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Abstract. The object of the present paper is to study conformally flat almost pseudo

Ricci symmetric manifolds. The existence of a conformally flat almost pseudo Ricci sym-

metric manifold with non-zero and non-constant scalar curvature is shown by a non-trivial

example. We also show the existence of an n-dimensional non-conformally flat almost

pseudo Ricci symmetric manifold with vanishing scalar curvature.

1. Introduction

The Einstein equations [12](p. 337), imply that the energy-momentum ten-
sor is of vanishing divergence. This requirement is satisfied [4] if the energy-
momentum tensor is covariant-constant. In the paper [4] M. C. Chaki and Sarbari
Ray had shown that a general relativistic spacetime with covariant-constant energy-
momentum tensor is Ricci symmetric, that is, ∇S = 0, where S is the Ricci tensor
of the spacetime. If however, ∇S 6= 0, then such a spacetime may be called pseudo
Ricci symmetric. We may say that the Ricci symmetric condition is only a special
case of the pseudo Ricci symmetric condition. It is, therefore, meaningful to study
the properties of pseudo Ricci symmetric spacetimes in general relativity.

In 1967, R. N. Sen and M. C. Chaki [15] studied certain curvature restrictions on
a certain kind of conformally flat space of class one and they obtained the following
expressions of the covariant derivative of Ricci tensor :

(1.1) Rij,l = 2λlRij + λiRlj + λjRil ,

where λi is a non-zero covariant vector and ‘,’ denotes covariant differentiation with
respect to the metric tensor gij .

Later in 1988 M. C. Chaki [2] called a non-flat Riemannian manifold a pseudo
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Ricci symmetric manifold if its Ricci tensor satisfies (1.1). In index free notation
this can be stated as follows:

A non-flat Riemannian manifold is called pseudo Ricci symmetric and denoted
by (PRS)n if the Ricci tensor S of type (0, 2) of the manifold is non-zero and
satisfies the condition

(1.2) (∇XS)(Y,Z) = 2G(X)S(Y, Z) +G(Y )S(X,Z) +G(Z)S(X,Y ),

where ∇ denotes the Levi-Civita connection and G is a non-zero 1-form such that

(1.3) g(X, ρ) = G(X),

for all vector fields X; ρ being the vector field corresponding to the associated 1-
form G. If in (1.2) the 1-form G = 0, then the manifold reduces to Ricci symmetric
manifold (∇S = 0). This notion of pseudo Ricci symmetry is different from that of
R. Deszcz [9].

Also in [13] S. Ray-Guha proved that a perfect fluid pseudo Ricci symmetric
spacetime is a quasi Einstein manifold with each of its associated scalars equal to
r/3 and a conformally flat perfect fluid pseudo Ricci symmetric spacetime obeying
Einstein equation without cosmological constant and having the basic vector field
of pseudo Ricci symmetric spacetime as the velocity vector field of the fluid is
infinitesimally spatially isotropic relative to the velocity vector field.

In a recent paper [8] we have shown that a pseudo Ricci symmetric quasi Einstein
perfect fluid spacetime represents the equation of state in the radiation era in the
evolution of our universe.

So pseudo Ricci symmetric manifolds have some importance in the general the-
ory of relativity. Considering this aspect M. C. Chaki and T. Kawaguchi [3] moti-
vated to generalize pseudo Ricci symmetric manifold and introduced the notion of
almost pseudo Ricci symmetric manifold.

A non-flat Riemannian manifold (Mn, g), (n > 3), is called an almost pseudo
Ricci symmetric manifold if its Ricci tensor S of type (0, 2) is not identically zero
and satisfies the condition

(1.4) (∇XS)(Y, Z) = [A(X) +B(X)]S(Y,Z) +A(Y )S(X,Z) +A(Z)S(X,Y ),

where A and B are two 1-forms and ∇ denotes the operator of covariant differentia-
tion with respect to the metric tensor g. In such a case A and B are called associated
1-forms and an n-dimensional manifold of this kind is denoted by A(PRS)n.

