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RIEMANNIAN SUBMERSIONS WHOSE TOTAL SPACE IS

ENDOWED WITH A TORSE-FORMING VECTOR FIELD

Şemsi Eken Meriç and Erol Kılıç

Abstract. In the present paper, a Riemannian submersion π between

Riemannian manifolds such that the total space of π endowed with a
torse-forming vector field ν is studied. Some remarkable results of such a

submersion whose total space is Ricci soliton are given. Moreover, some
characterizations about any fiber of π or the base manifold B to be an

almost quasi-Einstein are obtained.

1. Introduction

A differentiable map π : (M, g)→ (B, g
′
) between Riemannian manifolds is

called a Riemannian submersion if the derivative map π∗ is onto and satisfies

gp(X,Y ) = g
′

π(p)(π∗pX,π∗pY )

for any vector fields X,Y which are tangent to M . The theory of Riemann-
ian submersions were studied by O’Neill and Gray, independently. The basic
features of such theory have been formulated and developed in the last three
decades. Since then, it has been studied different types of submersion whose
total space was equipped with some geometric structures (see [6, 9]).

The notion of Riemannian submersion is very important in not only in Dif-
ferential Geometry but also Physics and Mechanics, since they have many ap-
plications in Kaluza-Klein theory, Yang-Mills theory, general relativity and
modelling and controlling of certain types of redundant robotic chains. Hence,
the Riemannian submersions have been studied for different kinds of spaces by
many authors (for details, see [1, 5]).

In 1982, Hamilton defined the concept of Ricci flow and showed that Ricci
solitons are self similar solutions of Ricci flows. According to his definition,
a vector field V on a Riemannian manifold (M, g) is called to define a Ricci
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soliton if it holds

(1)
1

2
LV g +Ric+ λg = 0,

where LV g is the Lie-derivative of the metric tensor of g with respect to V ,
Ric is the Ricci tensor of M , V is a vector field (the potential field) and λ is a
constant on M (see [7]). A Ricci soliton is denoted by (M, g, V, λ). Also, the
Ricci soliton (M, g, V, λ) is called shrinking, steady or expanding according to
λ < 0, λ = 0 or λ > 0, respectively. Also, the Ricci soliton is said to be an
Einstein, if the potential field V of Ricci soliton is zero or Killing (that is the
Lie-derivative of g with respect to V is zero). Recently, the geometry of Ricci
solitons in literature have been studying by many mathematicians after Grigori
Perelman applied Ricci solitons to solve the long standing Poincare conjecture
posed in [11] (for other papers, see [3, 8]).

Furthermore, Pigola and et al. introduced a new class of Ricci solitons by
taking a function rather than a constant λ. In such case, (M, g, V, λ) is called
an almost Ricci soliton. Particularly, if the function λ is a constant, then
(M, g, V, λ) becomes a Ricci soliton (see [12]).

On the other hand, a vector field ν on a Riemannian manifold M is said to
be a torse-forming if it satisfies

(2) ∇Xν = fX + φ(X)ν,

where f is a function, φ is a 1-form and ∇ is a the Levi-Civita connection of
M . In above (2), the vector field ν is called recurrent, if the function f is zero;
ν is called concircular if the 1-form φ is zero. Also, the concircular vector field
ν is called concurrent, if f = 1 is satisfied (see [4]).

In the present paper, our goal is to study a Riemannian submersion π be-
tween Riemannian manifolds such that the total space M of π is endowed with
a torse-forming vector field ν. In particular, we show that if the horizontal
distribution H of such a submersion is parallel, then the tangential part of ν
is also torse-forming on the vertical distribution V. Also, we consider the total
space M of π admits an almost Ricci soliton and give some characterizations
for which any fiber of π or the base manifold B are almost quasi-Einstein.

2. Notes on Riemannian submersions

In this section, we recall some necessary notions for Riemannian submersions
for Riemannian submersions between Riemannian manifolds from [5]:

Let (M, g) and (B, g
′
) be Riemannian manifolds of dimension m and n,

respectively. A Riemannian submersion π : (M, g)→ (B, g
′
) is a map from M

onto B which satisfies the following conditions:

(i) π has a maximal rank,
(ii) The differential π∗p preserves the length of the horizontal vector fields

at each point of M .
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Let π : (M, g) → (B, g
′
) be a Riemannian submersion. If X, Y are the basic

vector fields, π-related to X
′
, Y

′
, one has the followings:

(i) g(X,Y ) = g
′
(X

′
, Y

′
) ◦ π,

(ii) h[X,Y ] is the basic vector field π-related to [X
′
, Y

′
],

(iii) h(∇XY ) is the basic vector field π-related to ∇′

X′Y
′
,

(iv) for any vertical vector field V , [X,V ] is the vertical,

where ∇ and ∇′
denote the Levi-Civita connections of M and B, respectively.

