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ON GENERALIZED W3 RECURRENT RIEMANNIAN

MANIFOLDS

Mohabbat Ali∗, Quddus Khan, Aziz Ullah Khan, and Mohd
Vasiulla

Abstract. The object of the present work is to study a generalized W3

recurrent manifold. We obtain a necessary and sufficient condition for the

scalar curvature to be constant in such a manifold. Also, sufficient con-
dition for generalized W3 recurrent manifold to be special quasi-Einstein

manifold are given. Ricci symmetric and decomposable generalized W3

recurrent manifold are studied. Finally, the existence of such a manifold
is ensured by a non-trivial example.

1. Introduction

Let (Mn, g) be an n-dimensional smooth Riemannian manifold and∇ be the
covariant differentiation with respect to the metric tensor g. Symmetric spaces
play a significant role in the study of differential geometry. Cartan [3] stud-
ied Riemanian symmetric spaces and obtain its classification. A Riemannian
manifold is said to be a locally symmetric manifold [3] if ∇K = 0.

Generalized recurrent Riemannian manifolds have been studied by several
authors in different context such as Singh and Khan [11], De and Pal [6], De
and Gazi [4], Arslan et. al. [2], De and Guha [5] etc. Semi-generalized W3

recurrent manifolds has been studied by K. Lalnunsiami and J. P. Singh [8].

A Riemannian manifold (Mn, g) (n≥ 3) is said to be a generalized recurrent
manifold [5] if the Riemann curvature tensor K of type (1, 3) satisfies the
condition

(1) (∇XK)(Y, Z,W ) = A(X)K(Y,Z,W ) +B(X)
[
g(Z,W )Y − g(Y,W )Z

]
,

where A and B are two 1-forms in which B is non-zero defined as

g(X, ρ) = A(X) and g(X,σ) = B(X),
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for every vector field X. Here the vector fields ρ and σ are called the basic
vector fields of the manifold corresponding to the associated 1-forms A and B
respectively. Such a manifold has been denoted by GKn. If B = 0, then GKn

reduces to a recurrent manifold [7] denoted by Kn.
Contracting (1) with respect to Y , we get

(2) (∇XRic)(Z,W ) = A(X)Ric(Z,W ) + (n− 1)B(X)g(Z,W ).

In this case, the Riemannian manifold (Mn, g) is called a generalized Ricci
recurrent manifold [1]. If the 1-form B(X) becomes zero in (2), then the
generalized Ricci recurrent manifold reduces to a Ricci-recurrent manifold.

A non-flat Riemannian manifold (Mn, g) (n ≥ 3) is defined to be a quasi-
Einstein manifold [12] if its Ricci tensor is not identically zero and satisfies the
condition

Ric(X,Y ) = ag(X,Y ) + bE(X)E(Y ),

where a, b ̸= 0 are scalars and E is a non-zero 1-form such that

g(X,U) = E(X),

for all vector fields X; U being a unit vector field. If a and b are constants, we
call such a manifold is a special quasi-Einstein manifold.

In 1973, Pokhariyal [9] introduced a new curvature tensor of type (1, 3) in
an n-dimensional Riemannian manifold (Mn, g), (n > 2) denoted by W3 and
defined by

(3) W3(Y, Z, U) = K(Y,Z, U) +
1

n− 1

[
g(Z,U)R(Y )−Ric(Y,U)Z

]
,

where K denotes the Riemannian curvature tensor of type (1, 3) and R is the
Ricci tensor of type (1, 1), defined as

(4) g(R(X), Y ) = Ric(X,Y ),

for every differentiable vector fields X, Y .
From (3) we can define a (0, 4) type W3 curvature tensor W̃3 as follows

W̃3(Y,Z, U, V ) = K̃(Y, Z, U, V ) +
1

n− 1

[
g(Z,U)Ric(Y, V )

− g(Z, V )Ric(Y,U)
]
,

(5)

where K̃ denotes the Riemannian curvature tensor of type (0, 4) defined by

K̃(Y, Z, U, V ) = g(K(Y,Z, U), V ),

and

W̃3(Y, Z, U, V ) = g(W3(Y, Z, U), V ).

