ON GENERALIZED W_{3} RECURRENT RIEMANNIAN MANIFOLDS

Mohabbat Ali*, Quddus Khan, Aziz Ullah Khan, and Mohd
Vasiulla

Abstract

The object of the present work is to study a generalized W_{3} recurrent manifold. We obtain a necessary and sufficient condition for the scalar curvature to be constant in such a manifold. Also, sufficient condition for generalized W_{3} recurrent manifold to be special quasi-Einstein manifold are given. Ricci symmetric and decomposable generalized W_{3} recurrent manifold are studied. Finally, the existence of such a manifold is ensured by a non-trivial example.

1. Introduction

Let $\left(M^{n}, g\right)$ be an n-dimensional smooth Riemannian manifold and ∇ be the covariant differentiation with respect to the metric tensor g. Symmetric spaces play a significant role in the study of differential geometry. Cartan [3] studied Riemanian symmetric spaces and obtain its classification. A Riemannian manifold is said to be a locally symmetric manifold [3] if $\nabla K=0$.

Generalized recurrent Riemannian manifolds have been studied by several authors in different context such as Singh and Khan [11], De and Pal [6], De and Gazi [4], Arslan et. al. [2], De and Guha [5] etc. Semi-generalized W_{3} recurrent manifolds has been studied by K. Lalnunsiami and J. P. Singh [8].

A Riemannian manifold $\left(M^{n}, g\right)(\mathrm{n} \geq 3)$ is said to be a generalized recurrent manifold [5] if the Riemann curvature tensor K of type $(1,3)$ satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} K\right)(Y, Z, W)=A(X) K(Y, Z, W)+B(X)[g(Z, W) Y-g(Y, W) Z] \tag{1}
\end{equation*}
$$

where A and B are two 1-forms in which B is non-zero defined as

$$
g(X, \rho)=A(X) \quad \text { and } \quad g(X, \sigma)=B(X)
$$

Received November 17, 2022. Accepted January 9, 2023.
2020 Mathematics Subject Classification. 53C25, 53C15.
Key words and phrases. generalized recurrent manifold, generalized W_{3} recurrent manifold, Ricci symmetric manifold, Einstein manifold.
*Corresponding author
for every vector field X. Here the vector fields ρ and σ are called the basic vector fields of the manifold corresponding to the associated 1-forms A and B respectively. Such a manifold has been denoted by $G K_{n}$. If $B=0$, then $G K_{n}$ reduces to a recurrent manifold [7] denoted by K_{n}.

Contracting (1) with respect to Y, we get

$$
\begin{equation*}
\left(\nabla_{X} \operatorname{Ric}\right)(Z, W)=A(X) \operatorname{Ric}(Z, W)+(n-1) B(X) g(Z, W) \tag{2}
\end{equation*}
$$

In this case, the Riemannian manifold $\left(M^{n}, g\right)$ is called a generalized Ricci recurrent manifold [1]. If the 1 -form $B(X)$ becomes zero in (2), then the generalized Ricci recurrent manifold reduces to a Ricci-recurrent manifold.

A non-flat Riemannian manifold $\left(M^{n}, g\right)(n \geq 3)$ is defined to be a quasiEinstein manifold [12] if its Ricci tensor is not identically zero and satisfies the condition

$$
\operatorname{Ric}(X, Y)=a g(X, Y)+b E(X) E(Y)
$$

where $a, b \neq 0$ are scalars and E is a non-zero 1-form such that

$$
g(X, U)=E(X)
$$

for all vector fields $X ; U$ being a unit vector field. If a and b are constants, we call such a manifold is a special quasi-Einstein manifold.

In 1973, Pokhariyal [9] introduced a new curvature tensor of type $(1,3)$ in an n-dimensional Riemannian manifold $\left(M^{n}, g\right),(n>2)$ denoted by W_{3} and defined by

$$
\begin{equation*}
W_{3}(Y, Z, U)=K(Y, Z, U)+\frac{1}{n-1}[g(Z, U) R(Y)-\operatorname{Ric}(Y, U) Z] \tag{3}
\end{equation*}
$$

where K denotes the Riemannian curvature tensor of type $(1,3)$ and R is the Ricci tensor of type $(1,1)$, defined as

$$
\begin{equation*}
g(R(X), Y)=\operatorname{Ric}(X, Y) \tag{4}
\end{equation*}
$$

for every differentiable vector fields X, Y.
From (3) we can define a $(0,4)$ type W_{3} curvature tensor \tilde{W}_{3} as follows

$$
\begin{align*}
\tilde{W}_{3}(Y, Z, U, V) & =\tilde{K}(Y, Z, U, V)+\frac{1}{n-1}[g(Z, U) \operatorname{Ric}(Y, V) \tag{5}\\
& -g(Z, V) \operatorname{Ric}(Y, U)]
\end{align*}
$$

where \tilde{K} denotes the Riemannian curvature tensor of type $(0,4)$ defined by

$$
\tilde{K}(Y, Z, U, V)=g(K(Y, Z, U), V)
$$

and

$$
\tilde{W}_{3}(Y, Z, U, V)=g\left(W_{3}(Y, Z, U), V\right)
$$

From (5), we have

$$
\begin{equation*}
\sum_{i=1}^{n} \tilde{W}_{3}\left(e_{i}, Z, U, e_{i}\right)=\frac{1}{n-1}[(n-2) \operatorname{Ric}(Z, U)+\operatorname{rg}(Z, U)] \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{n} \tilde{W}_{3}\left(Y, e_{i}, e_{i}, V\right)=2 \operatorname{Ric}(Y, V) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} \tilde{W}_{3}\left(Y, Z, e_{i}, e_{i}\right)=0=\sum_{i=1}^{n} \tilde{W}_{3}\left(e_{i}, e_{i}, U, V\right) \tag{8}
\end{equation*}
$$

Also,

$$
\left\{\begin{array}{l}
\tilde{W}_{3}(Y, Z, U, V) \neq-\tilde{W}_{3}(Z, Y, U, V) \tag{9}\\
\tilde{W}_{3}(Y, Z, U, V)=-\tilde{W}_{3}(Y, Z, V, U) \\
\tilde{W}_{3}(Y, Z, U, V) \neq \tilde{W}_{3}(U, V, Y, Z) \\
\tilde{W}_{3}(Y, Z, U, V)+\tilde{W}_{3}(Z, U, Y, V)+\tilde{W}_{3}(U, Y, Z, V) \neq 0
\end{array}\right.
$$

In this paper, we have considered a non-flat n-dimensional Riemannian manifold in which the \tilde{W}_{3} curvature tensor satisfies the condition

$$
\begin{align*}
\left(\nabla_{X} \tilde{W}_{3}\right)(Y, Z, U, V) & =A(X) \tilde{W}_{3}(Y, Z, U, V) \\
& +B(X)[g(Z, U) g(Y, V)-g(Y, U) g(Z, V)] \tag{10}
\end{align*}
$$

where A and B are 1-forms. Such an n-dimensional Riemannian manifold will be called a generalized W_{3} recurrent manifold. If the 1 -form B is zero, then the manifold reduces to W_{3} recurrent manifold.