If B = A, then the equation (1.4) reduces to (1.2), that is, A(PRS)n reduces
to a pseudo Ricci symmetric manifold [2]. Thus pseudo Ricci symmetric manifold
is a particular case of A(PRS)n. In 1993 Tamassy and Binh [17] introduced the
notion of weakly Ricci symmetric manifold which is the generalization of pseudo
Ricci symmetric manifold in the sense of Chaki. It may be mentioned that an
A(PRS)n is not a particular case of a weakly Ricci symmetric manifold introduced
by Tamassy and Binh [17]. In [3] Chaki and Kawaguchi proved that in a conformally
flat A(PRS)n, (n > 3), the scalar curvature, r, can not be zero.
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Let g(X,P ) = A(X) and g(X,Q) = B(X), for all X. Then P , Q are called
basic vector fields of the manifold corresponding to the associated 1-forms A and
B, respectively.

In 1972 B. Y. Chen and K. Yano [5] introduced the notion of quasi-constant
curvature as follows:

A non-flat Riemannian manifold (Mn, g)(n > 3) is said to be quasi-constant
curvature if its curvature tensor R̃ of type (0, 4) satiesfies the condition

R̃(X,Y, Z,W ) = p[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]

+q[g(X,W )E(Y )E(Z) + g(Y,Z)E(X)E(W )

−g(X,Z)E(Y )E(W )− g(Y,W )E(X)E(Z)],(1.5)

where R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ), R is the curvature tensor of type (1, 3),
p, q are scalar functions of which q 6= 0 and E is a non-zero 1-form defined by
g(X, ξ̃) = E(X) for all X, ξ̃ being a unit vector field. In such a case p and q were
called associated scalars, E was called the associated 1–form and ξ̃ was called the
generator of the manifold.

In 1956 S. S. Chern [7] studied a type of Riemannian manifold whose curvature
tensor R̃ of type (0, 4) satisfies the condition

(1.6) R̃(X,Y, Z,W ) = F (Y,Z)F (X,W )− F (X,Z)F (Y,W ),

where F is a symmetric tensor of type (0, 2). Such an n–dimensional manifold was
called a special manifold with the associated symmetric tensor F and was denoted
by ψ(F )n.

Such a manifold is important for the following reasons:
Firstly, for possessing some remarkable properties relating to curvature and

characterstic classes and secondly, for containing a manifold of quasi-constant cur-
vature [5] as a subclass.

The paper is organised as follows:
After preliminaries in section 3 we first prove that a conformally flat almost

pseudo Ricci symmetric manifold is a quasi Einstein manifold. Then we prove that
in this manifold the vector field Q corresponding to the 1-form B is an eigen vector

of the Ricci tensor S corresponding to the eigen value t =
S(Q,Q)

B̃(Q)
. We also show

that such a manifold is a manifold of quasi-constant curvature and hence a subclass
of ψ(F )n. Next we prove that in a conformally flat almost pseudo Ricci symmetric
manifold the vector field Q is a concircular vector field and a conformally flat almost
pseudo Ricci symmetric manifold is a locally product manifold. We close this section
by proving that a conformally flat almost pseudo Ricci symmetric manifold can be
expressed as a warped product IXeqM

∗ where M∗ is an Einstein manifold. In
section 4 we prove that every simply connected conformally flat A(PRS)n, (n > 3),
satisfying r > 2t, can be isometrically immersed in a Euclidean space En+1 as a
hypersurface. In section 5 we prove the existence of a conformally flat almost pseudo
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Ricci symmetric manifolds by constructing a non-trivial concrete example. Section
6 deals with an example of an n-dimensional non-conformally flat A(PRS)n.