From (5), we have

(6)

n∑
i=1

W̃3(ei, Z, U, ei) =
1

n− 1

[
(n− 2)Ric(Z,U) + rg(Z,U)

]
,
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(7)

n∑
i=1

W̃3(Y, ei, ei, V ) = 2Ric(Y, V ),

and

(8)

n∑
i=1

W̃3(Y,Z, ei, ei) = 0 =

n∑
i=1

W̃3(ei, ei, U, V ).

Also,

(9)


W̃3(Y,Z, U, V ) ̸= −W̃3(Z, Y, U, V ),

W̃3(Y,Z, U, V ) = −W̃3(Y,Z, V, U),

W̃3(Y,Z, U, V ) ̸= W̃3(U, V, Y, Z),

W̃3(Y,Z, U, V ) + W̃3(Z,U, Y, V ) + W̃3(U, Y, Z, V ) ̸= 0.

In this paper, we have considered a non-flat n-dimensional Riemannian mani-
fold in which the W̃3 curvature tensor satisfies the condition

(∇XW̃3)(Y,Z, U, V ) = A(X)W̃3(Y, Z, U, V )

+B(X)
[
g(Z,U)g(Y, V )− g(Y,U)g(Z, V )

]
,

(10)

where A and B are 1-forms. Such an n-dimensional Riemannian manifold will
be called a generalized W3 recurrent manifold. If the 1-form B is zero, then
the manifold reduces to W3 recurrent manifold.

The paper is presented as follows: After introduction in Section 2, we obtain
a necessary and sufficient condition for the scalar curvature to be constant in a
generalized W3 recurrent manifold. In Section 3, Ricci symmetric generalized
W3 recurrent manifolds are studied. In the next section, sufficient condition
for a generalized W3 recurrent manifold to be a special quasi-Einstein manifold
are given. Section 5 is on the study of decomposable generalized W3 recurrent
manifold. Finally, the existence of such a manifold is ensured by a non-trivial
example.

2. Generalized W3 recurrent manifold with constant scalar curva-
ture

In this section, we obtain a necessary and sufficient condition for the scalar
curvature to be constant in a generalized W3 recurrent manifold.
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Taking covariant derivative of (5) with respect to X and then using (10),
we get

(∇XK̃)(Y, Z, U, V ) = A(X)K̃(Y, Z, U, V ) +B(X)
[
g(Z,U)g(Y, V )

− g(Y, U)g(Z, V )
]
+

1

n− 1

[
A(X)

{
g(Z,U)Ric(Y, V )

− g(Z, V )Ric(Y, U)
}
−

{
g(Z,U)(∇XRic)(Y, V )

− g(Z, V )(∇XRic)(Y,U)
}]

.

(11)

Permuting (11) over X,Y, Z and then using Bianchi’s second identity, we have

A(X)K̃(Y, Z, U, V ) +A(Y )K̃(Z,X,U, V ) +A(Z)K̃(X,Y, U, V )

+B(X)
[
g(Z,U)g(Y, V )− g(Y,U)g(Z, V )

]
+B(Y )

[
g(X,U)g(Z, V )

− g(Z,U)g(X,V )
]
+B(Z)

[
g(Y,U)g(X,V )− g(X,U)g(Y, V )

]
+

1

n− 1

[
A(X){g(Z,U)Ric(Y, V )− g(Z, V )Ric(Y,U)}

+A(Y ){g(X,U)Ric(Z, V )− g(X,V )Ric(Z,U)}
+A(Z){g(Y, U)Ric(X,V )− g(Y, V )Ric(X,U)}
− {g(Z,U)(∇XRic)(Y, V )− g(Z, V )(∇XRic)(Y, U)}
− {g(X,U)(∇Y Ric)(Z, V )− g(X,V )(∇Y Ric)(Z,U)}

− {g(Y,U)(∇ZRic)(X,V )− g(Y, V )(∇ZRic)(X,U)}
]
= 0.