The paper is presented as follows: After introduction in Section 2, we obtain a necessary and sufficient condition for the scalar curvature to be constant in a generalized W_{3} recurrent manifold. In Section 3, Ricci symmetric generalized W_{3} recurrent manifolds are studied. In the next section, sufficient condition for a generalized W_{3} recurrent manifold to be a special quasi-Einstein manifold are given. Section 5 is on the study of decomposable generalized W_{3} recurrent manifold. Finally, the existence of such a manifold is ensured by a non-trivial example.

2. Generalized W_{3} recurrent manifold with constant scalar curvature

In this section, we obtain a necessary and sufficient condition for the scalar curvature to be constant in a generalized W_{3} recurrent manifold.

Taking covariant derivative of (5) with respect to X and then using (10), we get

$$
\begin{aligned}
\left(\nabla_{X} \tilde{K}\right)(Y, Z, U, V) & =A(X) \tilde{K}(Y, Z, U, V)+B(X)[g(Z, U) g(Y, V) \\
& -g(Y, U) g(Z, V)]+\frac{1}{n-1}[A(X)\{g(Z, U) \operatorname{Ric}(Y, V) \\
& -g(Z, V) \operatorname{Ric}(Y, U)\}-\left\{g(Z, U)\left(\nabla_{X} \operatorname{Ric}\right)(Y, V)\right. \\
& \left.\left.-g(Z, V)\left(\nabla_{X} \operatorname{Ric}\right)(Y, U)\right\}\right]
\end{aligned}
$$

Permuting (11) over X, Y, Z and then using Bianchi's second identity, we have

$$
\begin{align*}
& A(X) \tilde{K}(Y, Z, U, V)+A(Y) \tilde{K}(Z, X, U, V)+A(Z) \tilde{K}(X, Y, U, V) \\
& +B(X)[g(Z, U) g(Y, V)-g(Y, U) g(Z, V)]+B(Y)[g(X, U) g(Z, V) \\
& -g(Z, U) g(X, V)]+B(Z)[g(Y, U) g(X, V)-g(X, U) g(Y, V)] \\
& +\frac{1}{n-1}[A(X)\{g(Z, U) \operatorname{Ric}(Y, V)-g(Z, V) \operatorname{Ric}(Y, U)\} \tag{12}\\
& +A(Y)\{g(X, U) \operatorname{Ric}(Z, V)-g(X, V) \operatorname{Ric}(Z, U)\} \\
& +A(Z)\{g(Y, U) \operatorname{Ric}(X, V)-g(Y, V) \operatorname{Ric}(X, U)\} \\
& -\left\{g(Z, U)\left(\nabla_{X} \operatorname{Ric}\right)(Y, V)-g(Z, V)\left(\nabla_{X} \operatorname{Ric}\right)(Y, U)\right\} \\
& -\left\{g(X, U)\left(\nabla_{Y} \operatorname{Ric}\right)(Z, V)-g(X, V)\left(\nabla_{Y} \operatorname{Ric}\right)(Z, U)\right\} \\
& \left.-\left\{g(Y, U)\left(\nabla_{Z} \operatorname{Ric}\right)(X, V)-g(Y, V)\left(\nabla_{Z} \operatorname{Ric}\right)(X, U)\right\}\right]=0
\end{align*}
$$

Setting $Y=V=e_{i}$ in the equation (12) and using (6), (7) and (8), where $\left\{e_{i}\right\}$ is an orthonormal basis of the tangent space at each point of the manifold and then taking summation over $i, 1 \leq i \leq n$, we get

$$
\begin{align*}
& A(X) \operatorname{Ric}(Z, U)+A(K(Z, X, U))-A(Z) \operatorname{Ric}(X, U) \\
& +(n-2) B(X) g(Z, U)-(n-2) B(Z) g(X, U) \\
& +\frac{1}{n-1}[A(X)\{r g(Z, U)-2 \operatorname{Ric}(Z, U)\}+A(R(Z)) g(X, U) \tag{13}\\
& -(n-1) A(Z) \operatorname{Ric}(X, U)+2\left(\nabla_{X} \operatorname{Ric}\right)(U, Z)+(n-1)\left(\nabla_{Z} \operatorname{Ric}(X, U)\right) \\
& \left.-\left\{d r(X) g(Z, U)+\frac{d r(Z)}{2} g(X, U)\right\}\right]=0
\end{align*}
$$

Contracting the equation (13) over Z and U, we obtain
$\left(\frac{2 n-3}{n-1}\right) r A(X)-\left(\frac{3 n-4}{n-1}\right) A(R(X))+(n-1)(n-2) B(X)-\frac{(n-4)}{2(n-1)} d r(X)=0$,
which implies that
(14) $r A(X)=\frac{(3 n-4)}{(2 n-3)} A(R(X))-\frac{(n-1)^{2}(n-2)}{(2 n-3)} B(X)+\frac{(n-4)}{2(2 n-3)} d r(X)$.