2. Preliminaries

Let (Mn, g) (n > 3) be an almost pseudo Ricci symmetric manifold. Also let
g(LX, Y ) = S(X,Y ), for all X, Y . We take A(LX) = Ā(X) and B(LX) = B̄(X).
Then Ā and B̄ are called auxiliary 1-forms corresponding to the 1-forms A and B
respectively. We get from (1.4) that

(2.1) (∇XS)(Y,Z)− (∇ZS)(X,Y ) = B(X)S(Y,Z)−B(Z)S(X,Y ).

Now contracting (2.1) over Y , Z we get

(2.2) dr(X) = 2rB(X)− 2B̄(X),

where r is the scalar curvature. Next, contracting (1.4) over Y , Z we obtain

(2.3) dr(X) = [A(X) +B(X)]r + 2Ā(X).

3. Conformally flat A(PRS)n(n > 3)

In this section we assume that the manifold A(PRS)n is conformally flat. Then
divC = 0 where C denotes the Weyl’s conformal cuvature tensor and ′div′ denotes
divergence. Hence we have [10]

(3.1) (∇XS)(Y,Z)− (∇ZS)(X,Y ) =
1

2(n− 1)
[g(Y, Z)dr(X)− g(X,Y )dr(Z)].

Using (2.1) and (2.2) in (3.1) we get

B(X)S(Y, Z)−B(Z)S(X,Y ) =
r

(n− 1)
[B(X)g(Y,Z)−B(Z)g(X,Y )]

− 1

(n− 1)
[B̄(X)g(Y,Z)− B̄(Z)g(X,Y )].(3.2)

Now putting Y = Q in (3.2) we get

(3.3) B(X)B̄(Z)−B(Z)B̄(X) = 0.

Again putting X = Q in (3.3) we have

(3.4) B̄(Z) = tB(Z),

where t =
B̄(Q)

B(Q)
is a scalar. So, from (3.4) and (2.2) we obtain

(3.5) dr(X) = 2(r − t)B(X).
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Since B 6= 0, putting X = Q in (3.2) and using (3.4) we get

(3.6) S(Y,Z) = ag(Y,Z) + bT (Y )T (Z),

where a =
r − t

(n− 1)
, b =

nt− r
(n− 1)

are scalars and T (X) =
B(X)√
B(Q)

.

A Riemannian manifold is said to be a quasi-Einstein manifold if its Ricci tensor
is of the form (3.6).

Hence we have the following theorem:

Theorem 3.1. A conformally flat A(PRS)n is a quasi-Einstein manifold.

Now from (3.6) we have

(3.7) S(Y, Z) =
r − t

(n− 1)
g(Y,Z) +

nt− r
(n− 1)B(Q)

B(Y )B(Z).

Putting Z = Q in (3.7) we get

(3.8) S(Y,Q) = tB(Y ) = tg(Y,Q).

Thus we can state the following:

Corollary 3.1. The vector field Q corresponding to the 1-form B is an eigen vector
of the Ricci tensor corresponding to the eigen value t.

In a conformally flat Riemannian manifold the curvature tensor R̃ of type (0, 4)
satiesfies the condition [10]

R̃(X,Y, Z,W ) =
1

(n− 2)
[S(Y,Z)g(X,W )− S(X,Z)g(Y,W )

+S(X,W )g(Y, Z)− S(Y,W )g(X,Z)]

− r

(n− 1)(n− 2)
[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )],(3.9)

where R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ), R is the Riemannian curvature tensor of
type (1, 3), and r is the scalar curvature. Now using (3.6) in (3.9) we get

R̃(X,Y, Z,W ) = p[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]

+q[g(X,W )T (Y )T (Z) + g(Y,Z)T (X)T (W )

−g(X,Z)T (Y )T (W )− g(Y,W )T (X)T (Z)],(3.10)

where p =
r − 2t

(n− 1)(n− 2)
and q =

nt− r
(n− 1)(n− 2)

. This implies that the manifold

is of quasi-constant curvature. Thus we can state the following theorem:

Theorem 3.2. A conformally flat A(PRS)n is a manifold of quasi-constant cur-
vature.
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Now we shall prove that a ψ(F )n contains a manifold of quasi-constant curvature
as a subclass.