(12)

Setting Y = V = ei in the equation (12) and using (6), (7) and (8), where {ei}
is an orthonormal basis of the tangent space at each point of the manifold and
then taking summation over i, 1 ≤ i ≤ n, we get

A(X)Ric(Z,U) +A(K(Z,X,U))−A(Z)Ric(X,U)

+ (n− 2)B(X)g(Z,U)− (n− 2)B(Z)g(X,U)

+
1

n− 1

[
A(X){rg(Z,U)− 2Ric(Z,U)}+A(R(Z))g(X,U)

− (n− 1)A(Z)Ric(X,U) + 2(∇XRic)(U,Z) + (n− 1)(∇ZRic(X,U))

− {dr(X)g(Z,U) +
dr(Z)

2
g(X,U)}

]
= 0.

(13)

Contracting the equation (13) over Z and U , we obtain(2n− 3

n− 1

)
rA(X)−

(3n− 4

n− 1

)
A(R(X))+(n−1)(n−2)B(X)− (n− 4)

2(n− 1)
dr(X) = 0,

which implies that

(14) rA(X) =
(3n− 4)

(2n− 3)
A(R(X))− (n− 1)2(n− 2)

(2n− 3)
B(X) +

(n− 4)

2(2n− 3)
dr(X).
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Thus, we can state the following result:

Theorem 2.1. Necessary and sufficient condition for a generalized W3 re-
current manifold is that the scalar curvature r is constant if and only if

rA(X) =
(3n− 4)

(2n− 3)
A(R(X))− (n− 1)2(n− 2)

(2n− 3)
B(X)

for all vector fields X.

Now, we consider that the scalar curvature r in a generalized W3 recurrent
manifold is constant. Then the relation (14) reduces to

(15) rA(X) =
(3n− 4)

(2n− 3)
A(R(X))− (n− 1)2(n− 2)

(2n− 3)
B(X).

Contracting the equation (11) over Y and V , we get

(∇XRic)(Z,U) = A(X)Ric(Z,U) + (n− 1)B(X)g(Z,U)

+
1

n− 1

[
A(X)

{
rg(Z,U)− Ric(Z,U)

}
−
{
dr(X)g(Z,U)− (∇XRic)(Z,U)

}]
,

(16)

which in view of (15), the equation (16) gives

(∇XRic)(Z,U) = A(X)Ric(Z,U)

+
[ (3n− 4)

(2n− 3)(n− 2)
A(R(X))− (n− 1)3

(2n− 3)(n− 2)
B(X)

]
g(Z,U).

The above expression can be written as

(17) (∇XRic)(Z,U) = A(X)Ric(Z,U) + (n− 1)D(X)g(Z,U),

where D(X) = 1
n−1

[
(3n−4)

(2n−3)(n−2)A(R(X)) − (n−1)3

(2n−3)(n−2)B(X)
]
. The Relation

(17) is of the type (2). Thus, the considered manifold is a generalized Ricci-
recurrent manifold. Hence, we can state the following theorem:

Theorem 2.2. A generalized W3 recurrent manifold with constant scalar
curvature is generalized Ricci recurrent manifold.

3. Ricci symmetric generalized W3 recurrent manifold

Assume that the generalized W3 recurrent manifold is Ricci symmetric.
Then, ∇Ric = 0, i.e., ∇R = 0. This implies that r is constant and dr = 0.
Then, from the equation (16), we have

(18)
(n− 2

n− 1

)
A(X)Ric(Z,U) +

{ r

n− 1
A(X) + (n− 1)B(X)

}
g(Z,U) = 0.
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From the equation (15), we have

(19) B(X) = − (2n− 3)

(n− 2)(n− 1)2
A(X) +

(3n− 4)

(n− 2)(n− 1)2
A(R(X)),

which in view of (19), the relation (18) becomes

Ric(Z,U) =
1

(n− 2)2

[
(n− 1)r − (3n− 4)

A(R(X))

A(X)

]
g(Z,U),

where we take X so that (at least locally) A(X) ̸= 0. In order to guarantee
that A ̸= 0 we have to assume that M is not locally symmetric. Assume

λ = 1
(n−2)2

[
(n − 1)r − (3n − 4)A(R(X))

A(X)

]
is a scalar. Then the above relation

takes the form
Ric(Z,U) = λg(Z,U),

which shows that the manifold is an Einstein manifold. Therefore, we have the
following result:

Theorem 3.1. A Ricci symmetric generalized W3 recurrent manifold is an
Einstein manifold.