Thus, we can state the following result:
Theorem 2.1. Necessary and sufficient condition for a generalized W_{3} recurrent manifold is that the scalar curvature r is constant if and only if

$$
r A(X)=\frac{(3 n-4)}{(2 n-3)} A(R(X))-\frac{(n-1)^{2}(n-2)}{(2 n-3)} B(X)
$$

for all vector fields X.
Now, we consider that the scalar curvature r in a generalized W_{3} recurrent manifold is constant. Then the relation (14) reduces to

$$
\begin{equation*}
r A(X)=\frac{(3 n-4)}{(2 n-3)} A(R(X))-\frac{(n-1)^{2}(n-2)}{(2 n-3)} B(X) \tag{15}
\end{equation*}
$$

Contracting the equation (11) over Y and V, we get

$$
\begin{align*}
\left(\nabla_{X} \operatorname{Ric}\right)(Z, U) & =A(X) \operatorname{Ric}(Z, U)+(n-1) B(X) g(Z, U) \\
& +\frac{1}{n-1}[A(X)\{r g(Z, U)-\operatorname{Ric}(Z, U)\} \tag{16}\\
& \left.-\left\{d r(X) g(Z, U)-\left(\nabla_{X} \operatorname{Ric}\right)(Z, U)\right\}\right]
\end{align*}
$$

which in view of (15), the equation (16) gives

$$
\begin{aligned}
\left(\nabla_{X} \operatorname{Ric}\right)(Z, U) & =A(X) \operatorname{Ric}(Z, U) \\
& +\left[\frac{(3 n-4)}{(2 n-3)(n-2)} A(R(X))-\frac{(n-1)^{3}}{(2 n-3)(n-2)} B(X)\right] g(Z, U)
\end{aligned}
$$

The above expression can be written as

$$
\begin{equation*}
\left(\nabla_{X} \operatorname{Ric}\right)(Z, U)=A(X) \operatorname{Ric}(Z, U)+(n-1) D(X) g(Z, U) \tag{17}
\end{equation*}
$$

where $D(X)=\frac{1}{n-1}\left[\frac{(3 n-4)}{(2 n-3)(n-2)} A(R(X))-\frac{(n-1)^{3}}{(2 n-3)(n-2)} B(X)\right]$. The Relation (17) is of the type (2). Thus, the considered manifold is a generalized Riccirecurrent manifold. Hence, we can state the following theorem:

Theorem 2.2. A generalized W_{3} recurrent manifold with constant scalar curvature is generalized Ricci recurrent manifold.

3. Ricci symmetric generalized W_{3} recurrent manifold

Assume that the generalized W_{3} recurrent manifold is Ricci symmetric. Then, ∇ Ric $=0$, i.e., $\nabla R=0$. This implies that r is constant and $d r=0$. Then, from the equation (16), we have

$$
\begin{equation*}
\left(\frac{n-2}{n-1}\right) A(X) \operatorname{Ric}(Z, U)+\left\{\frac{r}{n-1} A(X)+(n-1) B(X)\right\} g(Z, U)=0 \tag{18}
\end{equation*}
$$

From the equation (15), we have

$$
\begin{equation*}
B(X)=-\frac{(2 n-3)}{(n-2)(n-1)^{2}} A(X)+\frac{(3 n-4)}{(n-2)(n-1)^{2}} A(R(X)) \tag{19}
\end{equation*}
$$

which in view of (19), the relation (18) becomes

$$
\operatorname{Ric}(Z, U)=\frac{1}{(n-2)^{2}}\left[(n-1) r-(3 n-4) \frac{A(R(X))}{A(X)}\right] g(Z, U)
$$

where we take X so that (at least locally) $A(X) \neq 0$. In order to guarantee that $A \neq 0$ we have to assume that M is not locally symmetric. Assume $\lambda=\frac{1}{(n-2)^{2}}\left[(n-1) r-(3 n-4) \frac{A(R(X))}{A(X)}\right]$ is a scalar. Then the above relation takes the form

$$
\operatorname{Ric}(Z, U)=\lambda g(Z, U)
$$

which shows that the manifold is an Einstein manifold. Therefore, we have the following result:

Theorem 3.1. A Ricci symmetric generalized W_{3} recurrent manifold is an Einstein manifold.
4. Sufficient condition for a generalized W_{3} recurrent manifold to be a quasi Einstein manifold

In this section, we would like to obtain a sufficient condition for a generalized W_{3} recurrent manifold to be a quasi-Einstein manifold.

Now, from the equation (16), we have

$$
\begin{aligned}
\left(\nabla_{X} \operatorname{Ric}\right)(Z, U) & =A(X) \operatorname{Ric}(Z, U) \\
& +\frac{n}{n-2}\left[\frac{(n-1)^{2}}{n} B(X)+\frac{r A(X)}{n}-\frac{d r(X)}{n}\right] g(Z, U)
\end{aligned}
$$

A vector field P defined by $g(X, P)=A(X)$ is said to be a concircular vector field [10] if

$$
\begin{equation*}
\left(\nabla_{X} A\right)(Y)=\lambda g(X, Y)+\omega(X) A(Y) \tag{21}
\end{equation*}
$$

where λ is a smooth function and ω is a closed 1-form. If P is unit, then the equation (21) can be written as

$$
\begin{equation*}
\left(\nabla_{X} A\right)(Y)=\lambda[g(X, Y)-A(X) A(Y)] \tag{22}
\end{equation*}
$$

Suppose a generalized W_{3} recurrent manifold admits a unit concircular vector field P with a non-zero constant λ. Using Ricci identity in the equation (22), we have

$$
\begin{equation*}
A(K(X, Y, Z))=-\lambda^{2}[g(X, Z) A(Y)-g(Y, Z) A(X)] \tag{23}
\end{equation*}
$$

Contraction of (23) with respect to Y and Z gives

$$
\begin{equation*}
A(R(X))=(n-1) \lambda^{2} A(X) \tag{24}
\end{equation*}
$$

From (4), we have

$$
\begin{equation*}
\operatorname{Ric}(X, P)=(n-1) \lambda^{2} A(X) \tag{25}
\end{equation*}
$$

We know that
(26) $\quad\left(\nabla_{X} \operatorname{Ric}\right)(Y, P)=\nabla_{X} \operatorname{Ric}(Y, P)-\operatorname{Ric}\left(\nabla_{X} Y, P\right)-\operatorname{Ric}\left(Y, \nabla_{X} P\right)$.

Using (25) in (26), we obtain

$$
\left(\nabla_{X} \operatorname{Ric}\right)(Y, P)=(n-1) \lambda^{2} \nabla_{X} A(Y)-(n-1) \lambda^{2} A\left(\nabla_{X} Y\right)-\operatorname{Ric}\left(Y, \nabla_{X} P\right)
$$

or

$$
\left(\nabla_{X} \operatorname{Ric}\right)(Y, P)=(n-1) \lambda^{2}\left(\nabla_{X} A\right)(Y)-\operatorname{Ric}\left(Y, \nabla_{X} P\right)
$$

which in view of (22) gives
(27) $\quad\left(\nabla_{X} \operatorname{Ric}\right)(Y, P)=(n-1) \lambda^{2}[g(X, Y)-A(X) A(Y)]-\operatorname{Ric}\left(Y, \nabla_{X} P\right)$.

