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ON (ϵ)-LORENTZIAN PARA-SASAKIAN MANIFOLDS

Rajendra Prasad and Vibha Srivastava

Abstract. In this paper we study (ϵ)-Lorentzian para-Sasakian mani-

folds and show its existence by an example. Some basic results regarding
such manifolds have been deduced. Finally, we study conformally flat
and Weyl-semisymmetric (ϵ)-Lorentzian para-Sasakian manifolds.

1. Introduction

In [1] Bejancu and K. L. Duggal introduced (ϵ)-Sasakian manifolds. Also
Xufeng and Xiaoli [11] showed that every (ϵ)-Sasakian manifold must be a real
hypersurface of some indefinite Kähler manifold. Further, in [6] R. Kumar, R.
Rani and R. Nagaich study (ϵ)-Sasakian manifolds. Since Sasakian manifolds
with indefinite metric play significant role in Physics [5], our natural trend is to
study various contact manifolds with indefinite metric. Recently, in 2009, U.
C. De, Avijit Sarkar [4] study (ϵ)-Kenmotsu manifolds. In 1989, K. Matsumoto
[7] introduced the notion of Lorenzian para-Sasakian manifolds. I. Mihai and
R. Rosca [9] defined the same notion independently and several authors [8,
10] studied LP-Sasakian manifolds. In this paper we like to introduce (ϵ)-
Lorentzian para-Sasakian manifolds with indefinite metric which also include
usual LP-Sasakian manifold. The present paper is organized as follows:

Section 1 is introductory. In Section 2, we define (ϵ)-LP-Sasakian manifolds
and give an example of such a manifold. We also give some basic results of such
a manifold in the same section. In Section 3, we study conformally flat (ϵ)-LP-
Sasakian manifolds. Finally, we consider Weyl-semisymmetric (ϵ)-LP-Sasakian
manifolds.

2. (ϵ)-Lorentzian para-Sasakian manifolds

An n-dimensional differentiable manifold is called (ϵ)-Lorentzian para-Sasak-
ian manifold if the following conditions hold:

(2.1) ϕ2 = I + η (X) ξ, η (ξ) = −1,
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(2.2) g (ξ, ξ) = ϵ, η (X) = ϵg (X, ξ) ,

(2.3) g (ϕX, ϕY ) = g (X,Y ) + ϵη (X) η (Y ) ,

where ϵ is 1 or −1 according as ξ is space-like or time-like vector field. Also in
(ϵ)-Lorentzian para-Sasakian manifold, we have

(2.4) (∇Xϕ)Y = g (X,Y ) ξ + ϵη (Y )X + 2ϵη (X) η (Y ) ,

where ∇ denotes the operator of covariant differentiation with respect to the
Lorentzian metric g.

Definition 2.1. An (ϵ)-LP-Sasakian manifold will be called a manifold of
quasi-constant curvature if the curvature tensor Ř of type (0, 4) satisfies the
condition

(2.5)

Ř (X,Y, Z,W ) = a [g (Y,Z) g (X,W )− g (X,Z) g (Y,W )]

+ b[g (X,W )T (Y )T (Z)− g (X,Z)T (Y )T (W )

+ g (Y, Z)T (X)T (W )− g (Y,W )T (X)T (Z)],

where Ř (X,Y, Z,W ) = g (R (X,Y )Z,W ) , R is the curvature tensor of type
(1, 3) ; a, b are scalar functions and ρ is a unit vector field defined by

(2.6) g (X, ρ) = T (X) .

The notion of quasi-constant curvature for Riemannian manifolds were given
by Chen and Yano [2].

Definition 2.2. An (ϵ)-LP-Sasakian manifold will be called an η-Einstein man-
ifold if the Ricci tensor S of type (0, 2) satisfies

S (X,Y ) = ag (X,Y ) + bη (X) η (Y ) ,

where a and b are scalar functions.

Definition 2.3. A type of Riemannian manifold whose curvature tensor Ř of
type (0, 4) satisfies the condition

(2.7) Ř (X,Y, Z,W ) = F (Y,Z)F (X,W )− F (X,Z)F (Y,W ) ,

where F is a symmetric tensor of type (0, 2) is called a special manifold with
the associated symmetric tensor F and is denoted by ψ (F )n .

