• Title/Summary/Keyword: quasi-Einstein

Search Result 40, Processing Time 0.022 seconds

ON SOME CLASSES OF WEAKLY Z-SYMMETRIC MANIFOLDS

  • Lalnunsiami, Kingbawl;Singh, Jay Prakash
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.935-951
    • /
    • 2020
  • The aim of the paper is to study some geometric properties of weakly Z-symmetric manifolds. Weakly Z-symmetric manifolds with Codazzi type and cyclic parallel Z tensor are studied. We consider Einstein weakly Z-symmetric manifolds and conformally flat weakly Z-symmetric manifolds. Next, it is shown that a totally umbilical hypersurface of a conformally flat weakly Z-symmetric manifolds is of quasi constant curvature. Also, decomposable weakly Z-symmetric manifolds are studied and some examples are constructed to support the existence of such manifolds.

η-Ricci Solitons in δ-Lorentzian Trans Sasakian Manifolds with a Semi-symmetric Metric Connection

  • Siddiqi, Mohd Danish
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.537-562
    • /
    • 2019
  • The aim of the present paper is to study the ${\delta}$-Lorentzian trans-Sasakian manifold endowed with semi-symmetric metric connections admitting ${\eta}$-Ricci Solitons and Ricci Solitons. We find expressions for the curvature tensor, the Ricci curvature tensor and the scalar curvature tensor of ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection. Also, we discuses some results on quasi-projectively flat and ${\phi}$-projectively flat manifolds endowed with a semi-symmetric-metric connection. It is shown that the manifold satisfying ${\bar{R}}.{\bar{S}}=0$, ${\bar{P}}.{\bar{S}}=0$ is an ${\eta}$-Einstein manifold. Moreover, we obtain the conditions for the ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection to be conformally flat and ${\xi}$-conformally flat.

ON GENERALIZED W3 RECURRENT RIEMANNIAN MANIFOLDS

  • Mohabbat Ali;Quddus Khan;Aziz Ullah Khan;Mohd Vasiulla
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.325-339
    • /
    • 2023
  • The object of the present work is to study a generalized W3 recurrent manifold. We obtain a necessary and sufficient condition for the scalar curvature to be constant in such a manifold. Also, sufficient condition for generalized W3 recurrent manifold to be special quasi-Einstein manifold are given. Ricci symmetric and decomposable generalized W3 recurrent manifold are studied. Finally, the existence of such a manifold is ensured by a non-trivial example.

On Conformally at Almost Pseudo Ricci Symmetric Mani-folds

  • De, Uday Chand;Gazi, Abul Kalam
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.507-520
    • /
    • 2009
  • The object of the present paper is to study conformally at almost pseudo Ricci symmetric manifolds. The existence of a conformally at almost pseudo Ricci symmetric manifold with non-zero and non-constant scalar curvature is shown by a non-trivial example. We also show the existence of an n-dimensional non-conformally at almost pseudo Ricci symmetric manifold with vanishing scalar curvature.

SOME RESULTS ON (LCS)n-MANIFOLDS

  • Shaikh, Absos Ali
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.449-461
    • /
    • 2009
  • The object of the present paper is to study $(LCS)_n$-manifolds. Several interesting results on a $(LCS)_n$-manifold are obtained. Also the generalized Ricci recurrent $(LCS)_n$-manifolds are studied. The existence of such a manifold is ensured by several non-trivial new examples.

ON (ϵ)-LORENTZIAN PARA-SASAKIAN MANIFOLDS

  • Prasad, Rajendra;Srivastava, Vibha
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.297-306
    • /
    • 2012
  • In this paper we study (${\epsilon}$)-Lorentzian para-Sasakian manifolds and show its existence by an example. Some basic results regarding such manifolds have been deduced. Finally, we study conformally flat and Weyl-semisymmetric (${\epsilon}$)-Lorentzian para-Sasakian manifolds.

RIEMANNIAN SUBMERSIONS WHOSE TOTAL SPACE IS ENDOWED WITH A TORSE-FORMING VECTOR FIELD

  • Meric, Semsi Eken;Kilic, Erol
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1199-1207
    • /
    • 2022
  • In the present paper, a Riemannian submersion 𝜋 between Riemannian manifolds such that the total space of 𝜋 endowed with a torse-forming vector field 𝜈 is studied. Some remarkable results of such a submersion whose total space is Ricci soliton are given. Moreover, some characterizations about any fiber of 𝜋 or the base manifold B to be an almost quasi-Einstein are obtained.

NOTES ON WEAKLY CYCLIC Z-SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.227-237
    • /
    • 2018
  • In this paper, we study some geometric structures of a weakly cyclic Z-symmetric manifold (briefly, $[W CZS]_n$). More precisely, we prove that a conformally flat $[W CZS]_n$ satisfying certain conditions is special conformally flat and hence the manifold can be isometrically immersed in an Euclidean manifold $E^n+1$ as a hypersurface if the manifold is simply connected. Also we show that there exists a $[W CZS]_4$ with one parameter family of its associated 1-forms.

On Weakly Z Symmetric Spacetimes

  • De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.761-779
    • /
    • 2018
  • The object of the present paper is to study weakly Z symmetric spacetimes $(WZS)_4$. At first we prove that a weakly Z symmetric spacetime is a quasi-Einstein spacetime and hence a perfect fluid spacetime. Next, we consider conformally flat $(WZS)_4$ spacetimes and prove that such a spacetime is infinitesimally spatially isotropic relative to the unit timelike vector field ${\rho}$. We also study $(WZS)_4$ spacetimes with divergence free conformal curvature tensor. Moreover, we characterize dust fluid and viscous fluid $(WZS)_4$ spacetimes. Finally, we construct an example of a $(WZS)_4$ spacetime.