+ g222+- - - € Gal(¢p[z™1]).
Let (go + g17 + gox® + -+ )™t = hg + hyx + hez? +--- . Then

(go + g1z + gox® +-- Vo (hg +hix + hox? +---) =idg + 0z + 0z + - - -,
implies gg o hg = idg so that hg :go_1 and Zi—l—j:n gioh; =0,n > 1. Thus

(go+gqr1x+--)o(fo+0x+---)o(hg+hiz+-)
= ({900 fo) + (g1 0 fo)x + (g2 © fo)a® +--) o (ho + haz + hoz” +---)
= (go o fooho) +(goo foohi+g10 fooho)r
+{goofooha+gi0 foohi+gzo fooho)r®+--- = fo,

since End(F) is a commutative ring. Hence, I'm(1) is a normal subgroup of

Gal(¢[z™1]). ]

We note that I'm(w)) is not a normal subgroup of Gal(¢[x~!]), in general. So
Gal(¢[z~1]) is the semidirect product of Gal(¢) and K = ker(Gal(¢[z1]) —

Gal(9)).

Lemma 2.3. .Ga,l(cb) s commutative if and only if go g = ¢ o g for all
9,9 € Homg(E, E) with g(M) =0,9'(M) = 0.

Proof. If f € Gal(¢), then g = f —idg € Homg(F, E) with g(M) = 0. And
given g € Gal(plz™1]) with g(M) =0, f = g+ idg € Gal(¢). Therefore, there
is one to one correspondence between Gal(¢) and the set of g € Homg(E, E)
with g(M) = 0. So, given f, f’ € Gal(¢) choose g = f —idg,g' = f' —idg €
Homp(E,E) with g(M)=0,¢g'(M) =0. Thengog =g og.

Conversely, given g,9' € Homg(E, E) with g(M) = 0,¢9'(M) = 0 choose
f=9g+1ide, f =¢ +idg € Gal(¢). Then fo f' = f' o f. Thus, Gal(¢) is

commutative. L]

Theorem 2.4. Gal(plx']) is commutative if and only if Gal(¢) is commuta-
tive.

Proof. Since Gal(¢) is a subgroup of Gal(¢[z™1]), Gal(¢) is commutative. Con-
versely, let fo + fix + fox® + -+ ,go + 17 + g22* + - -+ € Gal(¢[z™']). Then
by the Theorem 2.1., fo,90 € Gal(¢), fi(M) = 0,9;(M) = 0, for all 4,5 > 1.
And by the Lemma 2.3., fiog, = g; o fi,i,7 > 1. Given f; € Gal(¢) choose
gi = fi —tdg € Hom(E, E) with ¢;(M) = 0. Then

foogi= foo(fi—idg) = foo fi— fo=fiofo— fo
= (fi —idg) o fo = g: o fo.
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So
(f0-|-f1$—|-f2x2—|----)o(go+glgc+ggx2+...)
= (foogo)+ (foogi+ fiogo)z+ (fooga+ fiogi+ faogo)a? + -
:(900f0)+(910f0+goOf1):E—i—(ggof0+glofl+goof2)x2+...
= (go+ g1z + gox® + -+ Vo (fo+ frz + faz® +-+).
Therefore, Gal(p[z~']) is commutative. O

Theorem 2.5. Let ¢ : Gal(¢[z™]) — Gal(¢) be defined by ¢(fo + fiz +
f2z? + ) = fo. Then Gal(¢p[z~?]) is the direct product of K and Gal(¢) if
and only if Gal(¢) is commutative, where K = ker(p).