In 1956, S. S. Chern [3] study such type of manifolds. These manifolds are
important for the following reasons:

Firstly, for possessing some remarkable properties relating to curvature and
characteristic classes and secondly, for containing a manifold of quasi-constant
curvature [2].

Definition 2.4. An (ϵ)-LP-Sasakian manifold will be called Weyl-semisymme-
tric if it satisfies (R. (X,Y ) .C) (Y, Z)W = 0, where R (X,Y ) denotes the cur-
vature operator and C (Y, Z)W is the Weyl-conformal curvature tensor.
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Lemma 2.1. An (ϵ)-contact metric manifold is an (ϵ)-LP-Sasakian manifold
if and only if

(2.8) ∇Xξ = ϵϕX.

Proof. Let the manifold be an (ϵ)-Lorentzian para-Sasakian manifold. Then
from the equation (2.4) it follows that

∇XϕY − ϕ∇XY = g (X,Y ) ξ + ϵη (Y )X + 2ϵη (X) η (Y ) ξ.

Putting Y = ξ, we get

−ϕ∇Xξ = −ϵ (X + η (X) ξ) ,

or,

ϕ∇Xξ = ϵϕ2 (X) ,

which implies,

∇Xξ = ϵϕ (X) .

Conversely, let the above relation holds. Now the fundamental 2-form Φ of
the (ϵ)-almost contact metric structure is defined by [5]

Φ (X,Y ) = g (X,ϕY )

for all vector fields X,Y ∈ χ (M) . Now since η ∧ ϕ is up to a constant fac-
tor the volume element of the manifold, it is parallel with respect to ∇, i.e.,
∇X (η ∧ ϕ) = 0. Hence we have

(2.9)

(∇Xη) (Y ) Φ (Z,W ) + η (Y ) (∇XΦ) (Z,W ) + (∇Xη) (Z)Φ (W,Y )

+ η (Z) (∇XΦ) (W,Y ) + (∇Xη) (W )Φ (Y, Z) + (∇Xη) (W )Φ (Y, Z)

+ η (W ) (∇XΦ) (Y, Z) = 0.

Putting W = ξ, we get

(∇XΦ)Y = ϵg (Φ∇Xξ, Y ) ξ + η (Y )Φ∇Xξ,

Now using the value of ∇Xξ, we have

(∇Xϕ)Y = g (X,Y ) ξ + ϵη (Y )X + 2ϵη (X) η (Y ) ξ.

Hence the manifold is an (ϵ)-Lorentzian para-Sasakian manifold. □

Example. Consider the 3-dimensional manifold M = [(x, y, z)] ∈ R3, z ̸= 0,
where (x, y, z) are the standard coordinates in R3. The vector fields

e1 = ez
∂

∂y
, e2 = ez

(
∂

∂x
+

∂

∂y

)
, e3 =

∂

∂z

are linearly independent at each point of M . Let g be the Lorentzian metric
defined by

g (e1,e3) = g (e2 ,e3) = g (e1,e2) = 0,

g (e1,e1) = g (e2 ,e2) = ϵ, g (e3 ,e3) = −ϵ.
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Let η be the 1-form defined by η (Z) = g (Z, e3) for any Z ∈ χ (M). Let ϕ
be the (1, 1) tensor field defined by ϕe1 = −e1, ϕe2 = −e2, ϕ e3 = 0. Then
using the linearity of ϕ and g, we have

η (e3) = −1, ϕ2 (Z) = Z + η (Z) ξ, and g (ϕZ, ϕW ) = g (Z,W ) + ϵη (Z) η (W )

for any Z,W ∈ χ (M). Let ∇ be the Levi-Civita connection with respect to
the Lorentzian metric g. Then we have

[e1,e2] = 0, [e1,e3] = −ϵe1, [e2,e3] = −ϵe2.