4. Sufficient condition for a generalized W3 recurrent manifold to
be a quasi Einstein manifold

In this section, we would like to obtain a sufficient condition for a generalized
W3 recurrent manifold to be a quasi-Einstein manifold.

Now, from the equation (16), we have

(∇XRic)(Z,U) = A(X)Ric(Z,U)

+
n

n− 2

[ (n− 1)2

n
B(X) +

rA(X)

n
− dr(X)

n

]
g(Z,U).

(20)

A vector field P defined by g(X,P ) = A(X) is said to be a concircular vector
field [10] if

(21) (∇XA)(Y ) = λg(X,Y ) + ω(X)A(Y ),

where λ is a smooth function and ω is a closed 1-form. If P is unit, then the
equation (21) can be written as

(22) (∇XA)(Y ) = λ
[
g(X,Y )−A(X)A(Y )

]
.

Suppose a generalized W3 recurrent manifold admits a unit concircular vector
field P with a non-zero constant λ. Using Ricci identity in the equation (22),
we have

(23) A(K(X,Y, Z)) = −λ2
[
g(X,Z)A(Y )− g(Y, Z)A(X)

]
.

Contraction of (23) with respect to Y and Z gives

(24) A(R(X)) = (n− 1)λ2A(X).



On generalized W3 recurrent Riemannian manifolds 331

From (4), we have

(25) Ric(X,P ) = (n− 1)λ2A(X).

We know that

(26) (∇XRic)(Y, P ) = ∇XRic(Y, P )− Ric(∇XY, P )− Ric(Y,∇XP ).

Using (25) in (26), we obtain

(∇XRic)(Y, P ) = (n− 1)λ2∇XA(Y )− (n− 1)λ2A(∇XY )− Ric(Y,∇XP ),

or

(∇XRic)(Y, P ) = (n− 1)λ2(∇XA)(Y )− Ric(Y,∇XP )

which in view of (22) gives

(27) (∇XRic)(Y, P ) = (n− 1)λ2
[
g(X,Y )−A(X)A(Y )

]
− Ric(Y,∇XP ).

Now,

(∇XA)(Y ) = ∇XA(Y )−A(∇XY ) = ∇Xg(Y, P )− g(∇XY, P )

= g(Y,∇XP ), since (∇Xg)(Y, P ) = 0.

By virtue of the equation (22), implies that

λ
[
g(X,Y )−A(X)A(Y )

]
= g(Y,∇XP ),

⇒ g(λX, Y )− g(λA(X)P, Y ) = g(∇XP, Y ), or ∇XP = λ
[
X −A(X)P

]
.

Therefore,

Ric(Y,∇XP ) = Ric(Y, λX)− Ric(Y, λA(X)P ),

which implies

(28) Ric(Y,∇XP ) = λ
[
Ric(X,Y )−A(X)Ric(Y, P )

]
.

Making use of (28) in (27), we have

(∇XRic)(Y, P ) = (n− 1)λ3
[
g(X,Y )−A(X)A(Y )

]
− λ

[
Ric(X,Y )−A(X)Ric(Y, P )

]
.

(29)

Using (25) in (29), we obtain

(30) (∇XRic)(Y, P ) = (n− 1)λ3g(X,Y )− λRic(X,Y ).

From the equation (20), we have

(∇XRic)(Y, P ) = A(X)Ric(Y, P ) +
n

n− 2

[ (n− 1)2

n
B(X)

+
rA(X)

n
− dr(X)

n

]
g(Y, P ).

(31)
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Using (25) and (30) in (31), we have

(n− 1)λ3g(X,Y )− λRic(X,Y )

= (n− 1)λ2A(X)A(Y ) + (n− 1)
[ (n− 1)

(n− 2)
B(X)

− r

(n− 1)(n− 2)
A(X) +

dr(X)

(n− 1)(n− 2)

]
A(Y ).