Proof. Let g,g' € Gal(¢). Then idg + g € Gal(¢) and (idg + ¢'z)"! o (idg +
g)o (idg + g'z) € Gal($). So let (idg + g'x)™* = idg — ¢’z + etc., then

(idg +g'z) "o (idg + ¢) o (idg + ¢'x)
= (idg — g’z + etc) o (idp + g) o (idp + g'z)
= idg + (mg’ og+go g')a’; + etc. € Gal((b)

implies —g’ og+gog =0sothat g og=goyg.
Therefore, Gal(¢) is commutative.
Conversely, by the Theorem 2.4., if Gal(¢) is commutative then Gal(¢[z~1])

is commutative. Therefore, Gal(¢[z']) is the direct product of K and Gal(¢).
[

3. Generalization of Galois group

Definition 3.1 ([8]). Let R be a ring and M be a left R-module, and S =
{0,k1,k2,...} be a submonoid of N (the set of all natural numbers). Then
Mlx~%| is a left R[z°]-module such that

T (mg + mlx“kl + 'mggx”‘l"2 + -t mnx'k”)

_ ml—kwki ¥ gz Rtk o, g e R

where
—kithi _ g=kith ifk; -k €S
- 0 if by —k; ¢ S.

For example, if S = {0,2,3,...}, then mg+mez 2 +mzz >+ +mz " €
Mz~®] and if § = {0,1,2,3,...}, then M[z™%] = M[z~1].

Similarly, we define M|[[z~%]], M|x* z7°%], M|[z®, x7°]], M|z®,z~%]] and
M[jz®, x™*] as left R[z*]-modules.

Definition 3.2. Given any module M and f € End(FE) we say f is locally
nilpotent on M if for every x € M, there exist n > 1 such that f*(z) = 0.
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Theorem 3.3 (Matlis and Gabriel). If R is a left noetherian ring and E is an
injective left R-module and f € End(E) is such that E is an essential extension
of ker(f) then f is locally nilpotent on E.

Theorem 3.4. Let R be a commutative noetherian ring and S be a submonoid,
and E be an injective left R-module. Then E[x™%] is an injective left R[x®]-
module.

Proof. Let S = {0,k1,ko,...} be a submonoid. Then Hompg(R[z®],E) =
El[z~*]] is an injective left R[z®]-module. Define ¢ : E([z~%]] — E[[z~7||
by ¢(f) = «* f for f € E[[z*]]. Then ¢ is not locally nilpotent on E[[z~*]].
So E[[x~*]] is not an essential extension of ker(¢). Let E be an injective
envelope of ker(¢). Then

ker(¢) C E C E[[z™7]].
Then ¢ : E — E defined by

o(f) = 2" f,

for f € E is locally nilpotent on E. So E C E[z°]. But E[z™*] is an essential

extension of ker(¢), so that E[z~*] is an essential extension of E. Therefore,
E = E|z~*]. Hence, E|z~?] is an injective left R|z®]-module. O

We can generalize the Theorem 1.3. and get
Hompzs)(M[z™%], N[z™°]) 2 Hompg(M, N){[z*]].

If plx°] : M[x~°] — E[x~*°] denotes the canonical injection, then the
group is denoted Gal(¢p[z™?]).
Theorem 2.1. can be extended to the following remark.

Remark 1. If R is a left noetherian ring and if M C FE is an injective envelope
of R-module, then f = fi, + f&, 2" + fr, 2% + fr,2® +--- € Endg(E)[[z®]] is
in Gal(¢|x~?)) if and only if fx, € Gal(¢) and fi,(M)=0,k; € S, k; # ko.

Lemma 2.2. can be extended to the following remark.

Remark 2. Let 9 : Gal(qb) — Gal(qb[a:”s]) be defined by w(f) = f+ Oxkr 4
0z*2 +-... If End(E) is a commutative ring, then Im() is a normal subgroup
of Gal{p{x—*}).

Theorem 2.4. can be extended to the following remark.
Remark 3. Gal(¢|x™?]) is commutative if and only if Gal(¢) is commutative.

Theorem 2.5. can be extended to the following remark.

Remark 4. Let ¢ : Gal(¢[z™°]) — Gal(¢) be defined by ¢(fr, + fr, @ +
fr, "2 + ) = fr,- Then Gal(¢[z~?]) is the direct product of K and Gal(¢)
if and only if Gal(¢) is commutative, where K = ker(Gal(¢[x*]) — Gal(¢)).
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