Now,

$$
\begin{aligned}
\left(\nabla_{X} A\right)(Y) & =\nabla_{X} A(Y)-A\left(\nabla_{X} Y\right)=\nabla_{X} g(Y, P)-g\left(\nabla_{X} Y, P\right) \\
& =g\left(Y, \nabla_{X} P\right), \quad \text { since } \quad\left(\nabla_{X} g\right)(Y, P)=0 .
\end{aligned}
$$

By virtue of the equation (22), implies that

$$
\begin{aligned}
& \qquad \begin{array}{l}
\qquad[g(X, Y)-A(X) A(Y)]=g\left(Y, \nabla_{X} P\right) \\
\Rightarrow g(\lambda X, Y)-g(\lambda A(X) P, Y)=g\left(\nabla_{X} P, Y\right), \text { or } \nabla_{X} P=\lambda[X-A(X) P] . \\
\text { Therefore, }
\end{array} \text {. }
\end{aligned}
$$

$$
\operatorname{Ric}\left(Y, \nabla_{X} P\right)=\operatorname{Ric}(Y, \lambda X)-\operatorname{Ric}(Y, \lambda A(X) P)
$$

which implies

$$
\begin{equation*}
\operatorname{Ric}\left(Y, \nabla_{X} P\right)=\lambda[\operatorname{Ric}(X, Y)-A(X) \operatorname{Ric}(Y, P)] \tag{28}
\end{equation*}
$$

Making use of (28) in (27), we have

$$
\begin{align*}
\left(\nabla_{X} \operatorname{Ric}\right)(Y, P) & =(n-1) \lambda^{3}[g(X, Y)-A(X) A(Y)] \tag{29}\\
& -\lambda[\operatorname{Ric}(X, Y)-A(X) \operatorname{Ric}(Y, P)]
\end{align*}
$$

Using (25) in (29), we obtain

$$
\begin{equation*}
\left(\nabla_{X} \operatorname{Ric}\right)(Y, P)=(n-1) \lambda^{3} g(X, Y)-\lambda \operatorname{Ric}(X, Y) \tag{30}
\end{equation*}
$$

From the equation (20), we have

$$
\begin{align*}
\left(\nabla_{X} \operatorname{Ric}\right)(Y, P) & =A(X) \operatorname{Ric}(Y, P)+\frac{n}{n-2}\left[\frac{(n-1)^{2}}{n} B(X)\right. \tag{31}\\
& \left.+\frac{r A(X)}{n}-\frac{d r(X)}{n}\right] g(Y, P)
\end{align*}
$$

Using (25) and (30) in (31), we have

$$
\begin{align*}
(n-1) \lambda^{3} g(X, Y) & -\lambda \operatorname{Ric}(X, Y) \\
& =(n-1) \lambda^{2} A(X) A(Y)+(n-1)\left[\frac{(n-1)}{(n-2)} B(X)\right. \tag{32}\\
& \left.-\frac{r}{(n-1)(n-2)} A(X)+\frac{d r(X)}{(n-1)(n-2)}\right] A(Y)
\end{align*}
$$

From (15) and (32), we find

$$
\begin{aligned}
\operatorname{Ric}(X, Y) & =(n-1) \lambda^{2} g(X, Y)+\left[\frac{r}{\lambda(n-2)}-\frac{(3 n-4)}{(n-2)^{2}}\{(n-1) \lambda\right. \\
& \left.\left.-\frac{r(2 n-3)}{\lambda}\right\}-(n-1) \lambda\right] A(X) A(Y)
\end{aligned}
$$

which can be written as

$$
\operatorname{Ric}(X, Y)=a g(X, Y)+b A(X) A(Y)
$$

where $a=(n-1) \lambda^{2}$ and $b=\left[\frac{r}{\lambda(n-2)}-\frac{(3 n-4)}{(n-2)^{2}}\left\{(n-1) \lambda-\frac{r(2 n-3)}{\lambda}\right\}-(n-1) \lambda\right]$ are two non-zero constants. Which is a special quasi-Einstein manifold. Thus, we are in the position to state the following theorem:

Theorem 4.1. If the scalar curvature in a generalized W_{3} recurrent manifold is constant and the associated unit vector field P is a unit concircular vector field whose associated scalar is a non-zero constant, then the manifold reduces to a special quasi-Einstein manifold.

5. Decomposable generalized W_{3} recurrent manifold

A Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is said to be a decomposable Riemannian manifold [10] if it can be expressed in the form $M^{n}=M_{1}^{p} \times M_{2}^{n-p}$ for some $\mathrm{p}, 2 \leq p \leq(n-2)$, i.e., in some coordinate neighbourhood of M^{n}, the metric g can be written as

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}=\bar{g}_{a b} d x^{a} d x^{b}+g_{\alpha \beta}^{*} d x^{\alpha} d x^{\beta}, \tag{33}
\end{equation*}
$$

where $\bar{g}_{a b}$ are functions of $x^{1}, x^{2}, \ldots, x^{p}$ denoted by $\bar{x}, g_{\alpha \beta}^{*}$ are functions of $x^{p+1}, x^{p+2}, \ldots, x^{n}$ denoted by $x^{*}, a, b, c \ldots$ runs from 1 to p and $\alpha, \beta, \gamma, \ldots$ runs from $p+1$ to $n . M_{1}^{p}$ and M_{2}^{n-p} are called the components of M^{n}.

Suppose a generalized W_{3} recurrent manifold $\left(M^{n}, g\right)(n>2)$ is decomposable. Then, $M^{n}=M_{1}^{p} \times M_{2}^{n-p}$ for some $\mathrm{p}, 2 \leq p \leq(n-2)$. Let $\bar{X}, \bar{Y}, \bar{Z}, \bar{U}, \bar{V} \in \mathfrak{X}\left(M_{1}\right), X^{*}, Y^{*}, Z^{*}, U^{*}, V^{*} \in \mathfrak{X}\left(M_{2}\right)$. Since M^{n} is decomposable, we have

$$
\begin{gathered}
\operatorname{Ric}(\bar{X}, \bar{Y})=\overline{\operatorname{Ric}}(\bar{X}, \bar{Y}), \\
\operatorname{Ric}\left(X^{*}, Y^{*}\right)=\operatorname{Ric}^{*}\left(X^{*}, Y^{*}\right), \\
\left(\nabla_{\bar{X}} \operatorname{Ric}\right)(\bar{Y}, \bar{Z})=\left(\bar{\nabla}_{\bar{X}} \operatorname{Ric}\right)(\bar{Y}, \bar{Z}),
\end{gathered}
$$

$$
\left(\nabla_{X^{*}} \operatorname{Ric}\right)\left(Y^{*}, Z^{*}\right)=\left(\nabla_{X^{*}}^{*} \operatorname{Ric}\right)\left(Y^{*}, Z^{*}\right)
$$

and $r=\bar{r}+r^{*}$. From (5), we have

$$
\begin{equation*}
\tilde{W}_{3}(\bar{X}, \bar{Y}, \bar{Z}, \bar{U})=\bar{W}_{3}(\bar{X}, \bar{Y}, \bar{Z}, \bar{U}) \tag{34}
\end{equation*}
$$

$$
\tilde{W}_{3}\left(X^{*}, Y^{*}, Z^{*}, U^{*}\right)=W_{3}^{*}\left(X_{\sim}^{*}, Y^{*}, Z^{*}, U^{*}\right)
$$