(32)

From (15) and (32), we find

Ric(X,Y ) = (n− 1)λ2g(X,Y ) +
[ r

λ(n− 2)
− (3n− 4)

(n− 2)2

{
(n− 1)λ

− r(2n− 3)

λ

}
− (n− 1)λ

]
A(X)A(Y ),

which can be written as

Ric(X,Y ) = ag(X,Y ) + bA(X)A(Y ),

where a = (n− 1)λ2 and b =
[

r
λ(n−2) −

(3n−4)
(n−2)2

{
(n− 1)λ− r(2n−3)

λ

}
− (n− 1)λ

]
are two non-zero constants. Which is a special quasi-Einstein manifold. Thus,
we are in the position to state the following theorem:

Theorem 4.1. If the scalar curvature in a generalized W3 recurrent man-
ifold is constant and the associated unit vector field P is a unit concircular
vector field whose associated scalar is a non-zero constant, then the manifold
reduces to a special quasi-Einstein manifold.

5. Decomposable generalized W3 recurrent manifold

A Riemannian manifold (Mn, g) (n > 2) is said to be a decomposable

Riemannian manifold [10] if it can be expressed in the form Mn = Mp
1 ×Mn−p

2

for some p, 2 ≤ p ≤ (n−2), i.e., in some coordinate neighbourhood of Mn, the
metric g can be written as

(33) ds2 = gijdx
idxj = ḡabdx

adxb + g∗αβdx
αdxβ ,

where ḡab are functions of x1, x2, ..., xp denoted by x̄, g∗αβ are functions of

xp+1, xp+2, ..., xn denoted by x∗, a, b, c... runs from 1 to p and α, β, γ, ... runs
from p+ 1 to n. Mp

1 and Mn−p
2 are called the components of Mn.

Suppose a generalized W3 recurrent manifold (Mn, g) (n > 2) is decom-

posable. Then, Mn = Mp
1 × Mn−p

2 for some p, 2 ≤ p ≤ (n − 2). Let
X̄, Ȳ , Z̄, Ū , V̄ ∈ X(M1), X∗, Y ∗, Z∗, U∗, V ∗ ∈ X(M2). Since Mn is decom-
posable, we have

Ric(X̄, Ȳ ) = Ric(X̄, Ȳ ),

Ric(X∗, Y ∗) = Ric∗(X∗, Y ∗),

(∇X̄Ric)(Ȳ , Z̄) = (∇̄X̄Ric)(Ȳ , Z̄),
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(∇X∗Ric)(Y ∗, Z∗) = (∇∗
X∗Ric)(Y ∗, Z∗)

and r = r̄ + r∗. From (5), we have

(34) W̃3(X̄, Ȳ , Z̄, Ū) = W̄3(X̄, Ȳ , Z̄, Ū),

W̃3(X
∗, Y ∗, Z∗, U∗) = W ∗

3 (X
∗, Y ∗, Z∗, U∗),

W̃3(Y
∗, Z̄, Ū , V̄ ) = 0 = W̃3(Ȳ , Z∗, U∗, V ∗) = W̃3(Ȳ , Z∗, Ū , V̄ ) = W̃3(Ȳ , Z̄, U∗, V ∗),

W̃3(Ȳ , Z∗, U∗, V̄ ) =
1

(n− 1)
g(Z∗, U∗)Ric(Ȳ , V̄ ),

W̃3(Y
∗, Z̄, Ū , V ∗) =

1

(n− 1)
g(Z̄, Ū)Ric(Y ∗, V ∗),

(35) W̃3(Y
∗, Z̄, U∗, V̄ ) = − 1

(n− 1)
g(Z̄, V̄ )Ric(Y ∗, U∗),

(36) W̃3(Ȳ , Z∗, Ū , V ∗) = − 1

(n− 1)
g(Z∗, V ∗)Ric(Ȳ , Ū),

(∇X∗W̃3)(Ȳ , Z̄, Ū , V̄ ) = 0 = (∇X̄W̃3)(Y
∗, Z∗, U∗, V ∗).