For this let us choose

F (X,Y ) =
√
pg(X,Y ) +

q√
p
E(X)E(Y ).

Then from (1.5) it follows that

R̃(X,Y, Z,W ) = F (Y,Z)F (X,W )− F (X,Z)F (Y,W ).

Hence a manifold of quasi-constant curvature is a ψ(F )n. So we have the following:

Proposition 1. A manifold of quasi-constant curvature is a ψ(F )n.

From this Proposition 1 and Theorem 3.2 we can conclude that

Corollary 3.2. A conformally flat A(PRS)n is a ψ(F )n.

Now putting Z = Q in (1.4) and using (3.6) and (3.8) we get

(∇XS)(Y,Q) = aA(Q)g(X,Y ) + t[A(X)B(Y ) +A(Y )B(X)]

+[t+ b
A(Q)

B(Q)
]B(X)B(Y ).(3.11)

Again,

(3.12) (∇XS)(Y,Q) = ∇XS(Y,Q)− S(∇XY,Q)− S(Y,∇XQ).

Using (3.6), (3.8), (∇XB)(Y ) = g(Y,∇XQ) and B(∇XQ) = g(Q,∇XQ) =
1

2
(XB(Q)) we get from (3.12) that

(3.13) (∇XS)(Y,Q) = (Xt)B(Y ) + (t− a)g(Y,∇XQ) +
b

2B(Q)
(XB(Q))B(Y ).

Now from (3.6) we get

(3.14) LX = aX +
b

B(Q)
B(X)Q.

So by (3.14)

(3.15) Ā(X) = A(LX) = aA(X) +
bA(Q)

B(Q)
B(X).

With the help of (3.5) and (3.15) we get from (2.3) that

(3.16) A(X) = λB(X),
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where

(3.17) λ =
r − 2t+ 2bA(Q)

B(Q)

r(1 + 2a)

is a scalar. From (3.11), (3.13) and (3.16) we get

g(Y,∇XQ) =
aA(Q)

(t− a)
g(X,Y )

+
tA(X) + [t(1 + λ) + bA(Q)

B(Q) ]B(X)− b
2B(Q) (XB(Q))− (Xt)

(t− a)
B(Y ),

which implies that

(3.18) ∇XQ = −fX + ω(X)Q,

where

(3.19) f =
aA(Q)

(a− t)

and

(3.20) ω(X) =
tA(X) + [t(1 + λ) + bA(Q)

B(Q) ]B(X)− b
2B(Q) (XB(Q))− (Xt)

(t− a)

are a scalar function and a 1-form respectively. Hence Q is a concircular vector field
[16], [18]. Thus we have the following theorem:

Theorem 3.3. In a conformally flat A(PRS)n(n > 3), the vector field Q is a
concircular vector field.

Let Q⊥ denote the (n − 1)-dimensional distribution in a conformally flat
A(PRS)n orthogonal to Q. If X and Y belong to Q⊥ , then

(3.21) g(X,Q) = g(Y,Q) = 0.

Since (∇Xg)(Y,Q) = 0, it follows from (3.18) and (3.21) that

−g(∇XY,Q) = g(Y,∇XQ) = −fg(X,Y ).

Similarly, we get

−g(∇YX,Q) = g(X,∇YQ) = −fg(X,Y ).

Hence

(3.22) g(∇XY,Q) = g(∇YX,Q).
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Now [X,Y ] = ∇XY −∇YX and therefore, by (3.22) we obtain

g([X,Y ], Q) = g(∇XY −∇YX,Q) = 0.