The Riemannian connection ∇ of the Lorentzian metric g is given by

2g (∇XY, Z) = Xg (Y, Z) + Y g (Z,X)− Zg (X,Y )− g (X, [Y,Z])

− g (Y, [X,Z]) + g (Z, [X,Y ])

which is known as Koszul’s formula.
From Koszul’s formula, we have

∇e1e3 = −ϵe1,∇e1e2 = 0,∇e1e1 = −ϵe3,

∇e2e3 = −ϵe2,∇e2e2 = −ϵe3,∇e2e1 = 0,

∇e3e3 = 0,∇e3e2 = 0,∇e3e1 = 0.

From the above result it can be easily seen that the manifold satisfies

∇Xξ = ϵϕX

for ξ = e3. Hence the manifold under consideration is an (ϵ)-Lorentzian para-
Sasakian manifold.

Lemma 2.2. In an (ϵ)-Lorentzian para-Sasakian manifold

(2.10) (∇Xη) (Y ) = g (ϕX, Y ) .

Proof.

(∇Xη) (Y ) = ∇Xη (Y )− η (∇XY )

= ϵ∇Xg (Y, ξ)− ϵg (∇XY, ξ)− ϵg (Y,∇Xξ) + ϵg (Y,∇Xξ) .

Using the value of ∇Xξ, we have

(∇Xη) (Y ) = g (ϕX, Y ) . □

Lemma 2.3. In an (ϵ)-Lorentzian para-Sasakian manifold

(2.11) R (X,Y ) ξ = η (Y )X − η (X)Y.

Proof.
R (X,Y ) ξ = ∇X∇Y ξ −∇Y ∇Xξ −∇[X,Y ]ξ

= ∇X (ϵϕY )−∇Y (ϵϕX)− ϵϕ ([X,Y ]) .

The above relation after simplification gives

R (X,Y ) ξ = η (Y )X − η (X)Y. □
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Note. From the equation (2.11) it follows that in an (ϵ)-Lorentzian para-
Sasakian manifold,

(2.12) R (ξ,X)Y = ϵg (X,Y ) ξ − η (Y )X.

Also in an (ϵ)-Lorentzian para-Sasakian manifold

(2.13) η (R (X,Y )Z) = ϵ (g (Y,Z) η (X)− g (X,Z) η (Y )) .

Lemma 2.4. In an (ϵ)-Lorentzian para-Sasakian manifold

(2.14) S (X, ξ) = (n− 1) η (X) .

Proof. From the equation (2.13) we have

g (R (X,Y )Z, ξ) = ϵg (Y, Z) g (X, ξ)− ϵg (X,Z) g (Y, ξ) .

Putting Y = Z = ei, where {ei} is an orthonormal basis of the tangent
space at each point of the manifold, and taking summation over i where
i = 1, 2, . . . , n, we get

S (X, ξ) = (n− 1) η (X) . □

3. Conformally flat (ϵ)-Lorentzian para-Sasakian manifold

The Weyl conformal curvature tensor C of type (1, 3) of an n-dimensional
Riemannian manifold is given by

(3.1)

C (X,Y )Z = R (X,Y )Z − 1

(n− 2)
[S (Y,Z)X − S (X,Z)Y

+ g (Y,Z)QX − g (X,Z)QY ] +
r

(n− 1) (n− 2)

[g (Y,Z)X − g (X,Z)Y ] ,

where Q is the Ricci operator defined by g (QX,Y ) = S (X,Y ) and r is the
scalar curvature. Let us suppose that the manifold is conformally flat. Then
from the above equation, we have

(3.2)

g (R (X,Y )Z,W ) =
1

(n− 2)
[S (Y, Z) g (X,W )

− S (X,Z) g (Y,W ) + g (Y,Z)S (X,W )

− g (X,Z)S (Y,W )]− r

(n− 1) (n− 2)

[g (Y, Z) g (X,W )− g (X,Z) g (Y,W )] .