$\tilde{W}_{3}\left(Y^{*}, \bar{Z}, \bar{U}, \bar{V}\right)=0=\tilde{W}_{3}\left(\bar{Y}, Z^{*}, U^{*}, V^{*}\right)=\tilde{W}_{3}\left(\bar{Y}, Z^{*}, \bar{U}, \bar{V}\right)=\tilde{W}_{3}\left(\bar{Y}, \bar{Z}, U^{*}, V^{*}\right)$,
$\tilde{W}_{3}\left(\bar{Y}, Z^{*}, U^{*}, \bar{V}\right)=\frac{1}{(n-1)} g\left(Z^{*}, U^{*}\right) \operatorname{Ric}(\bar{Y}, \bar{V})$,

$$
\tilde{W}_{3}\left(Y^{*}, \bar{Z}, \bar{U}, V^{*}\right)=\frac{1}{(n-1)} g(\bar{Z}, \bar{U}) \operatorname{Ric}\left(Y^{*}, V^{*}\right)
$$

$$
\begin{equation*}
\tilde{W}_{3}\left(Y^{*}, \bar{Z}, U^{*}, \bar{V}\right)=-\frac{1}{(n-1)} g(\bar{Z}, \bar{V}) \operatorname{Ric}\left(Y^{*}, U^{*}\right) \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{W}_{3}\left(\bar{Y}, Z^{*}, \bar{U}, V^{*}\right)=-\frac{1}{(n-1)} g\left(Z^{*}, V^{*}\right) \operatorname{Ric}(\bar{Y}, \bar{U}) \tag{36}
\end{equation*}
$$

$$
\left(\nabla_{X^{*}} \tilde{W}_{3}\right)(\bar{Y}, \bar{Z}, \bar{U}, \bar{V})=0=\left(\nabla_{\bar{X}} \tilde{W}_{3}\right)\left(Y^{*}, Z^{*}, U^{*}, V^{*}\right)
$$

From (10), we get

$$
\begin{aligned}
\left(\nabla_{\bar{X}} \tilde{W}_{3}\right)(\bar{Y}, \bar{Z}, \bar{U}, \bar{V}) & =A(\bar{X}) \tilde{W}_{3}(\bar{Y}, \bar{Z}, \bar{U}, \bar{V}) \\
& +B(\bar{X})[g(\bar{Z}, \bar{U}) g(\bar{Y}, \bar{V})-g(\bar{Y}, \bar{U}) g(\bar{Z}, \bar{V})]
\end{aligned}
$$

(37) $A\left(X^{*}\right) \tilde{W}_{3}(\bar{Y}, \bar{Z}, \bar{U}, \bar{V})+B\left(X^{*}\right)[g(\bar{Z}, \bar{U}) g(\bar{Y}, \bar{V})-g(\bar{Y}, \bar{U}) g(\bar{Z}, \bar{V})]=0$, and

$$
B_{\left(\bar{p}, p^{*}\right)}(0 \oplus v)=0
$$

for every $\bar{p} \in M_{1}, p^{*} \in M_{2}$ and $v \in T_{p^{*}} M_{2}$. Also for every $\left(\bar{p}, p^{*}\right) \in M$ from (10), we obtain
(38) $\quad\left(\nabla_{X^{*}} \tilde{W}_{3}\right)_{\left(\bar{p}, p^{*}\right)}\left(Y^{*}, Z^{*}, U^{*}, V^{*}\right)=\left(\nabla_{X^{*}}^{*} \tilde{W}_{3}^{*}\right)_{p^{*}}\left(Y^{*}, Z^{*}, U^{*}, V^{*}\right)$,
and the R. H. S. does not depend on $\bar{p} \in M_{1}$.
If possible let $B\left(X^{*}\right)=0$ for all $X^{*} \in \mathfrak{X}\left(M_{2}\right)$, then from (37) we get

$$
\begin{equation*}
A\left(X^{*}\right) \tilde{W}_{3}(\bar{Y}, \bar{Z}, \bar{U}, \bar{V})=0 \tag{39}
\end{equation*}
$$

Using (34) in above equation, we get

$$
\begin{equation*}
A\left(X^{*}\right) \bar{W}_{3}(\bar{X}, \bar{Y}, \bar{Z}, \bar{U})=0 \tag{40}
\end{equation*}
$$

If M_{1} is not W_{3} flat, that is, $\left(\bar{W}_{3}\right)_{\overline{p_{0}}} \neq 0$ for some $\bar{p}_{0} \in M_{1}$, then from (39) and (40), it follows that

$$
\begin{equation*}
A_{\left(\bar{p}, p^{*}\right)}(0 \oplus v)=0 \tag{41}
\end{equation*}
$$

for every $\bar{p} \in M_{1}, p^{*} \in M_{2}$ and for every $v \in T_{p^{*}} M_{2}$. Hence (10) yields

$$
\left(\nabla_{X^{*}} \tilde{W}_{3}\right)_{\left(\bar{p}, p^{*}\right)}\left(Y^{*}, Z^{*}, U^{*}, V^{*}\right)=0
$$

for every $\bar{p} \in M_{1}$ and $p^{*} \in M_{2}$. It follows that if M_{1} is not W_{3} flat, then

$$
\begin{equation*}
A_{\left(\bar{p}, p^{*}\right)}\left(X^{*}\right)\left(\tilde{W}_{3}^{*}\right)_{p^{*}}\left(Y^{*}, Z^{*}, U^{*}, V^{*}\right)=0 \tag{42}
\end{equation*}
$$

for all $\bar{p} \in M_{1}$ and $p^{*} \in M_{2}$.
Now. we assume that

$$
\begin{align*}
\left(\nabla_{X} \tilde{W}_{3}\right)(Y, Z, U, V) & =\bar{A}(X) \tilde{W}_{3}(Y, Z, U, V) \\
& +\bar{B}(X)[g(Z, U) g(Y, V)-g(Y, U) g(Z, V)] \tag{43}
\end{align*}
$$

where \bar{A} and \bar{B} are 1-forms. Putting (43) in (10), we get

$$
\begin{array}{r}
{[A(X)-\bar{A}(X)] \tilde{W}_{3}(Y, Z, U, V)+[B(X)-\bar{B}(X)][g(Z, U) g(Y, V)} \tag{44}\\
- \\
-g(Y, U) g(Z, V)]=0
\end{array}
$$