From (10), we get

(∇X̄W̃3)(Ȳ , Z̄, Ū , V̄ ) = A(X̄)W̃3(Ȳ , Z̄, Ū , V̄ )

+B(X̄)
[
g(Z̄, Ū)g(Ȳ , V̄ )− g(Ȳ , Ū)g(Z̄, V̄ )

]
,

(37) A(X∗)W̃3(Ȳ , Z̄, Ū , V̄ ) +B(X∗)
[
g(Z̄, Ū)g(Ȳ , V̄ )− g(Ȳ , Ū)g(Z̄, V̄ )

]
= 0,

and
B(p̄,p∗)(0⊕ v) = 0

for every p̄ ∈ M1, p
∗ ∈ M2 and v ∈ Tp∗M2. Also for every (p̄, p∗) ∈ M from

(10), we obtain

(38) (∇X∗W̃3)(p̄,p∗)(Y
∗, Z∗, U∗, V ∗) = (∇∗

X∗W̃3
∗
)p∗(Y ∗, Z∗, U∗, V ∗),

and the R. H. S. does not depend on p̄ ∈ M1.
If possible let B(X∗) = 0 for all X∗ ∈ X(M2), then from (37) we get

(39) A(X∗)W̃3(Ȳ , Z̄, Ū , V̄ ) = 0.

Using (34) in above equation, we get

(40) A(X∗)W̄3(X̄, Ȳ , Z̄, Ū) = 0.

If M1 is not W3 flat, that is, (W̄3)p̄0
̸= 0 for some p̄0 ∈ M1, then from (39) and

(40), it follows that

(41) A(p̄,p∗)(0⊕ v) = 0

for every p̄ ∈ M1, p
∗ ∈ M2 and for every v ∈ Tp∗M2. Hence (10) yields

(∇X∗W̃3)(p̄,p∗)(Y
∗, Z∗, U∗, V ∗) = 0
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for every p̄ ∈ M1 and p∗ ∈ M2. It follows that if M1 is not W3 flat, then

(42) A(p̄,p∗)(X
∗)(W̃3

∗
)p∗(Y ∗, Z∗, U∗, V ∗) = 0

for all p̄ ∈ M1 and p∗ ∈ M2.
Now. we assume that

(∇XW̃3)(Y,Z, U, V ) = Ā(X)W̃3(Y, Z, U, V )

+ B̄(X)
[
g(Z,U)g(Y, V )− g(Y,U)g(Z, V )

]
,

(43)

where Ā and B̄ are 1-forms. Putting (43) in (10), we get

[A(X)− Ā(X)]W̃3(Y, Z, U, V ) + [B(X)− B̄(X)][g(Z,U)g(Y, V )

−g(Y, U)g(Z, V )] = 0.
(44)

Contraction of (44) over Y and V , gives

[A(X)− Ā(X)]
[
Ric(Z,U)− 1

(n− 1)
{rg(Z,U)−Ric(Z,U)}

]
+(n− 1)[B(X)− B̄(X)]g(Z,U) = 0.

(45)

Again, contracting the equation (45) over Z and U , we have

(46) B(X) = B̄(X),

In view of (46), the relation (44) becomes

A(X) = Ā(X),

for all X ∈ Mn provided W3 ̸= 0, i.e., the manifold is not W3 flat. Thus, the
1-forms A and B are uniquely determined provided that the manifold is not
W3 flat. So, from equation (42) we obtain

(47) A(p̄,p∗)(X
∗) = 0

for all p̄ ∈ M1 and p∗ ∈ M2.
From (40) we conclude that either

(i) A(X∗) = 0 for all X∗ ∈ X(M2), or
(ii) M1 is W3 flat.

Also, from the equation (10), we have

(∇X∗W̃3)(Y
∗, Z̄, Ū , V ∗) = A(X∗)W̃3(Y

∗, Z̄, Ū , V ∗)

+B(X∗)
[
g(Z̄, Ū)g(Y ∗, V ∗)− g(Y ∗, Ū)g(Z̄, V ∗)

]
.