Putting W = ξ and using the equaton (2.14), the above equation gives

(3.3)

ϵη (R (X,Y )Z) =
1

(n− 2)
[ϵS (Y,Z) η (X)− ϵS (X,Z) η (Y )

+ (n− 1) g (Y,Z) η (X)− (n− 1) g (X,Z) η (Y )]

− r

(n− 1) (n− 2)
[ϵg (Y,Z) η (X)− ϵg (X,Z) η (Y )] .
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In view of the equation (2.13) and ϵ2 = 1, the above equation yields

(3.4)

S (Y,Z) η (X)

= S (X,Z) η (Y ) +

(
r

n− 1
− ϵ

)
(g (Y,Z) η (X)− g (X,Z) η (Y )) .

For X = ξ, we get

(3.5) S (Y, Z) =

(
r

n− 1
− ϵ

)
g (Y, Z)−

(
rϵ+ n− n2

n− 1

)
η (Y ) η (Z) .

Hence we can state the following:

Theorem 3.1. An (2n+ 1)-dimensional (n⋗ 1) coformally flat (ϵ)-Lorentzian
para-Sasakian manifold is an η-Einstein manifold.

Using the equation (3.5) in (3.2), we get

g (R (X,Y )Z,W )

=
1

n− 2
[

(
2r

n− 1
− 2ϵ

)
g (Y, Z) g (X,W )

−
(

2r

n− 1
− 2ϵ

)
g (X,Z) g (Y,W )]−

(
rϵ+ n− n2

(n− 1) (n− 2)

)
[η (Y ) η (Z) g (X,W )− η (X) η (Z) g (Y,W )

+ η (X) η (W ) g (Y, Z)− η (Y ) η (W ) g (X,Z)]

− r

(n− 1) (n− 2)
[g (Y, Z) g (X,W )− g (X,Z) g (Y,W )] .

The above relation can be written as

g (R (X,Y )Z,W )

=
r − 2nϵ+ 2ϵ

(n− 1) (n− 2)
[g (Y,Z) g (X,W )− g (X,Z) g (Y,W )]

−
(

rϵ+ n− n2

(n− 1) (n− 2)

)
[η (X) η (Z) g (Y,W ) + η (Y ) η (W ) g (X,Z)

− η (X) η (W ) g (Y, Z)− η (Y ) η (Z) g (X,W )].

In view of Definition (2.1) and the above relation we have the following:

Theorem 3.2. An n-dimensional coformally flat (ϵ)-Lorentzian para-Sasakian
manifold is of quasi-constant curvature.

It is also proved that a ψ (F )n contains a manifold of quasi-constant curva-
ture as a subclass:

Let

F (X,Y ) =
√
ag (X,Y ) +

b√
a
T (X)T (Y ) .

Now from the equation (2.5) we know that

Ř (X,Y, Z,W ) = F (Y,Z)F (X,W )− F (X,Z)F (Y,W ) .
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Therefore the manifold of quasi-constant curvature is a ψ (F )n .
From the above condition and Theorem 3.2 we have the following:

Theorem 3.3. A conformally flat (ϵ)-Lorentzian para-Weyl-semisymmetric
Sasakian manifold is a ψ (F )n .

4. Weyl-semisymmetric (ϵ)-Lorentzian para-Sasakian manifolds

An (ϵ)-Lorentzian para-Sasakian manifold is said to be Weyl-semisymmetric
if

R.C = 0.

From the equation (3.1), we get

(4.1)

g (C (X,Y )Z, ξ) = g (R (X,Y )Z, ξ)− 1

n− 2
[g (Y,Z)S (X, ξ)

− g (X,Z)S (Y, ξ) + S (Y,Z) g (X, ξ)

− S (X,Z) g (Y, ξ)] +
r

(n− 1) (n− 2)

[g (Y, Z) g (X, ξ)− g (X,Z) g (Y, ξ)] .

From the above equation, we have

(4.2)

η (C (X,Y )Z) =
1

(n− 2)
[

(
r

n− 1
− ϵ

)
(g (Y,Z) η (X)

− g (X,Z) η (Y ))− S (Y, Z) η (X)

+ S (X,Z) η (Y )].

Putting Z = ξ, in the above equation, we have

(4.3) η (C (X,Y ) ξ) = 0.

Again putting X = ξ in the equation (4.2), we get

(4.4)
η (C (ξ, Y )Z) =

1

n− 2
[

(
r

n− 1
− ϵ

)
(g (Y,Z)− ϵη (Y ) η (Z))

− S (Y, Z) + (n− 1) η (Y ) η (Z)].