Contraction of (44) over Y and V, gives

$$
\begin{array}{r}
{[A(X)-\bar{A}(X)]\left[\operatorname{Ric}(Z, U)-\frac{1}{(n-1)}\{\operatorname{rg}(Z, U)-\operatorname{Ric}(Z, U)\}\right]} \tag{45}\\
+(n-1)[B(X)-\bar{B}(X)] g(Z, U)=0
\end{array}
$$

Again, contracting the equation (45) over Z and U, we have

$$
\begin{equation*}
B(X)=\bar{B}(X) \tag{46}
\end{equation*}
$$

In view of (46), the relation (44) becomes

$$
A(X)=\bar{A}(X)
$$

for all $X \in M^{n}$ provided $W_{3} \neq 0$, i.e., the manifold is not W_{3} flat. Thus, the 1 -forms A and B are uniquely determined provided that the manifold is not W_{3} flat. So, from equation (42) we obtain

$$
\begin{equation*}
A_{\left(\bar{p}, p^{*}\right)}\left(X^{*}\right)=0 \tag{47}
\end{equation*}
$$

for all $\bar{p} \in M_{1}$ and $p^{*} \in M_{2}$.
From (40) we conclude that either
(i) $A\left(X^{*}\right)=0$ for all $X^{*} \in \mathfrak{X}\left(M_{2}\right)$, or
(ii) M_{1} is W_{3} flat.

Also, from the equation (10), we have

$$
\begin{align*}
& \left(\nabla_{X^{*}} \tilde{W}_{3}\right)\left(Y^{*}, \bar{Z}, \bar{U}, V^{*}\right)=A\left(X^{*}\right) \tilde{W}_{3}\left(Y^{*}, \bar{Z}, \bar{U}, V^{*}\right) \\
& \quad+B\left(X^{*}\right)\left[g(\bar{Z}, \bar{U}) g\left(Y^{*}, V^{*}\right)-g\left(Y^{*}, \bar{U}\right) g\left(\bar{Z}, V^{*}\right)\right] \tag{48}
\end{align*}
$$

Now, we consider the case (i). From (48), it follows that

$$
\left(\nabla_{X^{*}} \tilde{W}_{3}\right)\left(Y^{*}, \bar{Z}, \bar{U}, V^{*}\right)=0
$$

which by virtue of (36) gives

$$
\begin{equation*}
\left(\nabla_{X^{*}} \operatorname{Ric}\right)\left(Y^{*}, V^{*}\right)=0 \tag{49}
\end{equation*}
$$

Hence, the component M_{2} is Ricci symmetric. Using (36), (38), (41), (42) and (47) and $A\left(X^{*}\right)=0, B\left(X^{*}\right)=0$ for all $X^{*} \in \mathfrak{X}\left(M_{2}\right)$, from (10), we have

$$
\left(\nabla_{X^{*}} \tilde{W}_{3}\right)\left(Y^{*}, Z^{*}, U^{*}, V^{*}\right)=0
$$

and hence

$$
\begin{aligned}
\left(\nabla_{X^{*}} \tilde{K}\right)\left(Y^{*}, Z^{*}, U^{*} V^{*}\right) & +\frac{1}{(n-1)}\left[g\left(Z^{*}, U^{*}\right)\left(\nabla_{X^{*}} \operatorname{Ric}\right)\left(Y^{*}, V^{*}\right)\right. \\
& \left.-g\left(Z^{*}, V^{*}\right)\left(\nabla_{X^{*}} \operatorname{Ric}\right)\left(Y^{*}, U^{*}\right)\right]=0
\end{aligned}
$$

which by virtue of the equation (49) yields

$$
\left(\nabla_{X^{*}} \tilde{K}\right)\left(Y^{*}, Z^{*}, U^{*} V^{*}\right)=0
$$

that is, the component M_{2} is locally symmetric. A similar result can be proved for M_{1}. Thus we have the following result:

Theorem 5.1. Let M^{n} be a decomposable generalized W_{3} recurrent manifold which is not W_{3} flat such that $M^{n}=M_{1}^{p} \times M_{2}^{n-p}, 2 \leq p \leq(n-2)$. If $B\left(X^{*}\right)=0$ for all $X \in M_{2},\left(\right.$ respectively $B(\bar{X})=0$ for all $\left.\bar{X} \in M_{1}\right)$, then either (i) or (ii) holds.
(i) $A\left(X^{*}\right)=0$ for all $X \in \mathfrak{X}\left(M_{2}\right)$, (respectively $A(\bar{X})=0$, for all $X \in$ $\mathfrak{X}\left(M_{1}\right)$), and hence M_{2} (respectively M_{1}) is Ricci symmetric as well as locally symmetric.
(ii) M_{2} (respectively M_{1}) is W_{3} flat.

Also, from the equation (10), we have

$$
\begin{align*}
& \left(\nabla_{\bar{X}} \tilde{W}_{3}\right)\left(\bar{Y}, Z^{*}, U^{*}, V^{*}\right)=A(\bar{X}) \tilde{W}_{3}\left(\bar{Y}, Z^{*}, U^{*}, V^{*}\right) \\
& \quad+B(\bar{X})\left[g\left(Z^{*}, U^{*}\right) g(\bar{Y}, \bar{V})-g\left(\bar{Y}, U^{*}\right) g\left(Z^{*}, \bar{V}\right)\right] \tag{50}
\end{align*}
$$

Using (35) in (50), we get

$$
\begin{align*}
& \frac{1}{(n-1)} g\left(Z^{*}, U^{*}\right)\left(\nabla_{\bar{X}} \operatorname{Ric}\right)(\bar{Y}, \bar{V}) \\
& =\frac{A(\bar{X})}{(n-1)} g\left(Z^{*}, U^{*}\right) \operatorname{Ric}(\bar{Y}, \bar{V})+B(\bar{X}) g\left(Z^{*}, U^{*}\right) g(\bar{Y}, \bar{V}) \tag{51}
\end{align*}
$$

Now, we assume that $\operatorname{Ric}\left(Z^{*}, U^{*}\right)=0$ and $g\left(Z^{*}, U^{*}\right) \neq 0$. Then from (51) we get

$$
\left(\nabla_{\bar{X}} \operatorname{Ric}\right)(\bar{Y}, \bar{V})=A(\bar{X}) \operatorname{Ric}(\bar{Y}, \bar{V})+(n-1) B(\bar{X}) g(\bar{Y}, \bar{V}) .
$$

Therefore, we have the following theorem:
Theorem 5.2. Let M^{n} be a decomposable generalized W_{3} recurrent manifold which is not W_{3} flat such that $M^{n}=M_{1}^{p} \times M_{2}^{n-p}, 2 \leq p \leq(n-2)$. Then M_{1} (respectively) M_{2} is generalized Ricci recurrent.