(48)

Now, we consider the case (i). From (48), it follows that

(∇X∗W̃3)(Y
∗, Z̄, Ū , V ∗) = 0,

which by virtue of (36) gives

(49) (∇X∗Ric)(Y ∗, V ∗) = 0.
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Hence, the component M2 is Ricci symmetric. Using (36), (38), (41), (42) and
(47) and A(X∗) = 0, B(X∗) = 0 for all X∗ ∈ X(M2), from (10), we have

(∇X∗W̃3)(Y
∗, Z∗, U∗, V ∗) = 0

and hence

(∇X∗K̃)(Y ∗, Z∗, U∗V ∗) +
1

(n− 1)

[
g(Z∗, U∗)(∇X∗Ric)(Y ∗, V ∗)

− g(Z∗, V ∗)(∇X∗Ric)(Y ∗, U∗)
]
= 0,

which by virtue of the equation (49) yields

(∇X∗K̃)(Y ∗, Z∗, U∗V ∗) = 0,

that is, the component M2 is locally symmetric. A similar result can be proved
for M1. Thus we have the following result:

Theorem 5.1. Let Mn be a decomposable generalized W3 recurrent man-
ifold which is not W3 flat such that Mn = Mp

1 × Mn−p
2 , 2 ≤ p ≤ (n − 2). If

B(X∗) = 0 for all X ∈ M2,(respectively B(X̄) = 0 for all X̄ ∈ M1), then either
(i) or (ii) holds.

(i) A(X∗) = 0 for all X ∈ X(M2), (respectively A(X̄) = 0, for all X ∈
X(M1)), and hence M2(respectively M1) is Ricci symmetric as well as
locally symmetric.

(ii) M2(respectively M1) is W3 flat.

Also, from the equation (10), we have

(∇X̄W̃3)(Ȳ , Z∗, U∗, V ∗) = A(X̄)W̃3(Ȳ , Z∗, U∗, V ∗)

+B(X̄)
[
g(Z∗, U∗)g(Ȳ , V̄ )− g(Ȳ , U∗)g(Z∗, V̄ )

]
.

(50)

Using (35) in (50), we get

1

(n− 1)
g(Z∗, U∗)(∇X̄Ric)(Ȳ , V̄ )

=
A(X̄)

(n− 1)
g(Z∗, U∗)Ric(Ȳ , V̄ ) +B(X̄)g(Z∗, U∗)g(Ȳ , V̄ ).

(51)

Now, we assume that Ric(Z∗, U∗) = 0 and g(Z∗, U∗) ̸= 0. Then from (51) we
get

(∇X̄Ric)(Ȳ , V̄ ) = A(X̄)Ric(Ȳ , V̄ ) + (n− 1)B(X̄)g(Ȳ , V̄ ).

Therefore, we have the following theorem:

Theorem 5.2. Let Mn be a decomposable generalized W3 recurrent man-
ifold which is not W3 flat such that Mn = Mp

1 ×Mn−p
2 , 2 ≤ p ≤ (n− 2). Then

M1(respectively) M2 is generalized Ricci recurrent.
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6. Example of a generalized W3 recurrent manifold

In this section, we construct an example of a generalized W3 recurrent man-
ifold and shown that the existence of such a manifold by considering the fol-
lowing metric.

We define a Riemannian metric g on the 4-dimensional real number space
R4 by the relation

(52) ds2 = gijdx
idxj = (1− 4p)

[
(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

]
,

where p = ex
1

k2 , for a non-zero constant k and x1 ̸= 0. Then the non-vanishing
components of covariant and contravariant metric tensor in (52) are

g11 = g22 = g33 = g44 = 1− 4p

and

g11 = g22 = g33 = g44 =
1

1− 4p
.

In the metric considered the only non-vanishing components of the Christoffel
symbols are {

1
22

}
=

{
1
33

}
=

{
1
44

}
=

2p

1− 4p
,(53) {

1
11

}
=

{
2
12

}
=

{
3
13

}
=

{
4
14

}
= − 2p

1− 4p
.(54)

The non-zero derivatives of equations (53) and (54) as follows:

∂

∂x1

{
1
22

}
=

∂

∂x1

{
1
33

}
=

∂

∂x1

{
1
44

}
=

2p

(1− 4p)2
,

∂

∂x1

{
1
11

}
=

∂

∂x1

{
2
12

}
=

∂

∂x1

{
3
13

}
=

∂

∂x1

{
4
14

}
= − 2p

(1− 4p)2
.