A Riemannian submersion π determines two tensor fields T and A on M ,
which are called the fundamental tensor fields of π. Such tensor fields are
defined by

T (E,F ) = TEF = h∇vEvF + v∇vEhF,

A(E,F ) = AEF = v∇hEhF + h∇hEvF,

where v and h are the vertical and horizontal projections, respectively. Also,
the fundamental tensor fields T and A on M satisfy

g(TEF,G) = −g(TEG,F ),(3)

g(AEF,G) = −g(AEG,F ),(4)

TVW = TWV,(5)

AXY = −AYX =
1

2
v[X,Y ],(6)

for any V,W ∈ Γ(VM), X,Y ∈ Γ(HM) and E,F,G ∈ Γ(TM).
We here note that the vanishing of the tensor field A means the horizontal

distribution H is integrable and the vanishing of the tensor field T means any
fibre of Riemannian submersion π is a totally geodesic submanifold of M .
Using fundamental tensor fields T and A, one can see that

∇VW = TVW + ∇̂VW,(7)

∇VX = h∇VX + TVX,(8)

∇XV = AXV + v∇XV,(9)

∇XY = h∇XY +AXY,(10)

where ∇ and ∇̂ are the Levi-Civita connections of M and any fiber of π re-
spectively, for any V,W ∈ Γ(VM) and X,Y ∈ Γ(HM).

On the other hand, the Gauss-Codazzi type equations for Riemannian sub-
mersions are given by

R(U, V, F,W ) = R̂(U, V, F,W )− g(TUW, TV F ) + g(TVW, TUF ),(11)

R(X,Y, Z,H) = R
′
(X

′
, Y

′
, Z

′
, H

′
) ◦ π + 2g(AXY,AZH)(12)

− g(AY Z,AXH) + g(AXZ,AYH),
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where R, R
′

and R̂ denote the Riemannian curvature tensors for the mani-
folds M , B and any fiber of π, respectively, for any U, V,W,F ∈ Γ(VM) and
X,Y, Z,H ∈ Γ(HM).

On the other hand, the mean curvature vector field H on any fiber of Rie-
mannian submersion π is given by

N = rH,

such that

(13) N =

r∑
j=1

TUjUj

and r denotes the dimension of any fibre of π and {U1, U2, . . . , Ur} is an or-
thonormal basis on vertical distribution. Using the equality (13), we get

g(∇EN,X) =

r∑
j=1

g((∇ET )(Uj , Uj), X)

for any E ∈ Γ(TM) and X ∈ Γ(HM).
From (11)-(13), one has the following:

Proposition 2.1 ([6], [9]). For the Riemannian submersion π : (M, g) →
(B, g

′
), the Ricci tensor Ric satisfies

Ric(U,W ) = R̂ic(U,W ) + g(N, TUW )−
n∑
i=1

g((∇XiT )(U,W ), Xi)(14)

− g(AXi
U,AXi

W ),

Ric(X,Y ) = Ric
′
(X

′
, Y

′
) ◦ π − 1

2
{g(∇XN,Y ) + g(∇YN,X)}(15)

+ 2

n∑
i=1

g(AXXi,AYXi) +

r∑
j=1

g(TUj
X, TUj

Y ),

where {Xi} and {Uj} are the orthonormal basis of H and V, respectively, for
any U, V ∈ Γ(VM) and X,Y ∈ Γ(HM).

Note that Ric(U,W ) and R̂ic(U,W ) are the extrinsic and intrinsic Ricci

tensors of any fiber of π, respectively. Similarly, Ric(X,Y ) and Ric
′
(X

′
, Y

′
)◦π

are the extrinsic and intrinsic Ricci tensors of the horizontal distribution H,
respectively.

3. Riemannian submersions whose total spaces admit an almost
Ricci soliton

A non-flat Riemannian manifold (M, g) is called an almost quasi-Einstein,
if its Ricci tensor Ric of type-(0, 2) satisfies

(16) Ric = ag + b(φ⊗ α+ α⊗ φ)
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for some functions a, b and 1-forms φ, α. In particular case, one can see that if
the function b is zero, then M becomes an Einstein. For more details, we refer
to readers [4, 10].

We begin to this section with the following:

Lemma 3.1. Let π : (M, g) → (B, g′) be a Riemannian submersion between
Riemannian manifolds. The horizontal distribution H is parallel with respect
to ∇ if and only if the fundamental tensors T and A vanish, identically (see
[8]).

For a Riemannian submersion π : (M, g) → (B, g
′
) between Riemannian

manifolds, we denote by ν> and ν⊥ the tangential and normal parts of the
vector field ν on any fiber of π, respectively.