6. Example of a generalized W_{3} recurrent manifold

In this section, we construct an example of a generalized W_{3} recurrent manifold and shown that the existence of such a manifold by considering the following metric.

We define a Riemannian metric g on the 4-dimensional real number space \mathbb{R}^{4} by the relation

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}=(1-4 p)\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2}\right] \tag{52}
\end{equation*}
$$

where $p=\frac{e^{x^{1}}}{k^{2}}$, for a non-zero constant k and $x^{1} \neq 0$. Then the non-vanishing components of covariant and contravariant metric tensor in (52) are

$$
g_{11}=g_{22}=g_{33}=g_{44}=1-4 p
$$

and

$$
g^{11}=g^{22}=g^{33}=g^{44}=\frac{1}{1-4 p}
$$

In the metric considered the only non-vanishing components of the Christoffel symbols are

$$
\begin{gather*}
\left\{\begin{array}{c}
1 \\
22
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
33
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
44
\end{array}\right\}=\frac{2 p}{1-4 p} \tag{53}\\
\left\{\begin{array}{c}
1 \\
11
\end{array}\right\}=\left\{\begin{array}{c}
2 \\
12
\end{array}\right\}=\left\{\begin{array}{c}
3 \\
13
\end{array}\right\}=\left\{\begin{array}{c}
4 \\
14
\end{array}\right\}=-\frac{2 p}{1-4 p} \tag{54}
\end{gather*}
$$

The non-zero derivatives of equations (53) and (54) as follows:

$$
\begin{gathered}
\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
22
\end{array}\right\}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
33
\end{array}\right\}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
44
\end{array}\right\}=\frac{2 p}{(1-4 p)^{2}} \\
\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
11
\end{array}\right\}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
2 \\
12
\end{array}\right\}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
3 \\
13
\end{array}\right\}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
4 \\
14
\end{array}\right\}=-\frac{2 p}{(1-4 p)^{2}}
\end{gathered}
$$

The Riemannian curvature tensor as follows

$$
K_{i j k}^{l}=\underbrace{\left|\begin{array}{cc}
\frac{\partial}{\partial x^{j}} & \frac{\partial}{\partial x^{k}} \tag{55}\\
\left\{\begin{array}{c}
l \\
i j
\end{array}\right\} & \left\{\begin{array}{c}
l \\
i k
\end{array}\right. \\
\hline
\end{array}\right|}_{=I}+\underbrace{\left.\left\lvert\, \begin{array}{c}
m \\
i k
\end{array}\right.\right\}}_{=I I} \begin{array}{c}
\left\{\begin{array}{c}
m \\
l \\
m k
\end{array}\right\} \\
m k
\end{array}\} \left\lvert\, \begin{array}{c}
l \\
m j
\end{array}\right.\}|\mid . ~ .
$$

The non-zero components of (I) in (55) goes as follows:

$$
\begin{aligned}
& K_{212}^{1}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
22
\end{array}\right\}=\frac{2 p}{(1-4 p)^{2}} \\
& K_{313}^{1}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
33
\end{array}\right\}=\frac{2 p}{(1-4 p)^{2}} \\
& K_{414}^{1}=\frac{\partial}{\partial x^{1}}\left\{\begin{array}{c}
1 \\
44
\end{array}\right\}=\frac{2 p}{(1-4 p)^{2}}
\end{aligned}
$$

and the non-zero components of $(I I)$ in (55) goes as follows:

$$
\begin{aligned}
& K_{313}^{1}=\left\{\begin{array}{c}
m \\
33
\end{array}\right\}\left\{\begin{array}{c}
1 \\
m 1
\end{array}\right\}-\left\{\begin{array}{c}
m \\
31
\end{array}\right\}\left\{\begin{array}{c}
1 \\
m 3
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
33
\end{array}\right\}\left\{\begin{array}{c}
1 \\
11
\end{array}\right\}-\left\{\begin{array}{c}
1 \\
31
\end{array}\right\}\left\{\begin{array}{c}
1 \\
13
\end{array}\right\}=-\frac{4 p^{2}}{(1-4 p)^{2}}, \\
& K_{414}^{1}=\left\{\begin{array}{c}
m \\
44
\end{array}\right\}\left\{\begin{array}{c}
1 \\
m 1
\end{array}\right\}-\left\{\begin{array}{c}
m \\
41
\end{array}\right\}\left\{\begin{array}{c}
1 \\
m 4
\end{array}\right\}=\left\{\begin{array}{c}
1 \\
44
\end{array}\right\}\left\{\begin{array}{c}
1 \\
11
\end{array}\right\}-\left\{\begin{array}{c}
1 \\
31
\end{array}\right\}\left\{\begin{array}{c}
1 \\
13
\end{array}\right\}=-\frac{4 p^{2}}{(1-4 p)^{2}}
\end{aligned}
$$

Now, using these components in (55), we get

$$
K_{212}^{1}=\frac{2 p}{(1-4 p)^{2}}, \quad K_{313}^{1}=K_{414}^{1}=\frac{2 p-4 p^{2}}{(1-4 p)^{2}}
$$

Thus, the non-vanishing components of the Riemannian curvature tensor of type $(0,4)$ up to symmetry are:

$$
\tilde{K}_{1212}=\frac{2 p}{1-4 p}, \quad \tilde{K}_{1313}=\tilde{K}_{1414}=\frac{2 p-4 p^{2}}{1-4 p}
$$

and the Ricci tensor of type $(0,2)$ goes as follows:

$$
\operatorname{Ric}_{11}=-\frac{6 p}{(1-4 p)^{2}}, \quad \operatorname{Ric}_{22}=\operatorname{Ric}_{33}=-\frac{2 p}{(1-4 p)^{2}}
$$