The Riemannian curvature tensor as follows

(55) Kl
ijk =

∣∣∣∣∣∣∣∣
∂

∂xj
∂

∂xk{
l
ij

} {
l
ik

}
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

=I

+

∣∣∣∣∣∣∣∣
{
m
ik

} {
m
ij

}
{

l
mk

} {
l

mj

}
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

=II

.

The non-zero components of (I) in (55) goes as follows:

K1
212 =

∂

∂x1

{
1
22

}
=

2p

(1− 4p)2
,

K1
313 =

∂

∂x1

{
1
33

}
=

2p

(1− 4p)2
,

K1
414 =

∂

∂x1

{
1
44

}
=

2p

(1− 4p)2
,
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and the non-zero components of (II) in (55) goes as follows:

K1
313 =

{
m
33

}{
1
m1

}
−
{
m
31

}{
1
m3

}
=

{
1
33

}{
1
11

}
−
{
1
31

}{
1
13

}
= − 4p2

(1− 4p)2
,

K1
414 =

{
m
44

}{
1
m1

}
−
{
m
41

}{
1
m4

}
=

{
1
44

}{
1
11

}
−
{
1
31

}{
1
13

}
= − 4p2

(1− 4p)2
,

Now, using these components in (55), we get

K1
212 =

2p

(1− 4p)2
, K1

313 = K1
414 =

2p− 4p2

(1− 4p)2
.

Thus, the non-vanishing components of the Riemannian curvature tensor of
type (0, 4) up to symmetry are:

K̃1212 =
2p

1− 4p
, K̃1313 = K̃1414 =

2p− 4p2

1− 4p
,

and the Ricci tensor of type (0, 2) goes as follows:

Ric11 = − 6p

(1− 4p)2
, Ric22 = Ric33 = − 2p

(1− 4p)2
.

Now, using r = gijRicij , we get r = 12p
(1−4p)3 , which is non-zero. By virtue of

the equation (5), we get the non-zero components of the W̃3 curvature tensor
goes as follows:

(W̃3)1212 =
4p

1− 4p
, (W̃3)1313 = (W̃3)1414 =

8p

3(1− 4p)
,

whose non-zero covariant derivatives are

(W̃3)1212,1 =
4p

(1− 4p)2
, (W̃3)1313,1 = (W̃3)1414,1 =

8p

3(1− 4p)2

where ‘,’ denotes the covariant derivative with respect to the metric tensor.
To show that (R4, g) is a generalized W3 recurrent manifold, let us consider

the associated 1-forms as follows

Ai =


16p2 − 32p+ 5

1− 4p
, if i=1

0, otherwise
, and Bi =


16p

(1− 4p)2
, if i=1

0, otherwise
.

To verify the relation (10), it is sufficient to check the following relations

(56) (W̃3)1212,1 = A1(W̃3)1212 +B1

[
g21g12 − g11g22

]
,

(57) (W̃3)1313,1 = A1(W̃3)1313 +B1

[
g31g13 − g11g33

]
,

and

(58) (W̃3)1414,1 = A1(W̃3)1414 +B1

[
g41g14 − g11g44

]
.
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Since for the other cases the relation (10) holds trivially.

R.H.S. of (56) = A1(W̃3)1212 +B1

[
g21g12 − g11g22

]
=

(16p2 − 32p+ 5)

(1− 4p)
× (

4p

1− 4p
) +

16p

(1− 4p)2

[
0− (1− 4p)2

]
=

4p

(1− 4p)2

= (W̃3)1212,1

= L.H.S. of (56).

By a similar argument, it can be shown that (57) and (58) are also true. There-
fore the manifold (R4, g) is a generalized W3 recurrent Riemannian manifold.

As a consequence of the above, one can say that

Theorem 6.1. There exists a manifold (R4, g) which is a generalized W3

recurrent Riemannian manifold with the above mentioned choice of the 1-forms.
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