Theorem 3.2. Let π : (M, g) → (B, g
′
) be a Riemannian submersion such

that M is endowed with a concircular vector field ν and let (M, g, ν>, λ) be an
almost Ricci soliton. If the horizontal distribution H is parallel, then any fiber
of π is an Einstein.

Proof. Since the total spaceM admits an almost Ricci soliton with the potential
field ν>, from (1), one has

1

2
(Lν>g)(U,W ) +Ric(U,W ) + λg(U,W ) = 0(17)

for any U,W ∈ Γ(VM). Because ν is a concircular vector field on M and using
the equalities (7) in (17), we get

1

2
{g(fU − TUν⊥,W )+g(fW − TW ν⊥, U)}+Ric(U,W )+λg(U,W ) = 0.(18)

Since the horizontal distribution H is parallel and considering (5), (3) and (14)
in (18), we obtain

R̂ic+ (λ+ f)g = 0,(19)

which gives any fiber of π is an Einstein. �

Example 3.3. We consider a Riemannian submersion

π : (Mn = I ×σ Nn−1, g)→ (Bm, g
′
),

where M is a warped product manifold with the metric g = dt2 +σ2gN , I is an
open interval and (N, gN ) and (B, g

′
) are Einstein and Riemannian manifolds,

respectively, n ≥ 3.
Let (M, g, ν, λ) be a Ricci soliton with vertical potential field ν. Then,

according to Theorem 5.1 in [2], B.-Y. Chen showed that a Ricci soliton (M, g,
ν, λ) on a Riemannian manifold M is equipped with a concircular vector field
if and only if the function f is equal to λ, which is a nonzero constant and M
is an open portion a warped product manifold I ×σ N .
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Motivated from Chen’s paper in [2], we can say that the total space M of π
has a concircular vector field ν such that

∇Eν = λE,(20)

where λ is a constant in (1), for any vector field E on M .
On the other hand, if the horizontal distribution H of π is parallel, then the

direct computations give that any fiber of π is an Einstein.

From now on, we make the following:

Assumption. The total space of a Riemannian submersion of π is endowed
with a torse-forming vector field ν.

Theorem 3.4. Let π : (M, g)→ (B, g
′
) be a Riemannian submersion between

Riemannian manifolds and (M, g, ν>, λ) be an almost Ricci soliton. The ex-
trinsic vertical Ricci tensor Ric |V satisfies

Ric |V= −(λ+ f)g − 1

2
(φ⊗ α+ α⊗ φ) + g(TUW, ν⊥),(21)

where λ and f are functions, φ and α are 1-forms, for any U,W ∈ Γ(VM).

Proof. Since the total space M of π is endowed with a torse-forming vector
field ν, from (2) one has

∇Uν = fU + φ(U)ν,(22)

where f is a function and φ is a 1-form, for any U ∈ Γ(VM).

Using the equations (7)-(8) in (22) and by comparing the tangential parts,
it gives

∇̂Uν> + TUν⊥ = fU + φ(U)ν>.(23)

On the other hand, if the total space M of π admits an almost Ricci soliton
with potential field ν> and using the definition of Lie derivative and (7), we
have

1

2
{g(∇̂Uν>,W ) + (∇̂W ν>, U)}+Ric(U,W ) + λg(U,W ) = 0.(24)

Using (23) in (24), it follows

1

2

{
g(fU + φ(U)ν> − TUν⊥,W ) + g(fW + φ(W )ν> − TW ν⊥, U)

}
+Ric(U,W ) + λg(U,W ) = 0.

Hence, the last equation is equivalent to

fg(U,W ) +
1

2
φ(U)g(ν>,W )− 1

2
g(TUν⊥,W ) +

1

2
φ(W )g(ν>, U)

− 1

2
g(TW ν⊥, U) +Ric(U,W ) + λg(U,W ) = 0.(25)
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Using (5) and (3) in (25), it follows

fg(U,W )− g(TUW, ν⊥) +
1

2
φ(U)g(ν>,W ) +

1

2
φ(W )g(ν>, U)

+Ric(U,W ) + λg(U,W ) = 0.(26)

If we denote the dual 1-form of ν> by α, then (26) yields

Ric |V= −(λ+ f)g − 1

2
(φ⊗ α+ α⊗ φ) + g(TUW, ν⊥).(27) �

From Theorem 3.4 and the equality (14), we obtain the following:

Theorem 3.5. Let π : (M, g)→ (B, g
′
) be a Riemannian submersion between

Riemannian manifolds and (M, g, ν>, λ) be an almost Ricci soliton. If the
horizontal distribution H is parallel, then any fiber of π is an almost quasi-
Einstein manifold.