Hence [X,Y ] is orthogonal to Q. That is [X,Y ] belongs to Q⊥. Thus the distri-
bution Q⊥ is involutive [1]. Hence from Frobenius’ theorem [1] it follows that Q⊥

is integrable. This implies that a conformally flat A(PRS)n, n > 3, is a product
manifold. We can therefore, state the following theorem:

Theorem 3.4. A conformally flat A(PRS)n(n > 3), is a locally product manifold.

K. Yano [19] proved that in order that a Riemannian space admits a concircular
vector field, it is necessary and sufficient that there exists a coordinate system with
respect to which the fundamental quadratic differential form may be written in the
form

ds2 = (dx1)2 + eqg∗αβdx
αdxβ ,

where g∗αβ = g∗αβ(xγ) are the functions of xγ only (α, β, γ, δ = 2, 3, · · · , n) and

q = q(x1) 6= constant is a function of x1 only. Thus if an A(PRS)n, n > 3,
is conformally flat, that is, if it satiesfies (3.1), it is a warped product IXeqM

∗,
where (M∗, g∗) is an (n−1)-dimensional Riemannian manifold. A. Gebarowski [11]
proved that warped product IXeqM

∗ satiesfies (3.1) if and only if M∗ is an Einstein
manifold. Thus if A(PRS)n satiesfies (3.1), it must be a warped product IXeqM

∗

where M∗ is an Einstein manifold. Thus we can state the following result:

Theorem 3.5. A conformally flat A(PRS)n(n > 3), can be expressed as a warped
product IXeqM

∗ where M∗ is an Einstein manifold.

4. Special conformally flat A(PRS)n(n > 3)

The notion of a special conformally flat manifold which generalizes the notion
of a subprojective manifold was introduced by Chen and Yano [6]. According to
them a conformally flat manifold is said to be a special conformally flat manifold if
the tensor H of type (0, 2) defined by

(4.1) H(X,Y ) = − 1

(n− 2)
S(X,Y ) +

r

2(n− 1)(n− 2)
g(X,Y ),

is expressible in the form

(4.2) H(X,Y ) = −α
2

2
g(X,Y ) + β(X.α)(Y.α),

where α and β are two scalars such that α is positive. In virtue of (3.6) we can
express (4.1) as

(4.3) H(X,Y ) = − r − 2t

2(n− 1)(n− 2)
g(X,Y ) +

r − nt
(n− 1)(n− 2)B(Q)

B(X)B(Y ).
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We now put

(4.4) α2 =
r − 2t

(n− 1)(n− 2)
.

We may assume that t is constant and then taking covariant differentiation to the
both sides of (4.4) with respect to X and using (3.5) we get

(4.5) α(X.α) =
r − t

(n− 1)(n− 2)
B(X)

Then the equation (4.3) can be expressed as

(4.6) H(X,Y ) = −α
2

2
g(X,Y ) + β(X.α)(Y.α),

where β =
(r − nt)(r − 2t)

(r − t)2B(Q)
.

Since r 6= 0, α is not zero. Suppose r > 2t then from (4.4) it follows that α may
be taken as positive. From (4.6) we conclude that the A(PRS)n under consideration
is a special conformally flat manifold.

It is known from a theorem of Chen’s and Yano’s paper [6] that every simply
connected special conformally flat manifold can be isometrically immersed in a Eu-
clidean space En+1 as a hypersurface. we can therefore state the following result:

Theorem 4.1. Every simply connected conformally flat A(PRS)n(n > 3), sat-
isfying r > 2t, can be isometrically immersed in a Euclidean space En+1 as a
hypersurface.