Now, using $r=g^{i j} \operatorname{Ric}_{i j}$, we get $r=\frac{12 p}{(1-4 p)^{3}}$, which is non-zero. By virtue of the equation (5), we get the non-zero components of the \tilde{W}_{3} curvature tensor goes as follows:

$$
\left(\tilde{W}_{3}\right)_{1212}=\frac{4 p}{1-4 p}, \quad\left(\tilde{W}_{3}\right)_{1313}=\left(\tilde{W}_{3}\right)_{1414}=\frac{8 p}{3(1-4 p)}
$$

whose non-zero covariant derivatives are

$$
\left(\tilde{W}_{3}\right)_{1212,1}=\frac{4 p}{(1-4 p)^{2}}, \quad\left(\tilde{W}_{3}\right)_{1313,1}=\left(\tilde{W}_{3}\right)_{1414,1}=\frac{8 p}{3(1-4 p)^{2}}
$$

where ',' denotes the covariant derivative with respect to the metric tensor.
To show that $\left(\mathbb{R}^{4}, g\right)$ is a generalized W_{3} recurrent manifold, let us consider the associated 1 -forms as follows

$$
A_{i}=\left\{\begin{array}{ll}
\frac{16 p^{2}-32 p+5}{1-4 p}, & \text { if } \mathrm{i}=1 \\
0, & \text { otherwise }
\end{array} \quad, \quad \text { and } \quad B_{i}= \begin{cases}\frac{16 p}{(1-4 p)^{2}}, & \text { if } \mathrm{i}=1 \\
0, & \text { otherwise }\end{cases}\right.
$$

To verify the relation (10), it is sufficient to check the following relations

$$
\begin{align*}
& \left(\tilde{W}_{3}\right)_{1212,1}=A_{1}\left(\tilde{W}_{3}\right)_{1212}+B_{1}\left[g_{21} g_{12}-g_{11} g_{22}\right] \tag{56}\\
& \left(\tilde{W}_{3}\right)_{1313,1}=A_{1}\left(\tilde{W}_{3}\right)_{1313}+B_{1}\left[g_{31} g_{13}-g_{11} g_{33}\right] \tag{57}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\tilde{W}_{3}\right)_{1414,1}=A_{1}\left(\tilde{W}_{3}\right)_{1414}+B_{1}\left[g_{41} g_{14}-g_{11} g_{44}\right] \tag{58}
\end{equation*}
$$

Since for the other cases the relation (10) holds trivially.

$$
\begin{aligned}
\text { R.H.S. of } \quad(56) & =A_{1}\left(\tilde{W}_{3}\right)_{1212}+B_{1}\left[g_{21} g_{12}-g_{11} g_{22}\right] \\
& =\frac{\left(16 p^{2}-32 p+5\right)}{(1-4 p)} \times\left(\frac{4 p}{1-4 p}\right)+\frac{16 p}{(1-4 p)^{2}}\left[0-(1-4 p)^{2}\right] \\
& =\frac{4 p}{(1-4 p)^{2}} \\
& =\left(\tilde{W}_{3}\right)_{1212,1} \\
& =\text { L.H.S. of }(56) .
\end{aligned}
$$

By a similar argument, it can be shown that (57) and (58) are also true. Therefore the manifold $\left(\mathbb{R}^{4}, \mathrm{~g}\right)$ is a generalized W_{3} recurrent Riemannian manifold.

As a consequence of the above, one can say that
Theorem 6.1. There exists a manifold $\left(\mathbb{R}^{4}, g\right)$ which is a generalized W_{3} recurrent Riemannian manifold with the above mentioned choice of the 1-forms.

Acknowledgment

The authors are thankful to the referees for their valuable suggestions towards the improvement of this paper.

References

[1] M. Ali and M. Vasiulla, Almost pseudo Ricci symmetric manifold admitting Schouten tensor, J. Dyn. Syst. Geom. Theor. 19 (2021), no. 2, 217--225.
[2] K. Arslan, U. C. De, C. Murathan and A. Yildiz, On generalized Recurrent Riemannian Manifolds, Acta Math. Hungar. 123 (2009), no. 1-2, 27-39.
[3] E. Cartan, Sur une classe remarquable despaces de Riemann, Bull. Soc. Math. France 54 (1926), 214-264.
[4] U. C. De and A. K. Gazi, On generalized concircularly recurrent manifolds, Studia Sci. Math. Hungar. 42 (2009), no. 2, 287-296.
[5] U. C. De and N. Guha, On generalized recurrent manifolds, J. National Academy of Math. India 9 (1991), 297-306.
[6] U. C. De and P. Pal, On generalized m-projectively recurrent manifolds, Ann. Univ. Paedagog. Crac. Stud. Math. 13 (2014), 77-101.
[7] Q. Khan, On recurrent Riemannian manifolds, Kyungpook Math. J. 44 (2004), 269-276.
[8] K. Lalnunsiami and J. P. Singh, On semi-generalized W_{3} recurrent manifolds, Ganita 71 (2021), no. 1, 275-289.
[9] G. P. Pokhariyal, Curvature tensors and their relativistic significance III, Yokohama Math. J. 21 (1973), 115-119.
[10] J. A. Schouten, Ricci-calculus: An introduction to tensor analysis and its geometrical applications. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd X, Springer-Verlag, Berlin, 1954.
[11] H. Singh and Q. Khan, On generalized recurrent Riemannian manifolds, Publ. Math. Debrecen 56 (2000), 87-95.
[12] M. Vasiulla, A. Haseeb, F. Mofarreh, and M. Ali, Application of mixed generalized quasi-Einstein spacetimes in general relativity, Mathematics 10 (2022), 3749.

Mohabbat Ali
Department of Applied Sciences \& Humanities, Jamia Millia Islamia, New Delhi 110025, India.
E-mail: ali.math509@gmail.com
Quddus Khan
Department of Applied Sciences \& Humanities, Jamia Millia Islamia, New Delhi 110025, India.
E-mail: qkhan@jmi.ac.in
Aziz Ullah Khan
Department of Applied Sciences \& Humanities, Jamia Millia Islamia, New Delhi 110025, India.
E-mail: aukhan@jmi.ac.in
Mohd Vasiulla
Department of Applied Sciences \& Humanities, Jamia Millia Islamia, New Delhi 110025, India.
E-mail: vsmlk45@gmail.com