Theorem 3.6. Let π : (M, g)→ (B, g
′
) be a Riemannian submersion between

Riemannian manifolds and (M, g, ν⊥, λ) be an almost Ricci soliton. Then, the
extrinsic horizontal Ricci tensor Ric |H satisfies

Ric |H= −(λ+ f)g − 1

2
(φ⊗ ϕ+ ϕ⊗ φ)(28)

for constant λ, f and 1-forms φ, ϕ.

Proof. Since ν is a torse-forming vector field on the total space M , from the
equalities (3.1), (9) and (10), we get

fX + φ(X)ν> + φ(X)ν⊥ = h(∇Xν⊥) +AXν> + v(∇Xν>) +AXν⊥(29)

for any X ∈ Γ(HM). By comparing normal parts of (29), one has

h(∇Xν⊥) +AXν> = fX + φ(X)ν⊥.(30)

From the definition of Lie-derivative and above equality (30), it follows

(Lν⊥g)(X,Y ) = g(h(∇Xν⊥), Y ) + g(h(∇Y ν⊥), X)

= g(fX + φ(X)ν⊥ −AXν>, Y ) + g(fY + φ(Y )ν⊥

−AY ν>, X)

= 2fg(X,Y ) + φ(X)g(ν⊥, Y )− g(AXν>, Y )(31)

+ φ(Y )g(ν⊥, X)− g(AY ν>, X).

Using (6) and (4) in (31), we obtain

(Lν⊥g)(X,Y ) = 2fg(X,Y ) + φ(X)g(ν⊥, Y ) + φ(Y )g(ν⊥, X)(32)

for any X,Y ∈ Γ(HM). Since M is an almost Ricci soliton with potential field
ν⊥, using (32), we have

(33) fg(X,Y )+
1

2
φ(X)g(ν⊥, Y )+

1

2
φ(Y )g(ν⊥, X)+Ric(X,Y )+λg(X,Y ) = 0.
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Denoting the dual 1-form of ν⊥ by ϕ, (33) yields

Ric |H= −(λ+ f)g − 1

2
(φ⊗ ϕ+ ϕ⊗ φ).(34)

Hence, the proof is completed. �

Considering Theorem 3.6 and the equality (15), we obtain the following:

Theorem 3.7. Let π : (M, g)→ (B, g
′
) be a Riemannian submersion between

Riemannian manifolds and let (M, g, ν⊥, λ) be an almost Ricci soliton. If the

horizontal distribution H is parallel, then the base manifold (B, g
′
) is an almost

quasi-Einstein.

Proof. Since (M, g, ν⊥, λ) is an almost Ricci soliton, using the equalities (15)
and (34), we have

Ric
′
(X

′
, Y

′
) ◦ π − 1

2

{
g(∇XN,Y ) + g(∇YN,X)

}
+ 2

n∑
i=1

g(AXXi,AYXi)

+

r∑
j=1

g(TUj
X, TUj

Y ) + (λ+ f)g(X,Y )− 1

2

{
φ(X)g(Y, ν⊥)(35)

+ g(X, ν⊥)φ(Y )
}

= 0.

Because the horizontal distribution H is parallel, the equation (35) follows

Ric
′
(X

′
, Y

′
) ◦ π + (λ+ f)g(X,Y )− 1

2

{
φ(X)g(Y, ν⊥) + g(X, ν⊥)φ(Y )

}
= 0.

If we denote the dual 1-form of ν⊥ by ϕ, then it gives

Ric
′
(X

′
, Y

′
) ◦ π + (λ+ f)g(X,Y )− 1

2

{
φ(X)ϕ(Y ) + ϕ(X)φ(Y )

}
= 0.(36)

Also, we note that the horizontal vector fields X,Y are π-related to X
′
, Y

′

on M
′
, respectively. Then, Eq. (36) is equivalent to

Ric
′

= −(λ+ f)g
′
+

1

2
(φ

′
⊗ ϕ

′
+ ϕ

′
⊗ φ

′
),

where φ
′

and ϕ
′

are 1-forms on M
′
, such that for any horizontal vector field X,

g(X, ν⊥) = ϕ(X) = ϕ
′
(X

′
) ◦ π and φ(X) = φ

′
(X

′
) ◦ π are satisfied. Therefore,

the proof is completed. �

Considering Theorem 3.7, in particular case, we notice the followings:

Corollary 3.8. 1. If the torse-forming vector field ν is a recurrent (that is,
f vanishes identically in (22)) on M , then the base manifold B is an almost
quasi-Einstein.

2. If the almost Ricci soliton (M, g, ν⊥, λ) is a Ricci soliton (that is, the
function λ is a constant) and the torse-forming vector field ν is a concurrent
(that is, f = 1 and 1-form φ vanishes identically in (2)), then the Riemannian
manifold B becomes an Einstein.
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