5. Existence of conformally flat almost pseudo Ricci symmetric mani-
folds

Let us consider a Riemannian metric g on R4 by

(5.1) ds2 = gijdx
idxj = (x4)

4
3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2

(i, j = 1, 2, 3, 4). Then the only non-vanishing components of the Christoffel symbols
and the curvature tensors are

Γ1
14 = Γ2

24 = Γ3
34 =

2

3x4
, Γ4

11 = Γ4
22 = Γ4

33 = −2

3
(x4)1/3,

R1441 = R2442 = R3443 = − 2

9(x4)2/3

and the components obtained by the symmetry properties. The non-vanishing com-
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ponents of the Ricci tensor and their covariant derivatives are:

R11 = − 2

9(x4)2/3
, R22 = − 2

9(x4)2/3
,

R33 = − 2

9(x4)2/3
, R44 = − 2

3(x4)2
,

R11,4 =
4

9(x4)5/3
, R22,4 =

4

9(x4)5/3
,

R33,4 =
4

9(x4)5/3
, R44,4 =

4

3(x4)3
.

It can be easily shown that the scalar curvature of the resulting manifold (R4, g) is

R = − 4

3(x4)2
, which is non-vanishing and non-constant. We shall now show that

R4 is conformally flat. For this we shall prove that

C1441 = C2442 = C3443 = 0,

as all other components of the conformal curvature tensor are zero automatically.

C1441 = R1441 −
1

2
[g11R44 + g44R11 − 2g14R14] +

R

3× 2
[g11g44 − (g14)2]

= − 2

9(x4)2/3
− 1

2
[−(x4)4/3 × 2

3(x4)2
− 2

9(x4)2/3
]− 2

9(x4)2
× (x4)4/3

= − 2

9(x4)2/3
+

1

2
(
2

3
+

2

9
)

1

(x4)2/3
− 2

9(x4)2/3

= 0.

By similar calculations it can be shown that C2442 = C3443 = 0. We shall now show
that R4 is an A(PRS)n. Let us choose the associated 1-forms as

Ai(x) =

{
− 3

x4
for i=4

0 otherwise,
(5.2)

Bi(x) =

{
1

x4
for i=4

0 otherwise,
(5.3)

at any point x ∈ R4. Now, (1.4) reduces to the equations

R11,4 = (A4 +B4)R11 + 2A1R14,(5.4)

R22,4 = (A4 +B4)R22 + 2A2R24,(5.5)

R33,4 = (A4 +B4)R33 + 2A3R34,(5.6)

R44,4 = (A4 +B4)R44 + 2A4R44,(5.7)
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since for the other cases (1.4) holds trivially. By (5.2) and (5.3) we get

R.H.S. of (5.4) = (A4 +B4)R11 + 2A1R14 = (− 3

x4
+

1

x4
)(− 2

9(x4)2/3
)

=
4

9(x4)5/3
= R11,4

= L.H.S. of (5.4).

By similar argument it can be shown that (5.5), (5.6) and (5.7) are true. So, (R4, g)
is a conformally flat A(PRS)n whose scalar curvature is non-zero and non-constant.
It is to be noted that (1.4) can be satisfied by a number of 1-forms A, B namely by
those which fulfil (5.4), (5.5), (5.6) and (5.7). Thus we can state the following :

Theorem 5.1. Let (M4, g) be a Riemannian manifold endowed with the metric
given by

ds2 = gijdx
idxj = (x4)

4
3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2

(i, j = 1, 2, 3, 4). Then (M4, g) is a conformally flat A(PRS)n with non-zero and
non-constant scalar curvature.

6. Example of an n-dimensional non-conformally flat A(PRS)n

In this section we want to construct an example of an n-dimensional non-
conformally flat almost pseudo Ricci symmetric manifold.

On coordinate space Rn (with coordinates x1, x2, · · · , xn) we define a Rieman-
nian space Vn. We calculate the components of the curvature tensor, the Ricci
tensor and of its covariant derivatives , the conformal curvature tensor and then we
verify the relation (1.4).