If the manifold is Weyl-semisymmetric, then we have

(4.5)
g [R (ξ, Y )C (U, V )W, ξ]− g[C (R (ξ, Y )U, V )W, ξ]

− g [C(U,R (ξ, Y )V,W ), ξ]− g [C(U, V )R (ξ, Y )W, ξ] = 0.

From the equation (2.12), we have

(4.6) g (R (ξ,X)Y, ξ) = g (X,Y )− ϵη (Y η (X)) .

Using the equation (4.6) in (4.5), we get
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(4.7)

g (Y,C (U, V )W )− ϵη (C (U, V )W ) η (Y )

− g[C (ϵg (Y, U) ξ − η (U)Y, V )W, ξ]

− g[C(U, ϵg (Y, V ) ξ − η (V )Y )W, ξ]

− g[C (U, V ) (ϵg (Y,W ) ξ − η (W )Y ), ξ) = 0.

From the above equation, we have

(4.8)

− Č (U, V,W, Y ) + η (Y ) η (C (U, V )W )

− ϵη(U)η (C (Y, V )W )− ϵη(V )η (C (U, Y )W )

− ϵη(W )η (C (U, V )Y ) + g (Y, U) η (C (ξ, V )W )

+ g (Y, V ) η (C (U, ξ)W ) + g (Y,W ) η (C(U, V )ξ) = 0,

where Č (U, V,W, Y ) = g (C (U, V )W,Y ) .
Putting Y = U , we get

(4.9)

− Č (U, V,W,U) + η (U) η (C (U, V )W )

(V )η (C (U,U)W )

− ϵη(W )η (C (U, V )U) + g (U,U) η (C (ξ, V )W )

+ g (U, V ) η (C (U, ξ)W ) + g (U,W ) η (C(U, V )ξ) = 0.

Again putting U = ei, where {ei} is an ortonormal basis of the tangent
space at each point of the manifold, and taking summation over i where i =
1, 2, . . . , n, we get

n∑
i=1

Č (ei, V,W, ei) = 0

and using (4.3) in (4.9), we have

(4.10) η (C (ξ, V )W ) = 0.

Using the equation (4.3) and (4.10) in (4.8), we get

(4.11)

− Č (U, V,W, Y ) + η (Y ) η (C (U, V )W )

− ϵη(U)η (C (Y, V )W )− ϵη(V )η (C (U, Y )W )

− ϵη(W )η (C (U, V )Y ) = 0.

Using the equation (4.2) in (4.11) , we get

(4.12)

− Č (U, V,W, Y )− η (W )

n− 2
[

(
ϵr

n− 1
− 1

)
g (Y, V ) η (U)

− g (U, Y ) η (V )− ϵ (S (Y, V ) η (U)− S (Y, U) η (V ))]

− (ϵ− 1)

n− 2
[

(
ϵr

n− 1
− 1

)
{g (U,W ) η (V ) η (Y )

− g (V,W ) η (U) η (Y )− S (U,W ) η (Y ) (V )

+ S (V,W ) η (U) η (Y )} = 0.
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From the equation (4.10), we have from (4.4)

(4.13) S (Y,Z) =

(
r

n− 1
− ϵ

)
g (Y, Z)−

(
rϵ

n− 1
− n

)
η (Y ) η (Z) .

Using the equation (4.13) in (4.12)

(4.14) Č (U, V,W, Y ) = 0.

From the above equation we see that R.C = 0 implies that C = 0. Hence
using this condition with the help of Theorem 3.2 we have the following:

Theorem 4.1. A n-dimensional Weyl-semisymmetric (ϵ)-Lorentzian para-
Sasakian manifold is of quasi-constant curvature.

Theorem 3.3 and (4.14) leads the following:

Corollary 4.1. A n-dimensional Weyl-semisymmetric (ϵ)-Lorentzian para-
Sasakian manifold is a ψ (F )n .

Application. (ϵ)-Lorentzian para-Sasakian manifolds are used in the theory
of Relativity and Newtons law of gravitational field.
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