Let each Latin index runs over 1, 2, · · · , n and each Greek index over
2, 3, · · · , (n− 1). We define a Riemannian metric on the Rn(n ≥ 4) by the formula

(6.1) ds2 = φ(dx1)2 +Kαβdx
αdxβ + 2dx1dxn ,

where [Kαβ ] is a symmetric and non-singular matrix consisting of constant and φ is
a function of x1, x2, · · · , xn−1 and independent of xn. In the metric considered, the
only non-vanishing components of Christoffel symbols, curvature tensor and Ricci
tensor are [14]

Γβ11 = −1

2
Kαβφ.α , Γn11 =

1

2
φ.1 , Γn1α =

1

2
φ.α ,

R1αβ1 =
1

2
φ.αβ , R11 =

1

2
Kαβφ.αβ ,(6.2)

where ‘.’ denotes the partial differentiation with respect to the coordinates and
Kαβ are the elements of the matrix inverse to [Kαβ ].
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Here we consider Kαβ as Kronecker symbol δαβ and

φ = (Mαβ + δαβ)xαxβ(x1)2/3 ,

where Mαβ are constant and satisfy the relations

Mαβ = 0 , for α 6= β,

6= 0 , for α = β,
n−1∑
α=2

Mαα = 0 .(6.3)

Thus we have the following relations:

φ.αβ = 2(Mαβ + δαβ)(x1)2/3,

δαβδ
αβ = n− 2 and δαβMαβ =

n−1∑
α=2

Mαα = 0 .

Therefore,

δαβφ.αβ = 2(δαβMαβ + δαβδαβ)(x1)2/3

= 2(n− 2)(x1)2/3 .

Since φ.αβ vanishes for α 6= β, the only non-zero components for Rhijk and Rij in
virtue of (6.2) are

R1αα1 =
1

2
φ.αα = (1 +Mαα)(x1)2/3

and

R11 =
1

2
φ.αβδ

αβ = (n− 2)(x1)2/3 .

Also the only non-zero component of covariant derivative of the Ricci tensor is

(6.4) R11,1 =
2(n− 2)

3(x1)1/3
.

Again from (6.1) we obtain gni = gin = 0 for i 6= 1 which implies g11 = 0. Hence
R = gijRij = g11R11 = 0. Therefore, Vn will be a space whose scalar curvature is
zero. Hence the only non-zero components of the conformal curvature tensor Chijk
are

C1αα1 = R1αα1 −
1

n− 2
(gααR11)

= (1 +Mαα)(x1)2/3 − 1

n− 2
(n− 2)(x1)2/3

= Mαα(x1)2/3(6.5)
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which never vanish. Hence Vn is not conformally flat . We shall now show that Vn
is an A(PRS)n. Let us consider the associated 1-form as follows:

Ai(x) =


1

9(x1)2
, for i=1

0 , otherwise,
(6.6)

Bi(x) =


2x1 − 1

3(x1)2
, for i=1

0 , otherwise,
(6.7)

at any point x ∈ Vn.
To verify the relation (1.4) it is sufficient to prove the following:

(6.8) R11,1 = (3A1 +B1)R11 ,

as for the case other than (6.8) the components of each term of (1.4) vanish iden-
tically and the relation (1.4) holds trivially. Now from (6.4), (6.6) and (6.7) we
get the following relation for the right hand side (R.H.S.) and the left hand side
(L.H.S.) of (6.8)

R.H.S. of (6.8) = (3A1 +B1)R11 =

(
3× 1

9(x1)2
+

2x1 − 1

3(x1)2

)
R11

=
2

3x1
× (n− 2)(x1)2/3 =

2(n− 2)

3(x1)1/3

= R11,1 = L.H.S. of (6.8) .

It is to be noted that (1.4) can be satisfied by a number of 1-forms A, B, namely,
by those which fulfil (6.8). Thus we can state the following:

Theorem 6.1. Let Vn(n ≥ 4) be a Riemannian space with the metric of the form

ds2 = φ(dx1)2 + δαβdx
αdxβ + 2dx1dxn ,

φ = (Mαβ + δαβ)xαxβ(x1)2/3 ,

where Mαβ are constant defined by (6.3), then Vn is an almost pseudo Ricci sym-
metric space with zero scalar curvature which is not conformally flat.
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